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Introduction

Obesity is a global epidemic and a major contributor 
to some of the leading causes of death including type II 
diabetes mellitus, cardiovascular disease, Non-Alcoholic 
Fatty Liver Disease (NAFLD) and some types of cancer1. 
According to World Health Organization (WHO), the rates of 
obesity worldwide have nearly tripled the last 40 years, but 
obesity still remains a neglected health problem with serious 

physical, social and psychological dimensions2,3.
Visceral obesity, rather than total body fat, appears to be 

associated with increased cardiometabolic risk and along with 
hypertension, impaired glucose tolerance and lipid disorders 
constitutes Metabolic Syndrome (MetS)4. NAFLD is nowadays 
considered the hepatic manifestation of MetS and represents 
a wide spectrum of liver pathologies encompassing steatosis 
to Non-Alcoholic Steatohepatitis (NASH) and in rare cases 
cirrhosis and Hepatocellular Carcinoma (HCC)5,6. Although 
30-40% of people with simple steatosis progress to NASH, 
74% of NASH patients progress to fibrosis7. Liver fibrosis 
represents the consequences of a sustained wound healing 
response to chronic liver injury from a variety of causes 
including metabolic diseases, such as insulin resistance 
and impaired glucose tolerance8. This healing process in 
the liver is orchestrated by the Hepatic Stellate Cells (HSC), 
matrix molecules and several mediators, such as Tumor 
Necrosis Factor alpha (TNFa)9. The activation of stellate 
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cells reflects paracrine stimulation by all neighboring cell 
types, including sinusoidal endothelium, Kupffer cells, 
hepatocytes, platelets, leukocytes and endothelial cells, that 
produce cellular fibronectin and Reactive Oxygen Species 
(ROS), alter adipokine/cytokine production and convert 
Transforming Growth Factor beta (TGFβ) from a latent to 
an active, profibrogenic form10-12. Additional factors that 
promote progression of NASH to fibrosis include increased 
sympathetic neurotransmitters, as well as angiotensin II 
and endocannabinoids and there is evidence to suggest 
that blockade of angiotensin II can attenuate fibrosis in 
animal models13. The modulation of HSC activation and 
Extramyocellular Matrix (ECM) remodeling is an area of 
active investigation and may also lead to novel therapeutic 
interventions14.

It has already been proven that human metabolism 
and immunity are closely related to each other15 and that 
obesity may represent an impaired immune function 
which predisposes to systemic inflammation16-19. Obesity is 
characterized by a chronic, low grade inflammation not only 
in all adipose tissue depots20-27, but also in skeletal muscle28-31 
and liver32,33, as a result of the systemic immunoactivation. 
There seems to be an imbalance between produced and 
circulating pro- and anti-inflammatory biomarkers and 
immune cells, including macrophages, T and B lymphocytes, 
which has important effects on systemic insulin sensitivity 
and will eventually lead to insulin resistance and type II 
diabetes. Adipose tissue and skeletal muscle represent active 
metabolic organs that produce and secrete a great variety 
of chemokines, adipokines34,35 and myokines36. Adipocytes 
are the unique source of secreted adipokines such as leptin 
and adiponectin37, which can promote insulin sensitivity, as 
well as resistin and Retinol-Binding Protein 4 (RBP4), which 
have the opposite action38. Crown-Like Structures (CLSs), 
which are described as accumulations of pro-inflammatory 
macrophages and extracellular matrix material around dead 
adipocytes, are considered the hallmark of adipose tissue 
inflammation and fibrosis39-45.

Normal glucose homeostasis requires a communication 
network among several organs, including adipose tissue46, 
skeletal muscle and the liver47. This inter-tissue cross-talk 
can be impaired in obesity by increased plasma Free Fatty 
Acid (FFA) and can therefore cause insulin resistance that 
leads to the development of type 2 diabetes mellitus and 
NAFLD. The mechanism through which FFA induces insulin 
resistance involves intramuscular and intrahepatocellular 
accumulation of triglycerides and diacylglycerol, activation 
of several serine/threonine kinases, reduction in tyrosine 
phosphorylation of the Insulin Receptor Substrate (IRS)-1/2, 
and impairment of the IRS/phosphatidylinositol 3-kinase 
pathway of insulin signaling. FFA also produce low-grade 
inflammation in skeletal muscle and liver through activation 
of Nuclear Factor-kappaB (NF-kB), resulting in release of 
several pro-inflammatory and pro-atherogenic cytokines48.

Intramuscular fat is of particular interest amongst 
researchers because of the important role of skeletal 
muscle in insulin-mediated glucose uptake. Due to skeletal 

muscle’s high insulin sensitivity and large percentage of 
body mass, fat accumulation and concomitant loss of 
insulin sensitivity potentially plays an important role in 
insulin resistance, obesity, and metabolic syndrome49. 
In obese individuals, intramuscular fat depot becomes 
infiltrated with pro-inflammatory macrophages, which may 
cause paracrine-like insulin resistance in skeletal muscle. 
In parallel with these inflammation-related changes, 
alterations in fatty acid metabolism can lead to the 
accumulation of fatty acid intermediates within the liver 
and skeletal muscle, which can serve as ligands to broadly 
activate inflammatory pathways in Kupffer cells and adipose 
tissue macrophages, possibly via Toll-like Receptor-2 and 
4 (TLR2/TLR4) signaling pathways50. There is plenty 
of available data showing that increased intramuscular 
fat is associated with decreased insulin sensitivity. The 
underlying pathophysiological mechanisms are not fully 
understood, although it has been suggested that it may 
be caused by altered action of mitochondrial proteins as 
a result of increased lipid peroxidation products51. Kato et 
al published that liver steatosis is associated with insulin 
resistance in skeletal muscle rather than in the liver in 
patients with NAFLD, suggesting a central role of fatty 
liver in the development of peripheral insulin resistance 
and the existence of a network between the liver and 
skeletal muscle52. There is also evidence that SAT fibrosis 
seen in obesity, is positively associated with liver fibrosis 
and diabetes, but all these traits may be at least partially 
reversed after bariatric surgery53.

The present study is a comprehensive “in situ” 
morphological evaluation of the underlying inflammation 
in morbid obesity. We used the well validated method of 
immunohistochemistry in 5 different tissues; Visceral 
Adipose Tissue/omentum (VAT), abdominal Ssubcutaneous 
Adipose Tissue (SAT), Skeletal Muscle (SM), Extramyocellular 
Adipose Tissue (EMAT) and liver. Biopsies were obtained 
from severely obese individuals who underwent planned 
bariatric surgery and we assessed the subcellular localization 
of CD68 and CD3 biomarkers, that suggests the presence of 
macrophages and lymphocytes respectively. The purpose of 
our study was to identify possible interactions between the 
investigated biomarkers within and between the different 
tissues and unveil any associations with the presence of 
diabetes, NASH and liver fibrosis at the time of surgery, as 
well as with important demographic and clinical parameters.

Materials and methods

Tissue samples and patients

Power analysis was performed using alpha error 
probability, power (1-β) and effect size. In particular, alpha 
error probability was set at 0.05, effect size was calculated 
using group means and standard deviations thus it was 
calculated to be 0.18 and power was set to 0.8. Estimated 
sample size was estimated to be 47 for patients with obesity. 
Power analysis was conducted on the hypotheses that body 
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weight follows the normal distribution and obese individuals 
(BMI>30) consist of the 12.5% of the population in the ages 
between 20 and 5962. Mean BMI was estimated at a mean of 
25.9 for ages 20 to 59 years old and a standard deviation of 
9.76, in the Greek population, for ages 20 to 59 years old63.

In the present study, we included 50 severely obese 
patients, undergoing planned gastric bypass surgery at the 
Department of Surgery of the University Hospital of Patras 
in Greece.

Inclusion criteria for participating in the study were: age 
>18 years, clinically significant obesity (BMI>40) with a 
clear indication for surgical intervention, absence of major 
underlying pathology (i.e. renal failure, heart failure, cancer, 
known chronic infectious or autoimmune disease) and 
willingness to participate. Exclusion criteria were: increased 
alcohol consumption (defined as >20 g/day), previously 
diagnosed viral hepatitis or any other known chronic liver 
disease and long-term treatment with medication found to 
cause liver damage and steatosis. The vast majority of the 
patients underwent Roux-en-Y gastric by-pass surgery, 
accompanied by appendicectomy and cholecystectomy. 
During the planned surgical procedure, biopsies were taken 
from abdominal visceral adipose tissue (omentum) (tissue α, 
VAT), abdominal subcutaneous adipose tissue (tissue γ, SAT), 
skeletal muscle from rectus abdominis (tissue δ.m, SM) with 
its extramyocellular fat (tissue δ.ad, EMAT) and liver (tissue 
ε). All patients had abdominal (central) obesity, defined as 
a waist-hip ratio above 0.90 for males and above 0.85 for 
females, or a body mass index (BMI) above 3054.

Unfortunately, no consensus has been reached regarding 
the definition of skeletal muscle’s adipose tissue depot and 
as result there may be misunderstandings. According to 
Addison et al (2014) and Khan et al (2015)55,56 intermuscular 
fat is typically the broadest definition of fatty infiltration in the 
muscle referring to storage of lipids in adipocytes underneath 
the deep fascia of muscle. This includes the visible storage of 
lipids in adipocytes located between the muscle fibers (also 
termed intramuscular fat: IMAT) and between muscle groups 
(literally intermuscular or perimuscular: PMAT). The IMAT 

and PMAT depots constitute the extramyocellular adipose 
tissue in general. While not frequently isolated as a separate 
fat depot, there also exists a smaller group of lipids stored 
within the muscle cells themselves, known as lipid droplets or 
intramyocellular lipids (IMCL). To facilitate comparisons with 
previous studies, we used the same definitions.

All tissue samples were fixed at the Pathology Department 
of the University Hospital of Patras and then embedded in 
paraffin. Serial thin sections were taken (4 μm) and mounted 
on gelatin-coated glass slides. We used tissue samples that 
had been collected from August 2005 until December 2006. 
Blood samples for routine testing were also taken prior to the 
planned surgical intervention.

Useful collected anthropometric parameters include sex, 
age, Body-Mass Index (BMI), body fat percentage (which was 
measured by bioelectrical impedance analysis, BIA) and 
serum biomarkers include total cholesterol levels (TC), HDL, 
LDL, TGs, SGOT (serum glutamic-oxaloacetic transaminase) 
and SGPT (serum glutamic-pyruvic transaminase). The 
characteristics of the enrolled patients are presented in Table 
1 and Table 2.

Immunohistochemistry 

Serial 4μm-thick sections were cut from the formalin 
fixed, paraffin embedded (FFPE) blocks and subjected to 
immunohistochemical analysis. We used the following 
primary antibodies: prediluted monoclonal mouse antibody 
against macrophages (Flex monoclonal mouse anti-human 
CD68 ,Clone PG-M1, Ready to use, Dako) and prediluted 
polyclonal rabbit antibody against lymphocytes (FLEX 
Polyclonal Rabbit, Anti-Human CD3, Ready to use, Dako, 
Code: IS503).

Briefly, sections were deparaffinized in xylene and 
rehydrated in a series of graded ethanol solutions. 
Endogenous peroxidase activity was blocked by incubating 
with 0.3% hydrogen peroxide for 15 min at room 
temperature. For antigen retrieval, sections were heated in 
1 mM ethylenediamine tetraacetic acid (EDTA)-NaOH, pH 

Table 1. Descriptive characteristics for the continuous variables of our study population (N=50) (Legend: SD: Standard Deviation, IQR: 
Interquartile Range).

Continuous Variable Mean Median SD IQR Min-Max

Age (years) 38.62 37.5 10.48 19.75 22-58

ΒΜΙ 58.6 57.05 8.94 7.7 41.1-84.5

Body Fat (%) 49.63 49.8 5.02 5.9 30.1-58.2

SGOT (mg/dl) 27.92 23 15.23 11 14-93

SGPT (mg/dl) 38.06 32 20.24 19.25 13-104

CHOL (mg/dl) 196.8 197.5 38.37 56.75 114-288

LDL (mg/dl) 123.4 122.5 30.72 44.25 74-202

HDL (mg/dl) 46.3 44.5 13.25 13.25 28-88

TGs (mg/dl) 156.3 147 74.92 96 36-391

Total NAS score 4.33 5 1.93 3 1-8
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8 for 15 min in a microwave oven. After cooling to room 
temperature, sections were incubated with blocking serum 
(1% bovine serum albumin fraction V; Serva Electrophoresis, 
Germany) for 30 min and then with the primary antibody for 1 
h at room temperature. Slides were next incubated with Dako 
EnVision labeled polymer (Dako, CA, USA). Diaminobenzidine 
(Dako, CA, USA) was used as the chromogen. Nuclei were 
counterstained with Harris hematoxylin. Sections from tonsil 
were used as positive control for CD68 and CD3, according 
to manufacturer’s advice. Furthermore, consistent positive 
staining of liver Kupffer cells was also used as internal control 
for CD68 and of lymphocytes for CD3. For negative control 
slides, the same method was performed, but the primary 
antibody was substituted by 1% TBS.

Staining evaluation

Haematoxylin and Eosin (H&E) stained sections were 
initially reviewed to evaluate each patient’s underlying 
histopathology and assess the presence and severity of 
nonalcoholic fatty liver disease (NAFLD) according to Kleiner 
histological scoring system57. The diagnosis of NASH was 
based on the NAFLD Activity Score (NAS), which has three 
components: steatosis amount (0-3), lobular inflammation 
(0-3) and hepatocellular ballooning (0-2), which divides 
the patients into three categories: i. definite (NAS ≥5), ii. 
borderline (NAS: 3-4) and iii. no NASH (NAS <3). The degree 
of liver fibrosis was assessed separately58. For some of the 

cases, we also used extra histochemical stains, such as 
Masson’s Trichrome for better assessing liver fibrosis.

Each slide was individually evaluated and scored by 
two independent observers blinded to all clinical data. 
Discrepancies in scoring between the observers were 
resolved by additional review of the slides under a double 
headed microscope until a consensus was reached. For the 
evaluation we used Olympus light microscope. The whole 
section was initially reviewed and representative areas 
were selected at low magnification (×100). Cell count was 
performed at high magnification (×400). Cytoplasmic 
expression of CD3 and CD68 biomarkers was assessed. The 
number of positive stained cells along with the total number 
of adipocytes were counted in 10 different, non-overlapping 
fields per section. Then, the average of the cells was taken 
and the percentage of positive stained cells for each section 
was calculated (positive stained cells/adipocytes %). For 
the assessment of the inflammatory cells in the skeletal 
muscle and EMAT, we used a slightly different approach in 
order to be in line with previous studies and thus able to 
make comparisons59-61. We therefore evaluated the absolute 
number of CD68+ macrophages and CD3+ lymphocytes 
per mm2 of skeletal muscle and EMAT, by using a special 
microscope eyepiece with grading scale (Olympus BX41, 
Infinity HD Lumenera/ WHN 10x-H-1-3). We did not count 
and therefore statistically analyze the inflammatory cells in 
the liver, as normal Kupffer cells were also CD68+ positive-
stained and lymphocytes were present in all cases of NASH.

Table 2. Absolute (N) and relative (%) frequencies for the nominal variables of our study population (Ν=50) (Notes: *In liver biopsy, ¥According 
to Kleiner histological scoring system57, there are 5 stages in liver fibrosis and stage 1 is subdivided in other 3 parts [0: none, 1a: mild zone 3 
perisinusoidal fibrosis, 1b:moderate zone 3 perisinusoidal fibrosis, 1c: portal/periportal fibrosis only, 2: perisinusoidal and portal/periportal, 
3:bridging fibrosis, 4: cirrhosis]. For statistical reasons and in order to eliminate sample fragmentation, we excluded stages 0 and 4 from 
further statistical analysis and we did not use the subdivision for stage 1 [The values in the right columns were finally used]).

Nominal Variables Ν (%)

Sex
Man 14 28%

Woman 36 72%

Hypertension
Yes 19 38

No 31 62

Diabetes Mellitus

No 36 72

IGT (Impaired 
Glucose Tolerance)

5 10

Yes 9 18

Antidiabetic 
Treatment

Nill 45 90

Tablets 5 10

Ιnsulin 0 0

Lobular 
inflammation*

0 1 2

1 21 43

2 23 47

3 4 8

Ballooning*

0 10 20

1 19 39

2 20 41

Nominal Variables Ν (%)

Steatosis*

0 16 33

1 8 16

2 10 20

3 15 31

NASH

No 12 25

Borderline 11 22

Yes 26 53

 FIBROSIS*,¥

0 1 2

1 13 13 26.5 27.7

2 16 16 32.7 34

3 18 18 36.7 38.3

4 1 2

Intramuscular 
Adipose Tissue 
(IMAT)

No 9 18

Yes 41 82

Lipid droplets 
(Intramyocellular 
lipids, IMCL)

No 27 54

Yes 23 46
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Statistical analysis

All data was analyzed by using the SPSS statistical package 
(SPSS release 17.0, Chicago, IL, USA) and the R Statistical 
Foundation (3.3.1. Edition, Austria). The level of statistical 
significance was set at p-value <0.05. We correlated the 
biomarkers’ expression levels between and within the 
tissues, with the anthropometric and clinical parameters and 
histopathological findings of our population. Final endpoints 
of our study were considered: (i) the presence of diabetes, (ii) 
the presence of nonalcoholic steatohepatitis (NASH) and the 
(iii) presence of fibrosis in liver biopsy.

The nominal variables are described with absolute (N) and 
relative frequencies (%), whereas the continuous with mean 
(M) and standard deviation (SD) in case of normal distribution, 
or with median (MED) and interquartile range (IQR) in case of 
abnormal distribution. The normal distribution of each of the 
investigated parameters was assessed with Shapiro-Wilk test.

Levels of biomarkers’ expression were initially analyzed as 
continuously scaled measures, but for statistical purposes 
they were finally dichotomized into low and high expression. 
The mean expression of the investigated biomarkers in each 
tissue can be seen in Table 3. Due to lack of evidence in the 
literature, we used as cut-off points, values between the 
mean and median expression of each antibody per tissue64, 
in such a way so as the 2 categories would have almost 
equal number of patients. The cut-off values that we used 
are displayed in Table 4. CLS status was assessed after 
examination of all fields available per slide at high-power 
field (HPF) magnification using light microscopy. A CLS 
was defined as CD68+ macrophage aggregates comprising 
at least 50% of the circumference circularly surrounding 
necrotic adipocytes. Subcutaneous and visceral (omental) 
fat depots from each participant were dichotomously 

categorized based on the presence (CLS+) or absence 
(CLS-) of CLS in fat. In additional analyses, CLS+ depots 
were characterized as low density (1 CLS per HPF) or high 
density (≥2 CLS per HPF)39. The correlations between the 
continuous variables were examined by using the Pearson’s 
(r) and Spearman’s (p) rank correlation tests, depending on 
the symmetry of the distribution. The possible associations 
between a nominal and a continuous variable were assessed 
with t-test, Wilcoxon and the non-parametric Kruskal-Wallis 
test. Finally, comparisons between nominal variables were 
performed by using Pearson’s Chi square (χ2) or Fisher test.

We assessed liver fibrosis, according to Kleiner histological 
scoring system. For statistical purposes and in order to 
eliminate sample fragmentation, we excluded stages 0 and 
4 from further statistical analysis and we did not use the 
subdivision for stage 1.

The final endpoint of our study is to investigate any 
possible correlations between the biomarkers’ expression 
levels in each one of the tissues, the clinical parameters and 
the development of diabetes, NASH and liver fibrosis.

Results

Descriptive statistics of demographic and clinical 
characteristics

In the present study we enrolled 50 morbidly obese 
individuals who underwent planned bariatric surgery. 
The majority of the participants were women (72%), the 
median age was 37.5 years and the median BMI 57.05. 
The demographic and clinical characteristics of our 
population are displayed in Table 1 and Table 2 for the 
continuous and nominal values respectively. According 
to Shapiro-Wilk test, only total cholesterol and LDL levels 

Table 3. Relative expression (Mean value ± SD and Median in brackets) of the investigated biomarkers (%) in each tissue (Notes: *We did not 
detect any CLSs in skeletal muscle and EMAT. ≠In SM and EMAT the values represent cells/mm2, whereas in SAT and VAT positively stained 
cells/adipocytes %).

Antibody Tissue

α (VAT) γ (SAT) δ.m (Muscle) δ.ad (EMAT)

CD68≠ 28.48±17.54 (26.4) 23.33±18.06 (17.5) 17.44± 14.72 (13) 45.8±25.5 (39.5)

CLS* 0.62±1.26 (0) 2.84±4.52 (1.5) - -

CD3≠ 21.54±14.36 (18.67) 6.31±3.49 (5.78) 7.9±7.9 (6) 12.62±6.46 (12)

Table 4. Cut-off values used in our study for dichotomizing biomarkers’ expression in low and high expression.

Antibody Tissue

α γ δ.m δ.ad

CD68 27% 20% 15cells/mm2 42cells/mm2

CLS ≥1CLS/HPF ≥1CLS/HPF - -

CD3 20% 6% 7cells/mm2 12cells/mm2
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were normally distributed and thus median and IQR are 
more representative and accurate, than mean±SD, for 
describing the rest of the variables.

It is noticeable that 38% of the enrolled patients suffer 
from hypertension and 28% from either impaired glucose 
tolerance or full-blown diabetes mellitus. Moreover, 75% was 

found to have some degree of non-alcoholic fatty liver disease 
(NAFLD) and the vast majority (98%) some degree of fibrosis 
as assessed on liver biopsy, by Kleiner histological scoring 
system57. Finally, 82% of our population had intramuscular 
and 46% had intra-myocellular fat as well.

Further on, due to the predominance of the female subjects 

Figure 1. Representative images of CD3 immunostaining in Subcutaneous Adipose Tissue (SAT) (A), Visceral Adipose Tissue (VAT) (B), 
Skeletal Muscle (SM) (C), liver with fibrosis (D) (Legend: SAT: Subcutaneous Adipose Tissue, VAT: Visceral Adipose Tissue, SM: Skeletal 
Muscle) (original magnifications ×400).

Figure 2. Representative images of CD68 immunostaining in Crown-Like Structure (CLS) seen in Visceral Adipose Tissue (VAT) (original 
magnification ×200) (A), CLS seen in Subcutaneous Adipose Tissue (SAT) (original magnification ×400) (B), Extra-myocellular Adipose 
Tissue (EMAT) (original magnification ×200) (C) and SM (original magnification x400) (D) (Legend: SAT: Subcutaneous Adipose Tissue, 
VAT: Visceral Adipose Tissue, SM: Skeletal Muscle, EMAT: Extramyocellular Adipose Tissue, CLS: Crown-Like Structure).
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we have investigated possible differences in our population 
due to gender. In particular, significant differences were found 
between males and females with respect to height (p=3×10-

8), weight (p=0.0023), hematocrit (p=0.0001), hemoglobin 
(p=0.0002), Fe (p=0.03) and Ferritin (p=0.009). Body fat 
content (%) appeared also to differ significantly between 
men and women (p=0.004) with women showing a higher 
median value (Median: 50.2%, IQR=5.0%) as compared to 
men (MED=46.1%, IQR=6.8%). Despite the fact that body 
fat was significantly associated with BMI (p=0.006), BMI did 
not show major differences between the two sexes (p=0.72). 
Hypertension, diabetes and lipid levels did not differ 
significantly between men and women. Finally, no further 
differences were observed with respect to CD3 and CD68 
expression levels, in all tissue biopsies.

Statistical analysis revealed no correlation between sex, 
hypertension, BMI, body fat percentage, total cholesterol, 
LDL and HDL levels with the presence of diabetes, NASH 
or liver fibrosis in our study population. The likelihood of 
developing diabetes appeared to increase with age (median 
age 34 years in non-diabetic patients, whereas median age 
was 43 in diabetic or prediabetic group), but this association 
was not found to be statistically significant. Moreover, there 
was an apparent but not statistically significant correlation 
(statistical trend) between both intramuscular (p=0.059) 
and intrahepatic fat (p=0.063) and the development of type 
II diabetes. Finally, we detected a statistically significant 
positive link between SGOT (p=0.009) and SGPT (p=0.013) 
levels with the presence of NASH, making liver transaminases 
useful diagnostic and prognostic biomarkers.

Descriptive statistics of biomarkers’ expression

All 5 collected tissues (α, γ, δ.m, δ.ad, ε) from the 50 
enrolled patients were assessed for the presence of 
inflammatory cells by immunohistochemistry. Specifically, 
we investigated the expression of CD68 and CD3 biomarkers, 
for identifying macrophages and T-lymphocytes respectively 
and we also assessed the presence of crown-like structures 
in all three distinct adipose tissues. Both biomarkers were 
expressed in all tissues, indicative of the underlying systemic 
inflammation. The mean, standard deviation and median 
values of the positively stained cells are displayed in Table 3. 
Representative images of CD63 and CD68 immunostaining 
are shown in Figure 1 and Figure 2 respectively.

As it is presented in Table 3, the median expression levels for 
both CD68 and CD3 are higher in VAT compared to SAT, with 
CD68 levels being higher than CD3 in all investigated tissues. 
Moreover, CD68 and CD3 expression levels in EMAT were found 
to be higher in EMAT than in skeletal muscle, but cannot be 
directly compared to SAT and VAT as we used slightly different 
methods. Interestingly, we detected more CLSs in SAT rather 
than in VAT, but we did not identify any in EMAT.

Correlations between biomarkers’ expression and clinical 
characteristics of our population

We found that age has statistically significant positive 
correlation with CD68+ expression in both skeletal muscle 
(p=0.012) and EMAT (p=0.014). We also observed a strong 
positive association between body fat content and CD3 
expression levels in VAT (p=0.013).

Figure 3. Bar plots showing the correlation between CD3 expression levels in Skeletal Muscles (SM) (A) and Extra-myocellular Adipose 
Tissue (EMAT) (B) with liver fibrosis and correlation between the presence of Crown-Like Structure (CLS) in Subcutaneous Adipose 
Tissue (SAT) (C) and Visceral Adipose Tissue (VAT) (D) with the development of Non Alcoholic Steatohepatitis (NASH) (Legend: SAT: 
Subcutaneous Adipose Tissue, VAT: Visceral Adipose Tissue, SM: Skeletal Muscle, EMAT: Extra-myocellular Adipose Tissue, CLS: Crown 
Like Structure, 1-3: stages of liver fibrosis, M: Marginal stage. Borderline for NASH).
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Moreover, there was a strong positive link between 
liver transaminases’ levels and CD68+ expression in SAT 
(p=0.006 for SGPT), VAT (p=0.035 for SGPT) and EMAT 
(p=0.024 for SGOT), indicative of systemic inflammation 
in all adipose deposits and its association with NAFLD. 
Supporting finding is the prominent positive correlation with 
CD3 expression in VAT (p=0.019 for SGOT, p=0.009 for 
SGPT). Finally, we noted a strong positive link between NAS 
score and the presence of CLSs in SAT (p=0.018), but we 
did not detect any statistically significant links between lipid 
levels and inflammatory biomarkers’ expression.

Correlations between biomarkers’ expression and study 
endpoints

We found a significant positive link between CD3 expression 
levels in skeletal muscle (p=0.006) and EMAT (p=0.045) 
with the presence of liver fibrosis. This is a novel finding that 
in our knowledge has not been described so far.

Moreover, NASH was found to be strongly positively 
correlated with the presence of CLSs (p=0.034) in SAT, 
finding which is in line with the association between NAS 
score and the presence of CLSs in SAT (p=0.018). 

We did not detect any statistically significant correlation 
between the presence of diabetes mellitus and the 
inflammatory biomarkers’ expression. We noticed though, a 
marginally significant correlation (statistical trend) with liver 
steatosis (p=0.063) and IMAT (p=0.059). Representative 
bar-plots are shown in Figure 3.

Correlations between biomarkers’ expression within the same 
tissue (Intra-tissue Co-expression Networks)

VAT

In VAT, there seems to be a strong positive link between 
CD3+ and CD68+ expression levels (p=0.01), which is 
expected as it confirms the local inflammation.

SAT

In SAT there is a remarkable positive association 
between the presence of CLSs and the expression levels of 
CD68+ (p~0) and CD3+ (p=0.019). However, we failed to 
demonstrate a statistically significant correlation between 
CD68+ and CD3+ expression levels , although there was a 
clear trend (positive, p=0.059).

Skeletal muscle

As in the case of SAT and VAT, considerable positive 
correlation was found between CD3+ and CD68+ in skeletal 
muscle (p=0.026). This result, was also expected as it 
confirms the tissue’s local inflammation.

EMAT

There was a statistically significant positive correlation 
between CD3+ and CD68+ (positive, p~0), as in the rest of 
the tissues, which is indicative of systemic inflammation. 

Correlations between biomarkers’ expression between the 
tissues

CD68

We found an outstanding positive link between CD68+ 
expression levels in SAT and VAT (p=0.002), as well as 
between skeletal muscle and EMAT (p~0). Moreover, a 
significant correlation was noted between the presence of 
CLSs in SAT and VAT (p=0.027). All inter-tissue correlations 
regrading CD68 expression are shown in Figure 4.

CD3

Our findings regarding CD3 expression between tissues 
are in agreement with the ones for CD68. Thus, we noticed 
a statistical significant positive correlation between SAT and 
VAT (p=0.0004), as well as between skeletal muscle and 
EMAT (p=0.002). 

Figure 4. Correlation matrix (with Spearman values) that gives a comprehensive view of all possible inter-tissue correlations for CD68 
expression (all parameters are shown as continuous variables). All strong positive correlations (>30%) are shown in bold blue color.
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Representative scatter plots regarding inter- and 
intratissue biomarkers’ expression are shown in Figure 5.

Discussion

Intra- and inter-tissue co-expression networks also apply to 
inflammation and the mediated biomarkers 

Obesity is characterized by a chronic, low grade 
systemic inflammation and the pathogenesis of the 
disease can be better understood in the context of 
“disease network analysis”. Recent studies65-69, including 
own data under submission, denote the significance of 
inter-tissue, cross-talk comprehension in unmasking the 
underlying pathologies in obesity, inflammation, diabetes 
and NAFLD. We detected a complex and extensive intra- 
and inter-tissue inflammatory co-expression network 
that may shed light on the understanding of chronic 
inflammatory diseases. Specifically, we revealed a strong 
positive link between CD3 and CD68 expression levels in 
VAT (p=0.01), SM (p=0.026), EMAT (p~0) and a weaker 
in SAT (p=0.059). Moreover, we showed a statistically 
significant association between the presence of CLSs with 
both CD3 (p=0.019) and CD68 (p~0) expression levels in 
SAT. Regarding inter-tissue communication, we detected 
significant positive links between two tissue-pairs: (i) SAT 
and VAT (p=0.002 for CD68, p=0.027 for CLSs, p=0.0004 
for CD3) and (ii) SM and EMAT (p~0 for CD68, p=0.002 
for CD3). Our findings are suggestive of obesity-induced, 
systemic inflammation which appears to be related with 
the presence of its associated comorbidities.

Obesity is related to systemic inflammation

Previous studies have demonstrated that the presence 
of macrophages and lymphocytes in adipose tissue and 
skeletal muscle in obese subjects, suggests a low grade 
chronic inflammation and is associated with insulin resistance, 
endothelial dysfunction and NAFLD70. Obesity alters the 
architecture and microenvironment of adipose tissue and 
leads to the infiltration of proinflammatory cells, which in 
some cases form the so-called Crown-Like Structures (CLSs) 
that surround dead adipocytes and are nowadays considered 
the hallmark of adipose tissue inflammation and fibrosis40-45. 
Bigornia et al (2012) correlated the presence of CLSs, mostly 
in VAT, with insulin resistance in obese individuals39 and he 
suggested that subcutaneous adipose tissue biopsy may be 
considered for better assessing patients’ metabolic profile. 
There is also strong evidence that adipose tissue macrophage 
infiltration, especially in visceral rather than subcutaneous 
fat, is associated with liver dysfunction and histopathological 
lesions possibly via “portal-hypothesis” mechanism71. Cancello 
et al (2006) published that macrophage concentration in VAT 
is double than in SAT, although adipocytes in VAT tend to 
be smaller in diameter and concluded that adiponectaemia, 
SGOT levels and VAT macrophages can accurately predict 
the severity of liver disease72. In our study population, 
macrophage and lymphocyte concentration in VAT was 1.5 
and more than three times respectively, higher than in SAT. It 
is notable though that, in contrary with previous studies39,73, 
we found that CLS were more abundant in SAT than in VAT. 
This finding may be explained by the fact that we used 
abdominal rather than gluteofemoral SAT and thus this depot 

Figure 5. Scatterplots showing inter- and intratissue correlations between the investigated biomarkers (A) CD3 expression between 
SM and Extra-myocellular Adipose Tissue (EMAT) (B) CD68 expression between Skeletal Muscle (SM) and EMAT (C) CD3 and CD68 
expression in SM (D) CD3 and CD68 in EMAT (Legend: SM: Skeletal Muscle, EMAT: Extra-myocellular Adipose Tissue).
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could represent the “metabolically active” deep instead of 
the dormant superficial sub-compartment of subcutaneous 
adipose tissue74.

Apart from adipose tissue, skeletal muscle can also be 
characterized by a chronic low-grade inflammatory status, 
especially in obese, diabetic and elderly individuals30. 
Increased T cell and macrophage infiltration in obese subjects, 
may contribute to metabolic dysfunction at a later stage. It has 
been proposed that T cells and macrophages residing in EMAT, 
may exert effects on the neighboring myocytes via a paracrine 
mechanism and induce the expression of pro-inflammatory 
chemokines, such as Monocyte Chemoattractant Protein-1 
(MCP-1)75 and Regulated on Activation, Normal T Cell 
Expressed and Secreted (RANTES)76, further mediating blood 
monocyte and T lymphocyte migration into skeletal muscle, 
resulting in expansion of the inflammation in skeletal muscle 
and insulin resistance (via Janus Kinase/Signal Transducers 
and Activators of Transcription (JAK/STAT) signaling 
pathway). In contrast to previous studies77,78, Tam et al. (2013, 
2014) found relatively few macrophages (2-3%) and low 
inflammation gene expression (CD68, CCL2, CD40, CD206, 
CD11c, Arginase 1) in skeletal muscle of obese subjects, 
that remained unchanged after exercise and concluded that 
greater macrophage accumulation seen in other studies (4-
5%) may potentially be due to contamination with adipose 
tissue79. This result was in agreement with our results, where 
the median expression of macrophages (CD68 positively 
stained cells) in skeletal muscle was 16 cells/mm2 and of T 
cells (CD3 positively stained) was 7 cells/mm2, corresponding 
to 5% and 2% infiltration respectively77. Comparing results 
between different studies could be a challenging task. 
Different groups have used dissimilar methods for assessing 
the accumulation of inflammatory cells. However, the absolute 
number of cells/mm2 is becoming the method of choice 
amongst researchers and it will probably be established as 
the gold standard for assessing the density of different cell 
types in the investigated tissues59-61.

According to recent studies, extramyocellular fat 
expansion in obesity correlates with skeletal muscle T cell 
and macrophage infiltration, systemic inflammation and 
insulin resistance28,56,80. It appears that EMAT has altered 
phenotype (“adiposopathy”) similar to that observed in VAT, 
and its metabolic actions are mediated through paracrine 
and endocrine mechanisms. EMAT increases with age (~9g/
year) after adjustment for total fat, but there seems to be 
no significant difference between men and women81. The 
infiltration of macrophages occurs during an early stage of 
obesity and precedes T cell accumulation. It is notable that 
inflammatory cells in EMAT can cluster in CLSs, as seen in 
VAT82 although we did not detect such structures in our 
EMAT specimens.

We detected a strong positive link between age and 
CD68 expression both in skeletal muscle (p=0.012) and 
EMAT (p=0.014), despite the fact that the median age of our 
population was only 37.5 years. There is evidence that aging 
is accompanied by chronic inflammation due to elevated 
circulatory inflammatory cytokine production83-86. Several 

inflammatory cytokines (CRP, IL-6, IL-10, IL-15, TNFa) have 
been shown to be responsible for a decrease in muscle 
mass and an increase in the infiltration of macrophages, 
which are primarily responsible for the shift toward a more 
fibrotic state of skeletal muscle (“sarcopenia”). One the other 
hand, Tam et al found that CD68+ macrophage number is 
independent of aging and sex30. Moreover, it has already 
been proven that inter- and intramuscular fat increases with 
age (“myosteatosis”), a process that may contribute further 
to sarcopenia, inflammation and thus the development 
of insulin resistance87. However, little is known about the 
possible relationship between inflammation and sarcopenia 
due to aging and more studies are needed in order to shed 
light on the underlying mechanisms.

Systemic inflammation is strongly associated to the presence 
of NASH and liver fibrosis

We demonstrated a strong positive link between total 
NAS score and the development of NASH, with the presence 
of CLSs in SAT (p=0.018 and p=0.034 respectively). CLSs 
are considered the hallmark characteristic of adipose 
tissue inflammation and fibrosis, which is related to the 
presence of non-alcoholic fatty liver disease and insulin 
resistance33,39,70,88. Although previous studies71,89,90 correlate 
visceral adipose tissue inflammation and the presence of 
CLSs with liver damage, it seems that subcutaneous fat 
may play a role as well. In our study we used subcutaneous 
tissue from the abdominal wall, which could represent its 
deep component that has morphological and functional 
characteristics more similar to VAT91.

Liver transaminases, alanine (ALT/SGPT) and aspartate 
aminotransferase (AST/SGOT) are assertive indicators 
of hepatocellular injury and can be used as diagnostic and 
prognostic markers of liver disease92-94. Several studies 
have demonstrated that SGPT appears to have a role in 
gluconeogenesis and seems to be more related to hepatic fat 
accumulation than SGOT. High levels of SGPT are correlated 
with a higher risk of NASH, however, patients with normal 
SGPT levels may also have abnormal histological features, 
suggestive of steatohepatitis95,96. Additionally, it has been 
introduced a new SGPT upper limit for healthy individuals 
which is ≤40 U/L for both genders97,98. In our study, both SGOT 
and SGPT were significantly correlated with the presence of 
NASH (p=0.009 and p=0.013 respectively). We also found 
a significant association between liver transaminases and 
CD68 expression in all adipose depots: SAT (p=0.006 for 
SGPT), VAT (p=0.035 for SGPT) and EMAT (p=0.024 for 
SGOT), as well as with CD3 expression in VAT (p=0.019 for 
SGOT and p=0.009 for SGPT). This finding is particularly 
important, as it links adipose tissue inflammation with non-
alcoholic fatty liver disease, supporting the existing evidence 
for a potential key role of adipose tissue inflammation in the 
pathogenesis of NAFLD90,99.

As liver biopsy is considered a painful and risky procedure, 
we could therefore use subcutaneous tissue instead, along 
with serum transaminases levels for detecting and following 
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liver disease. Moreover, the last few years FibroScan or 
Transient Elastography (TE) has become increasingly 
available in assessing non-invasively liver fibrosis100. Fibrotic 
livers have reduced elasticity due to the deposition of fibrous 
tissue in the hepatic parenchyma. TE gives a liver stiffness 
measurement (LSM) using pulsed-echo ultrasound as a 
surrogate marker of fibrosis and allows for the identification 
of disease severity101. A low LSM reliably excludes advanced 
fibrosis, but the optimum cut-offs for clinical use are yet to be 
determined. Although TE is a safe, simple and cost-effective 
technique, there are considerable limitations that have to be 
addressed. There is evidence that results may be inaccurate in 
older patients (>52 years), those with central obesity, ascites 
and type II diabetes102. The use of new imaging modalities 
as noninvasive measures of liver fibrosis is undoubtedly 
an important step forward in the clinical management of 
patients with chronic liver disease, but due to their current 
limitations, liver biopsy still remains the gold standard for the 
diagnosis, staging and prognosis of liver disease.

Our most remarkable finding though, is the strong positive 
link between liver fibrosis and CD3 expression levels in 
skeletal muscle (p=0.006) and EMAT (p=0.045) and to the 
best of our knowledge, we are the first to demonstrate such 
a correlation. Takata et al (2017) published very recently 
that liver fibrosis markers, such as Fibrosis 4 Index (FIB4), 
can be helpful for predicting skeletal muscle mass loss in 
patients with chronic hepatitis C, suggesting a link between 
liver fibrosis and skeletal muscle103. There is no doubt that 
further research is needed in order to identify the complex 
underlying mechanisms and the signaling pathways that 
associate skeletal muscle inflammation with liver fibrosis.

NAFLD: Is it finally related to the development of insulin 
resistance?

Nonalcoholic fatty liver disease (NAFLD) encompasses 
a wide histological spectrum ranging from simple steatosis 
to nonalcoholic steatohepatitis (NASH) and in rare 
cases cirrhosis and hepatocellular carcinoma. NAFLD is 
considered the hepatic manifestation of metabolic syndrome 
and is strongly associated with insulin resistance and 
diabetes5,99,104,105. While it is fairly clear that insulin resistance 
causes hepatic steatosis, it is not known if NAFLD causes 
insulin resistance106. In our study, we detected a marginally 
significant correlation (statistical trend) between liver 
steatosis and the presence of diabetes (p=0.063). Hepatic 
steatosis is caused by triacylglecerol (TAGs) accumulation 
in the liver due to an imbalance between lipid storage and 
lipid removal, that can be caused by a high dietary fat intake, 
increased de novo lipogenesis, and increased lipolysis in 
adipose tissue6,107,108. Moreover, macrophages and other 
immune cells are recruited to the liver and secrete pro-
inflammatory cytokines that activate NFkB/JNK (c-Jun 
N-terminal Kinase) signaling pathway. This low-grade 
chronic inflammation and lipid accumulation in the liver and 
other organs, are believed to be the main drivers of hepatic 
insulin resistance in NAFLD108-110. There is evidence that 

bariatric surgery in morbidly obese subjects can ameliorate 
or even reverse liver steatosis and inflammation and thus 
improve patients’ metabolic profile111,112. Weight loss is still 
the cornerstone in the treatment of NAFLD, but many novel 
compounds are being studied and new weight-loss inducing 
agents are eagerly awaited112.

Study limitations

Our study is an in situ morphological evaluation of the 
underlying inflammation in morbid obesity through biopsies 
obtained from severely obese individuals, who underwent 
planned bariatric surgery. One of the limitations was 
the fact that we were not able to include a control group 
of lean individuals in order to examine the presence of 
inflammation due to the surgical procedure per se and allow 
for comparisons between the two groups. It was challenging 
to obtain simultaneously biopsies from 5 different healthy 
organs (including liver) of non-obese individuals undergoing 
various types of abdominal surgery. Further on, several 
studies have demonstrated that not only morbidly obese, but 
also healthy overweight subjects (BMI: 25-30 kg/m2) have 
higher levels of inflammatory biomarkers, pro-inflammatory 
cells and adipokines than their lean counterparts113,114. 
Moreover, lean individuals with NAFLD represent a wide 
spectrum of diseases including genetic predisposition, 
toxins, fructose- and cholesterol-rich diet and inherited lipid 
disorders. Including such patients with different underlying 
pathophysiological conditions in our study, would most likely 
complicate rather than clarify our results115. Thus, we have 
moved towards the solution of increasing the sample size and 
at the same time we have searched the literature for similar 
studies that used control populations in their investigations. 
To the best of our knowledge, all previous reports did not use 
directly control samples yet, they assessed the inflammatory 
effects based on the changes within the studied populations. 
This was true for both the CD3116-120 as well as the CD68 
inflammatory biomarkers121-124. Further on, although our 
study did not entail control samples it is one of the largest 
in sample size (n=50). Previous ones have reported 
investigations with morbidly obese individuals of 87 samples 
in the study of Atef E et al. (2016)118, 59 samples in the 
study of Linkov F et al. (2014)119, 27 samples in the study 
of Adler M et al. (2011)116, 20 samples in the study of Merhi 
ZO et al. (2009)120, 40 samples in the study of Guglielmi V 
et al. (2015)123, 27 samples in the study of Corbould A et 
al. (2014)122, 110 samples in the study of Caballero T et al. 
(2012)121 and 9 samples in the study of Tchoukalova YD et al. 
(2004)124. The sampling size of previous reports makes our 
study the fourth largest in population.

Conclusions

In summary, obesity should not be regarded as a “lone” 
entity but as part of a complex, highly interlinked disease 
network. In this context we should base our thinking and 
research in order to identify the common genetic origins and 
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address the key biomarkers that need to be targeted so as to 
provide novel and efficient treatments. Our findings support 
the “disease network theory”, as we detected a complicated 
inter- and intra-tissue co-expression network that links 
obesity-induced inflammation in the investigated tissues with 
non-alcoholic fatty liver disease. Specifically, inflammatory 
biomarkers (CD68, CD3) in all adipose depots were found 
to be positively related with serum liver transaminases and 
the presence of NASH, whereas CD3 expression in skeletal 
muscle and EMAT is linked to liver fibrosis as assessed 
by biopsy. Therefore, adipose or skeletal muscle biopsy, 
along with liver transaminases’ levels and novel imaging 
techniques, can accurately detect subtle hepatic disease and 
may substitute for liver biopsy in the near future. There is no 
doubt that further research is needed in order to advance our 
understanding of the molecular mechanisms that contribute 
to liver steatosis, NASH, and fibrosis in obese subjects and 
identify novel and promising therapeutic targets.
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