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A B S T R A C T

Background: N6-methyladenosine (m6A) is the most abundant mRNA modification. Whether m6A regulators
can determine tumor aggressiveness and risk of immune evasion in pancreatic ductal adenocarcinoma
(PDAC) remains unknown.
Methods: An integrated model named “m6Ascore” is constructed based on RNA-seq data of m6A regulators in
PDAC. Association of m6Ascore and overall survival is validated across several different datasets. Overlaps of
m6Ascore and established molecular classifications of PDAC is examined. Immune infiltration, enriched path-
ways, somatic copy number alterations (SCNAs), mutation profiles and response to immune checkpoint
inhibitors are compared between m6Ascore-high and m6Ascore-low tumors.
Findings:m6Ascore is associated with dismal overall survival and increased tumor recurrence in PDAC as well
as several other solid tumors including colorectal cancer and breast cancer. Basal-like (Squamous) PDAC has
higher m6Ascore than that in the classical PDAC. Mechanism study showed m6Ascore-high tumors are char-
acterized with reduced immune infiltration and T cells exhaustion. Meanwhile, m6Ascore is associated with
genes regulating cachexia and chemoresistance in PDAC. Furthermore, distinct SCNAs patterns and mutation
profiles of KRAS and TP53 are present in m6Ascore-high tumors, indicating immune evasion. m6Ascore-low
tumors have higher response rates to immune checkpoint inhibitors (ICIs).
Interpretation: These findings indicate m6Ascore can predict aggressiveness and immune evasion in pancre-
atic cancer. This model has implications for pancreatic cancer prognosis and treatment response to ICIs.
Funding: This work was supported in part by National Institutes of Health (NIH) grants to M. Li (R01
CA186338, R01 CA203108, R01 CA247234 and the William and Ella Owens Medical Research Foundation)
and NIH/National Cancer Institute Q39 award P30CA225520 to Stephenson Cancer Center.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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Introduction

Immunotherapy has emerged as a promising tumor treatment
strategy. Immune checkpoint inhibitors (ICIs) showed impressive
anti-tumor efficacy in a subset of solid tumors. However, currently
we are still in lack of reliable biomarkers to predict the response to
ICIs [1]. RNA modifications grant tumor cells the abilities to rapidly
and reversibly alter the transcriptional profiles in order to survive in
the fast changing and stressful microenvironment [2]. Among all the
mRNA modification, N6-methyladenosine (m6A) is the most com-
mon modification, regulated by “writers”, “erasers” and “readers”
[2�4]. m6A is catalyzed by methyltransferase complex (known as
m6A writers), interpreted by reader proteins (known as m6A read-
ers), and removed by demethylases (known as m6A erasers) [4]. m6A
modification on mRNA suppressed the ability of classical dendritic
cells (DCs) on antigen presenting and T cell priming by enhancing
translating lysosomal cathepsin [5]. Deficiency of m6A modification
could increase the infiltration of CD8+ T cells and reduce the recruit-
ment of MDSCs [5].
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Research in context

Evidence before this study

Pancreatic cancer is the third leading cause of cancer related
death in the United States. The 5-year overall survival rate is
only 9%. Epitranscriptome is an emerging field focusing on RNA
modification. m6A is the most abundant mRNA modification.
m6A regulators play critical roles in cancer progression and
immune evasion.

Added value of this study

This study identified a signature (m6Ascore) consisting of nine
m6A regulators. High m6Ascore is associated with worse prog-
nosis in PDAC. Highly aggressive PDAC subtypes (Basal subtype,
Squamous subtype, QM-PDA) have higher m6Ascore than less
aggressive counterparts. m6Ascore-high tumors had distinct
mutation profiles and reduced immune infiltration. m6Ascore
can predict response and treatment outcome of immune check-
point blockade.

Implications of all the available evidence

This study indicates mRNA modification as a potential thera-
peutic target to increase the efficacy of immunotherapy.
m6Ascore could serve as a potential tool to identify patients
that are more likely to respond to immunotherapy.

2 Z. Zhou et al. / EBioMedicine 65 (2021) 103271
Pan-cancer analysis has advanced our understanding on the
landscapes of m6A regulators across different tumors [6]. A pan-
cancer analysis identified a gene signature consisting of six m6A
regulators and showed that high-risk patients was associated
with mesenchymal subtype and tumor metastasis [7]. A signature
was developed to predict the survival of gastric cancer, based on
the m6A modification pattern, which included the expression of
differentially expressed genes (DEGs) instead of the m6A regula-
tors [8]. Pancreatic ductal adenocarcinoma (PDAC) is the third
leading cause of cancer related death in the United States, with a
median 5-year survival rate of 9% [9]. However, the role of m6A
in PDAC immune evasion remains uncharacterized. Currently,
several molecular classification systems have been proposed in
PDAC, including the Moffitt subtypes [10], Collisson subtypes
[11], and Bailey subtypes [12]. However, these classifications are
not intended for the selection of patients for immunotherapy.
Identifying optimal biomarkers is key to maximizing the treat-
ment efficacy of ICIs [13].

In this study, we constructed a model (termed as “m6Ascore”)
which consists of nine m6A regulators and proposed it as a potential
molecular classification for PDAC, which can identify distinct immune
infiltration and mutation pattern. We also demonstrated m6Ascore as
a practical tool to access the risk of immune evasion and predict
response to ICIs immunotherapy.

Methods

Datasets

We collected data from three independent databases, includ-
ing the TCGA (The Cancer Genome Atlas) database (https://portal.
gdc.cancer.gov/), the International Cancer Genome Consortium
(ICGC) database (https://dcc.icgc.org/) and Gene Expression Omni-
bus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) for the
following tumors including Pancreatic ductal adenocarcinoma
(PDAC), Breast Invasive Carcinoma (BRCA) and Colorectal
adenocarcinoma (COAD and READ). Data were normalized by the
“RSEM” pipeline and log2 transformed [14]. Ethical approval was
waived by institutional ethics committee because data are
obtained from public databases and all the patients are de-identi-
fied. Basic information of these datasets is listed in Table 1.

Construction of m6Ascore model

We obtained the RNA-seq data of 20 m6A regulators, including 7
“Writers” (METTL3, METTL14, WTAP, VIRMA, RBM15, RBM15B and
ZC3H13), 11 “Readers” (YTHDC1, YTHDC2, IGF2BP1, IGF2BP2,
IGF2BP3, YTHDF1, YTHDF2, YTHDF3, HNRNPA2B1, HNRNPC and
RBMX), and 2 “Erasers” (FTO, ALKBH5) [6]. Then we constructed the
m6Ascore model using the least absolute shrinkage and selection
operator machine learning algorithm [15]. Cross-validation was used
to tune the parameter lambda. Finally, 9 regulators were included in
the m6Ascore model, including 6 “Readers” (IGF2BP2, IGF2BP3,
HNRNPC, YTHDF1, YTHDF2 and YTHDC1) and 3 “Writers” (METTL3,
WTAP and VIRMA). Cut-off value was determined by maximally
selected rank statistics in maxstat package.

Gene set enrichment analysis and construction of enrichment map

Hallmark gene sets were obtained from MSigDB database
(https://www.gsea-msigdb.org/gsea/index.jsp) and analyzed in
GSEA software (v4.0.1) [16]. EdgeR algorithm was applied to
determine the DEGs [17]. The network of the top 50 DEGs was
constructed with GeneMANIA [18]. For the enrichment map, the
c2: curated gene sets with all canonical pathways were also
downloaded from MSigDB database and analyzed in Cytoscape
[19]. Number of permutations was 1000. Each gene set had 50 to
200 genes. The cutoff values of FDR q-value and similarity was
0.01 and 0.375 respectively. AutoAnnotate was used to annotate
each cluster [19].

Somatic copy number alterations (SCNAs) and mutation analysis

SNP6 array data was obtained from Firehose Broad Institute GDAC
(http://firebrowse.org/). Genomic Identification of Significant Targets
in Cancer (GISTIC) algorithm was utilized to identify significantly
aberrant regions [20]. Custom settings were applied according to GIS-
TIC2.0 module of GenePattern. Thresholds of amplifications and dele-
tions were 0.10. Confidence level and focal length cutoff were 0.90
and 0.50, respectively. Regions with q-values < 0.25 were defined as
significantly aberrant regions with recurrent copy number variation
[20]. GRCh37 (hg19) was applied as human genome reference. Muta-
tion frequency were analyzed with the maftools package [21]. The
most significantly different mutations were listed in forest plot
(P<0.01).

Immune signature and cell types abundance

The 66 immune markers was manually curated to represent the
broad landscape of immune profile [22]. Specific immune cells
markers were manually curated for Natural killer cells (NK cells) and
DCs [23,24]. Immune cell types abundance was analyzed in CIBER-
SORTx and xCell by imputing the RNA-seq data from bulk tumor tis-
sues [25,26].

Univariate and multivariate analysis

Several clinicopathological parameters were included for the uni-
variate analysis, including age, gender, tumor location, depth (T
stage), lymph node status (N stage), metastasis status (M stage), path-
ological grade and m6Ascore. Variables that are significantly
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Table 1
Basic information of the datasets included in this study.

Dataset No. of cases Gender Age T Stage N Stage M Stage Stage Platform

TCGA- PDAC 150 M: 81 F: 69 <60: 47, �60: 103 1-2: 21
3-4: 128
NA: 1

0: 39
1: 110
NA: 1

0: 68
1: 4
NA:78

I/II:142
III/IV:8

Illumina

Hugo cohort 26 NA NA NA NA NA NA Illumina HiSeq2000
Van Allen cohort 42 M: 14 F: 28 <60: 19, �60: 23 NA NA 0: 0

1: 42
IV: 42 Illumina

ICGC-PACA-AU 89 M: 46 F: 43 <60:21, �60: 68 NA NA NA NA Illumina HiSeq 2500
GSE21501 102 NA NA NA NA NA NA Agilent- Microarray
GSE17891 25 NA <60: 7, �60: 18 1-2: 6

3-4: 14
NA: 5

0: 6
1: 14
NA: 5

0: 20 NA: 5 I/II: 20 NA: 5 Affymetrix U133
Plus 2.0 Array

GSE28735 42 NA NA NA NA NA NA Affymetrix 1.0 ST
Array

TCGA-BRCA 1090 M: 12 F:1078 <60: 579, �60: 511 1�2: 910 3�4: 177
NA: 3

0: 514
1�3: 556
NA:20

0: 907 1:22
NA:161

I/II:798 III/IV:268
NA: 24

Illumina

TCGA-COADREAD 373 M: 206 F: 167 <60: 129, �60: 244 1�2: 67
3�4: 305 NA: 1

0: 205
1-2: 165
NA: 3

0: 252
1: 51
NA:70

I/II: 191 III/IV:164
NA: 18

Illumina

M: Male; F: Female; NA: Not Available.
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associated with overall survival were further included in multivariate
analysis.

Receiver operating characteristic (ROC) analysis

ROC analysis was performed using package “timeROC”, based on
the 6-months survival or response to anti-PD-L1/anti-CTLA-4 immu-
notherapy, and the RNA-seq data. Area Under the Curve (AUC) was
calculated to summarize the diagnostic accuracy. The 95% Confidence
Interval was calculated in SPSS 20.0 (IBM).

Survival analysis

Cox proportional hazards model was applied for survival anal-
ysis. When patients were stratified into 3 groups, cut-off values
were determined at the top 75% and the low 25%. When patients
were stratified into 2 groups, cut-off value was determined by
maximally selected rank statistics. Log-rank test was applied.

Statistics analysis

Statistics analysis was performed in R (https://www.bioconduc
tor.org/), Prism (https://www.graphpad.com/), and SPSS (https://
www.ibm.com/analytics/spss-statistics-software) using two-tailed
unpaired student’s t-test or log-rank test, unless otherwise speci-
fied. Wilcoxon test was applied when the data was not normally
distributed [27]. Chi square test was applied to compare the
response rates of immunotherapy between m6Ascore-high and
m6Ascore-low group. When the total number of cases is less
than 40, and/or more than 2 theoretical frequencies are less than
5, we used the Fisher's exact test. Otherwise, we used the Pear-
son's Chi square test. P < 0.05 was considered as significant dif-
ference.

Results

Construction of m6Ascore model

m6Ascore was constructed based on the transcriptome data of
twenty m6A regulators, including “Writers”, “Readers” and “Erasers”
in TCGA database. This algorithm finally enrolled nine m6A regula-
tors, including six m6A “readers” (IGF2BP2, IGF2BP3, HNRNPC,
YTHDF1, YTHDF2 and YTHDC1) and three m6A “writers” (VIRMA,
METTL3 andWTAP).

m6Ascore is correlated with overall survival of multiple malignancies

m6Ascore is correlated with overall survival of PDAC in TCGA
cohort (P<0.0001). Then we validated the prognostic value of this
m6Ascore model in Breast Invasive Carcinoma (BRCA, P = 0.0013) and
Colorectal Adenocarcinoma (COAD and READ, P = 0.00038) (Fig. 1a-
c). Furthermore, we demonstrated that m6Ascore is correlated with
PDAC survival in three independent PDAC cohorts including
GSE21501 cohort (P < 0.0001), GSE28735 cohort (P = 0.0030), and
GSE17891 cohort (P = 0.0047) (Fig. 1d-f).

Correlation between m6Ascore model and other molecular classifications
of PDAC

m6Ascore is correlated with Bailey et al defined molecular sub-
types (Immunogenic, ADEX, Pancreatic Progenitor, Squamous). The
Squamous subtype, which had the worst prognosis in Bailey’s cohort
also showed the highest m6Ascore compared to Immunogenic sub-
type (P = 0.0211), ADEX subtype (P = 0.0106) and Progenitor subtype
(P = 0.0008) (Fig. 2a). Meanwhile, those defined as Squamous subtype
were all annotated as m6Ascore-high (Fig. 2b, P = 0.060) The
m6Ascore was comparable among the Collisson et al defined sub-
types: Classical, Exocrine-like, QM-PDA (P = 0.550). But the QM-PDA
subtype, which had the worst prognosis in Collisson’s cohort, had the
highest proportion of m6Ascore-high patients (Fig. 2c-d,). We further
compared the m6Ascore in Moffitt et al defined PDAC subtypes: Clas-
sical and Basal-like (P < 0.001). Basal-like tumors had higher
m6Ascore and 96% of these tumors were also annotated as
m6Ascore-high (Fig. 2e-f). Combination of Bailey subtypes and
m6Ascore in Kaplan-Meier survival analysis showed that Squamous
subtype combined with m6Ascore-high patients had the most dismal
prognosis (Fig. 2g). Combination of m6Ascore and Moffitt subtypes
can stratify PDAC patients into four groups with distinct prognosis.
m6Ascore-high and Basal-like tumors had the worst prognosis
(Fig. 2h).

m6Ascore is associated with metastasis and tumor recurrence

The m6Ascore-high tumors had worse prognosis than the
m6Ascore-low tumors in ICGC-PDAC cohort (P = 0.0023) (Fig. 3a).

https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.graphpad.com/
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Fig. 1. m6Ascore is associated with overall survival across multiple independent datasets. (a) Kaplan-Meier survival analysis based on m6Ascore in TCGA-PDAC cohort (P < 0.0001,
log-rank test); (b) Kaplan-Meier survival analysis based on m6Ascore in TCGA-BRCA cohort (P = 0.0013, log-rank test); BRCA, breast cancer; (c) Kaplan-Meier survival analysis based
on m6Ascore in TCGA-COADREAD cohort (P = 0.00038, log-rank test); COADREAD, colorectal cancer. (d) Kaplan-Meier survival analysis based on m6Ascore in GSE17891 cohort
(P = 0.0047, log-rank test); (e) Kaplan-Meier survival analysis based on m6Ascore in GSE21501 cohort (P < 0.0001, log-rank test); (f) Kaplan-Meier survival analysis based on
m6Ascore in GSE28735 cohort (P = 0.0030, log-rank test).

4 Z. Zhou et al. / EBioMedicine 65 (2021) 103271
Principal component analysis (PCA) showed distinct expression pat-
tern between m6Ascore-high and m6Ascore-low tumors (Fig. 3b).
Heatmap showed the expression pattern of the nine m6A regulators
in PDAC tissue (Fig. 3c). The expression of each m6A regulator varied
between the two groups (Fig. S1). Even if we set the cutoff value of
m6Ascore as 25% and 75% percentile of all samples, m6Ascore-high
was still associated with inferior survival (P < 0.0001) (Fig. S2a-b).
The expression of each regulator was also correlated to m6Ascore
(Fig. S2c-l). PCA analysis also showed distinct patterns of these
groups (Fig. S2m). Meanwhile, we found that m6Ascore-high tumors
had increased expression of several key regulators of tumor metasta-
sis (Fig. 3d). Then we examined tumor recurrence and found that
recurrent PDAC tumors had higher m6Ascore than those without
recurrence (Fig. S3a). 74.6% (44/59) of m6Ascore-high tumors
would develop recurrence, compared to 52.7% (48/91) in
m6Ascore-low tumors (P = 0.007) (Fig. S3b). Metastasis upregu-
lated genes are enriched in the m6Ascore-high tumors, which
also had inferior prognosis independent of recurrence status
(P = 0.0139 for the recurrent patients; P = 0.0301 for the recur-
rence-free patients) (Fig. S3c-f). Combination of recurrence status
and m6Ascore can predict the survival of PDAC patients more
precisely (P < 0.0001) (Fig. S3g).

m6Ascore had better performance on predicting survival than each m6A
regulator alone

We examined the prognostic value of each m6A regulator in the
m6Ascore model (Fig. S4). Then, we drew the receiver operating
characteristic (ROC) curve and compared the area under curve (AUC)
of m6Ascore to each regulator in this model. AUC of 6-month survival
in m6Ascore model was 0.738, larger than each m6A regulator alone
(Fig. S5). The 95% confidence intervals were listed in Table 2.
To further determine the hazard ratio (HR) of these potential
prognostic factors, we performed Cox regression analysis, and found
the m6Ascore model had the highest HR (5.325, 95%CI 2.574-11.014,
P = 6.28E�6) (Fig. 3e). These results indicated that m6Ascore had bet-
ter performance than each m6A regulator alone on predicting sur-
vival in PDAC. Univariate (P < 0.001) and multivariate analysis
(P < 0.001) showed that m6Ascore is an independent risk factor for
PDAC (Table 3).

m6Ascore is associated with genes regulating cachexia and
chemoresistance in PDAC

To further explore why m6Ascore-high tumors had shorter sur-
vival, we examined the expression of zinc transporters and genes
regulating cachexia and chemoresistance in PDAC. Previously, we
have identified a zinc transporter, Solute Carrier Family 39 Member 4
(SLC39A4, ZIP4), which plays a critical role in PDAC progression and
metastasis [28,29]. ZIP4 can induce cachexia by increasing CAMP
Responsive Element Binding Protein 1 (CREB1) regulated RAB27B,
resulting in the release of extracellular vesicle containing heat shock
protein 70 (HSP70) and heat shock protein 90 (HSP90) [30]. Here we
found that ZIP4 expression was higher in m6Ascore-high tumors (Fig.
S6a). We also found that m6Ascore-high tumors had higher expres-
sion of RAB27B, Mitogen-Activated Protein Kinase 14 (MAPK14),
HSP70 (HSPA4) and HSP90 (HSP90AA1), indicating m6Ascore-high
tumors had high potential to develop muscle wasting and cachexia.
Meanwhile, we also found that the expression of several metastasis
associated genes also increased in m6Ascore-high tumors, including
Integrin Subunit Alpha 3 (ITGA3), Integrin Subunit Beta 1 (ITGB1),
CREB1, and Yes-associated protein 1 (YAP1) (Fig. S6b-i) [29,31]. These
results suggested the m6Ascore-high tumors have more progressive
phenotype.



Fig. 2. Correlation between m6Ascore model and other molecular classifications of PDAC. (a) Comparison of m6Ascore in molecular subtypes (Immunogenic, ADEX, Pancreatic Pro-
genitor, Squamous) defined by Bailey et al; (b) The proportion of m6Ascore-high and m6Ascore-low in Bailey et al defined molecular subtypes; (c) Comparison of m6Ascore in
molecular subtypes (Classical, Exocrine-like, QM-PDA) defined by Collisson et al; (d) Proportion of m6Ascore-high and m6Ascore-low in Collisson et al defined molecular subtypes;
(e) Comparison of m6Ascore in molecular subtypes (Classical, Basal-like) defined by Moffitt et al; (f) Proportion of m6Ascore-high and m6Ascore-low in Moffitt et al defined molecu-
lar subtypes; (g) Kaplan-Meier survival analysis based on the combination of m6Ascore and Bailey et al defined molecular subtypes; (h) Kaplan-Meier survival analysis based on the
combination of m6Ascore and Moffitt et al defined molecular subtypes.

Fig. 3. Establishment and evaluation of m6Ascore model in PDAC patients. (a) Kaplan-Meier survival analysis based on m6Ascore in ICGC-PDAC cohort (P = 0.0023, log-rank test);
(b) Principal component analysis (PCA) of TCGA-PDAC patients based on the expression of the m6Ascore model; (c) Heatmap showed the expression profiles of nine m6A regulators
that enrolled in the m6Ascore model in TCGA-PDAC patients. m6Ascore risk was listed as column annotations; Gradient m6Ascore was listed from left to right; (d) Expression of sev-
eral key regulators of tumor metastasis were upregulated in m6Ascore-high patients than in m6Ascore-low patients; (e) COX regression and forest plot were applied to examine the
hazard ratio (HR) and 95% confidence interval of each m6A regulators and the m6Ascore model.
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Table 2
Area Under the ROC Curve of 6-months
survival

Variables Area 95% CI

Lower Upper

m6Ascore 0.738 0.585 0.892
IGF2BP2 0.624 0.465 0.783
IGF2BP3 0.658 0.505 0.812
YTHDF1 0.495 0.326 0.666
YTHDF2 0.578 0.400 0.756
YTHDC1 0.544 0.386 0.702
HNRNPC 0.628 0.441 0.815
VIRMA 0.719 0.558 0.800
METTL3 0.526 0.372 0.680
WTAP 0.612 0.455 0.769

aUnder the nonparametric assumption.
bNull hypothesis true area = 0.5
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Gene set enrichment analysis (GSEA) identified activated and inactivated
pathways

GSEA analysis showed that m6Ascore-high tumors had increased
expression of several gene sets including cell cycle, KRAS, p53, DNA
damage repair, etc. (Fig. 4a-e). The network of the top 50 DEGs
between m6Ascore-high and m6Ascore-low tumors showed MET
pathway was amplified in m6Ascore-high tumors (Fig. S7). To further
elucidate the differentially enhanced or suppressed cellular processes
between the m6Ascore-high and m6Ascore-low PDAC tumors, we
constructed an enrichment map. It showed that RNA modification,
DNA damage repair and Cell cycle are the three most significantly
enhanced processes in m6Ascore-high tumors (Fig. 4f). Meanwhile,
the activity of several other processes involving tumor progression
also increased, including extracellular matrix remodeling, metastasis,
KRAS Proto-Oncogene (KRAS) activation and post-translational regu-
lation (Fig. 4f). MET is the most significantly different gene between
the two groups. Intriguingly, there are three m6A regulators that are
among the top 2000 DEGs, including IGF2BP2, IGF2BP3 and HNRNPC,
which are all correlated with overall survival in PDAC (Fig. 4g and Fig.
S4). m6Ascore-high tumors showed increased activity of downstream
Table 3
Univariate and Multivariate analysis in TCGA-PDAC cohort.

Characteristics Univariate

HR 95%C

Lower

Age (�60 as reference)
>60 1.245 0.772
Gender (Male as reference)
Female 1.275 0.823
Location (Head as reference)
Body 0.657 0.264
Tail 1.186 0.543
Others 0.157 0.021
Depth (T1 as reference)
T2 3.759 0.461
T3 5.074 0.703
T4 2.608 0.162
Lymph node status (N0 as reference)
N1 1.893 1.094
Metastasis (M0 as reference)
M1 0.959 0.230
Mx 1.007 0.647
Pathological grade (Grade 1 as reference)
Grade 2 1.333 0.646
Grade 3 1.623 0.756
Grade 4 1.659 0.208
m6Ascore (Low as reference)
High 2.344 1.509
targets of KRAS mutation (Fig. 4h). Key regulators of DNA damage
repair (DDR) are enriched in m6Ascore-high tumors compared to
that in the m6Ascore-low tumors (Fig. 4i). More intriguingly, the
activity of immune response pathways was relatively lower in the
m6Ascore-high group, indicating the presence of immune evasion.

m6Ascore-high tumors showed “immune-cold” characteristics

To further investigate tumor immune evasion, we evaluated 66
immune markers [22] including markers of T cells, B cells, NK cells,
Myeloid-Derived Suppressor Cells (MDSC), Antigen-presenting cells
(APCs), and immune checkpoints in PDAC (Fig. 5a). We found that
cytotoxic T cells markers (CD8A and CD8B), helper T cells marker
(CD4) and B cells marker (CD19) were lower in the m6Ascore-high
group, indicating these tumors might have less infiltration of CD8+,
CD4+ T cells and less B cells. We also evaluated the expression of sev-
eral immune checkpoints, including PD-L1 (CD274), PD1 (PDCD1)
and CTLA4, and found that PD1 and CTLA4 were lower and PD-L1
was higher in the m6Ascore-high group, suggesting that the
m6Ascore-high tumors might have T cells exhaustion, which may
contribute to immune evasion (Fig. 5a). Meanwhile, we found that
m6Ascore-high tumors had lower expression of NK cells markers
(Fig. 5b) [23]. This result indicated that m6Ascore-high tumors might
have lower activity and infiltration of NK cells. Furthermore, we also
found that m6Ascore-high tumors had lower expression of DCs
markers [24], including Signal Regulatory Protein Alpha (SIRPA),
CD1c Molecule (CD1C), Integrin Subunit Alpha X (ITGAX), cluster of
differentiation 14 (CD14), Interleukin 3 Receptor Subunit Alpha
(IL3RA) and C-Type Lectin Domain Containing 9A (CLEC9A), indicat-
ing m6Ascore-high tumors might have impaired DCs functions
(Fig. 5c).

To further evaluate the infiltration of immune cells, we applied
the CIBERSORTx algorithm which could examine the abundance of
22 immune cells and myeloid cells in tumor microenvironment [26].
Interestingly, we found that m6Ascore-high tumors had lower pro-
portions of CD8+ T cells, Naïve B cells, and Memory B cells, but had
higher Regulatory T cells (Tregs) and Memory resting CD4+ T cells
compared to those in m6Ascore-low tumors (Fig. 5d). We also
analysis Multivariate analysis

I P HR 95%CI P

Upper Lower Upper

2.010 0.369

1.974 0.276

1.634 0.366
2.593 0.669
1.157 0.069

30.681 0.216
36.627 0.107
41.914 0.499

3.274 0.022 1.861 1.076 3.218 0.026

3.998 0.954
1.569 0.974

2.751 0.436
3.484 0.214
13.224 0.633

3.641 <0.001 2.315 1.493 3.590 <0.001



Fig. 4. Gene set enrichment analysis based on the m6Ascore signature. (a-e) Enrichment plot on cell cycle, DNA damage repair, MEK pathway, EGFR pathway and TP53 pathway; (f)
Enrichment map showed the upregulated pathways (marked in red) and downregulated pathways (marked in blue) in m6Ascore-high TCGA-PDAC tumors. The FDR cutoff value is
0�01; (g) Gene ranks of the top 2000 DEGs between m6Ascore-high and m6Ascore-low tumors; (h) Compare the expression of several downstream targets of KRAS mutation
between m6Ascore-high and m6Ascore-low tumors. (i) Examined the expression of key regulators of DDR machinery in m6Ascore-high and m6Ascore-low tumors.
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examined proportion of 64 stromal and immune cell types according
to a previous established gene signature [25], and found that
m6Ascore-high tumors had lower proportions of CD8+ T cells, CD4+ T
cells, B cells, and memory B cells, and higher proportions of Th2 cells
Fig. 5. m6Ascore-high tumors showed “immune-cold” characteristics. (a) Hierarchical clust
m6Ascore-high and m6Ascore-low tumors; (b) Comparison of curated markers of NK cells b
of DCs between m6Ascore-high and m6Ascore-low tumors; (d) The CIBERSORTx estimated fr
estimated fractions, while red dots represent higher estimated fractions in m6Ascore-high t
sue. The blue and green dots represent lower estimated fractions, while red dots represent h
and CLP cells, indicating decreased immune surveillance in these
tumors (Fig. 5e). Furthermore, we found that m6Ascore-high tumors
had lower Immune-score, Stromal-score and ESTIMATE score (Fig.
S8). Taken together, these results indicated that reduced immune
ering showed distinct expression patterns of manually curated 66 immune markers in
etween m6Ascore-high and m6Ascore-low tumors; (c) Comparison of curated markers
actions of immune cell population in PDAC tumor tissue. The blue dots represent lower
umors; (e) The xCell estimated fractions of immune cell population in PDAC tumor tis-
igher estimated fractions in m6Ascore-high tumors.
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surveillance may contribute to immune evasion in m6Ascore-high
tumors.

Mutation and somatic copy number alterations (SCNAs)

We compared the mutation profiles of m6Ascore-high and
m6Ascore-low tumors, and identified that KRAS and TP53 are among
the most differentially mutant genes (Fig. 6a-b). m6Ascore-high
tumors are associated with higher prevalence of TP53 and KRAS
mutation. Those with KRASmutation are more likely to be m6Ascore-
high (54%, 58/107) compared to tumors with wild type KRAS (2%, 1/
40). Meanwhile, those with TP53 mutation are more likely to be
m6Ascore-high (48%, 48/100) compared to tumors with wild type
TP53 (23%, 11/47). (Fig. 6c-d). m6Ascore is positively correlated with
the activation of mutant TP53 induced genes (Fig. 6e-f). p53 induced
genes had lower expression in m6Ascore-high tumors, while the p53
suppressed genes had higher expression (Fig. 6g). This suggests that
the differences of mutation patterns, especially KRAS and TP53 muta-
tion, may contribute to the distinct prognosis between m6Ascore-
high and m6Ascore-low tumors. List of the mutant genes occurred in
more than 3 mutant samples in each group was shown in a map (Fig.
S9). We also compared SCNAs between the m6Ascore-high and
m6Ascore-low tumors. We found that m6Ascore-high tumors had
more regions of amplification and less regions of deletion compared
with m6Ascore-low tumors (Fig. 7a-b). For m6Ascore-high tumors,
the peak of amplification fell in the cytoband of 18q11.2, involving
Laminin Subunit Alpha 3 (LAMA3), RIO Kinase 3 (RIOK3) and Intracel-
lular Cholesterol Transporter 1 (NPC1), while the peak of deletion fell
in the cytoband of 9p21.3, involving Cyclin Dependent Kinase Inhibi-
tor 2A (CDKN2A) and Cyclin Dependent Kinase Inhibitor 2B
(CDKN2B). m6Ascore-high tumors were characterized with several
regions of recurrent amplifications including 7q21, 7q22, 8p11, 8q24,
9q11 and 9q23, while the deletion regions were relatively less. The
Fig. 6. Comparison of mutation landscape between m6Ascore-high and m6Ascore-low tu
m6Ascore-high and m6Ascore-low tumors (**P<0.01; ***P<0.001); (b) A circular plot sho
inner to the most outer circles listed the genomic density of mutation genes in m6Ascore-hig
ples; (c) Proportion of m6Ascore-high and m6Ascore-low group in patients harbored wild
patients harbored wildtype or mutant TP53; (e) GSEA analysis of genes up-regulated in NCI-
NCI-60 panel of cell lines with mutated TP53; (g) Correlation of m6Ascore and the expression
m6Ascore-low tumors had less regions of recurrent amplifications on
8p11, 8q24, but had more regions of recurrent deletions, including
9q22, 10p15, etc. The peak of amplification for m6Ascore-low tumors
fell in the cytoband of 19q13.2, enclosing NUMB Like Endocytic Adap-
tor Protein (NUMBL), etc., while the peak of deletion fell in 9p21.3,
identifying Methylthioadenosine Phosphorylase (MTAP) and CDKN2A
(Fig. 7c-d). Raw copy numbers of m6Ascore-high and m6Ascore-low
tumors were showed in heatmaps (Fig. S10). Genetic variation land-
scape of m6A regulators showed that 26% (38/149) PDAC patients in
TCGA cohort and 50% (54/109) PDAC patients in the UTSW cohort
had gene alterations of m6A regulators (Fig. 7e-f).

m6Ascore serves as a promising indicator to predict response to ICIs
immunotherapy

The results above indicate m6Ascore is correlated to tumor
immune evasion. We investigated the expression of ligands and
receptors in Chemokine Ligand (CCL) and chemokine (C-X-C
motif) ligand (CXCL) chemokine family, which has been reported
to regulate CD8+ T cells infiltration in PDAC [32], and found that
most ligands and receptors in CCL and CXCL family decreased in
m6Ascore-high tumors, including CCL4 and CCL5 (Fig. 8a). These
results suggest that suppressed chemokine signature in
m6Ascore-high tumors may lead to immune evasion in PDAC. We
also found downregulation of CTLA4 (P = 0.0036), X-C Motif Che-
mokine Receptor 1 (XCR1) (P = 0.0034), Basic leucine zipper tran-
scription factor ATF-like 3 (BATF3) (P < 0.0001), Interferon
Regulatory Factor 8 (IRF8) (P = 0.0037), FMS-like tyrosine kinase
3 (FLT3) (P = 0.0002) and upregulation of C-X3-C Motif Chemo-
kine Ligand 1 (CX3CL1) (P = 0.2203) in m6Ascore-high tumors,
which are all proposed indicators for immune evasion (Fig. 8b).
The result above prompts us to evaluate the efficacy of m6Ascore
in predicting the response to ICIs immunotherapy.
mors. (a) Forest plot shows the most significantly mutant genes that vary between
ws the mutation profile of m6Ascore-high and m6Ascore-low tumors. From the most
h tumors, in m6Ascore-low tumors, and genomic rainfall of mutation genes in all sam-
type or mutant KRAS; (d) Proportion of m6Ascore-high and m6Ascore-low group in
60 panel of cell lines with mutated TP53; (f) GSEA analysis of genes down-regulated in
of p53-induced genes or p53-suppressed genes in PDAC patients.



Fig. 7. Amplificated and deleted regions and somatic copy number alterations of m6A regulators. (a) Amplification regions were delineated by GISTIC_2.0 algorithm in m6Ascore-
high PDAC tumors; (b) Regions of deletion were delineated by GISTIC_2.0 algorithm in m6Ascore-high PDAC tumors; (c) Regions of amplification were delineated by GISTIC_2.0
algorithm in m6Ascore-low PDAC tumors; (d) Regions of deletion were delineated by GISTIC_2.0 algorithm in m6Ascore-low PDAC tumors. q-value (bottom) and G-score (Top)
were listed as X-axis. The green line indicated the cutoff value of q-value (0.25). Chromosome numbers were labeled on the left and regions with recurrent copy number variation
were labeled on the right of each plot. Red indicated amplification and blue indicated deletion; (e) OncoPrint of all the m6A regulators in TCGA-PDAC cohort; (f) OncoPrint of all the
m6A regulators in UTSW-PDAC cohort.

Fig. 8. Association of m6Ascore and response to ICIs. (a) Expression of ligands and receptors of CCL and CXCL chemokine families were examined in the m6Ascore-high and
m6Ascore-low PDAC tumors; (b) Curated biomarkers for immunotherapy, including CTLA4, CX3CL1, XCR1, BATF3, IRF8 and FLT3; (c) The response rates of patients receiving anti-
PD-1 treatment in GSE78220 cohort were compared between the m6Ascore-high and m6Ascore-low tumors (PD, progressive disease; SD, stable disease; PR, partial response; CR,
complete response); (d) The response rates of patients receiving anti-CTLA4 treatment in Van Allen’s cohort were compared between the m6Ascore-high and m6Ascore-low
tumors; (e) Waterfall plot showed the correlation between m6Ascore and the response to anti-PD-1 therapy; (f) Waterfall plot showed the correlation between m6Ascore and treat-
ment response to anti-CTLA4 therapy; (g) Kaplan-Meier survival analysis based on m6Ascore in patients treated with anti-PD-1 therapy (P = 0.00037, log-rank test); (h) Kaplan-
Meier survival analysis based on m6Ascore in patients treated with anti-CTLA4 therapy (P = 0.0025, log-rank test).
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Therefore, we examined whether m6Ascore can predict response
to ICIs in two independent cohorts of patients with advanced tumor
who had received either anti-PD-1 therapy or anti-CTLA4 therapy
[33,34]. For those receiving anti-PD-1 therapy, partial/complete
response (PR/CR) rate is higher in m6Ascore-low group (67%, 10/15)
than that in m6Ascore-high group (27%, 3/11). m6Ascore-low group
shows extended survival (P = 0.00037). (Fig. 8c, e, g). For those receiv-
ing anti-CTLA4 treatment, response rate is higher in m6Ascore-low
group (61%, 14/23) than that in m6Ascore-high group (26%, 5/19).
m6Ascore-low group also shows extended survival (P = 0.0025)
(Fig. 8d, f, h). We further compared the m6Ascore with another
potential indicator, named immuno-predictive score (IMPRES) in pre-
dicting response to ICIs. [35,36] We found that IMPRES-high patients
have higher response rates to anti-PD1 (85%, 11/13, VS 15%, 2/13)
and anti-CTLA4 therapy (55%, 17/31, VS 15%, 2/13) than that of
IMPRES-low patients (P = 0.001 and P = 0.006, respectively). 67%
achieved CR/PR in the m6Ascore-low group compared to 85% in the
IMPRES-high group receiving anti-PD-1 treatment. On the other
hand, 61% are responsive in the m6Ascore-low group compared to
55% in the IMPRES-high group receiving anti-CTLA4 treatment. These
results indicate that m6Ascore might be better at selecting those who
might respond to anti-CTLA4 treatment, while IMPRES might be bet-
ter at selecting patients who might respond to anti-PD-1 treatment
(Fig. 8c-d and Fig. S11).

Discussion

m6A plays critical roles in tumorigenesis and tumor progression
[37�39]. Studies showed m6A can regulate the maturation and the
ability of neoantigens presentation in immune cells, and regulate
response to immunotherapy [5,40]. However, how m6A mediates
immune infiltration and tumor survival remains uncharacterized.
Here we reported that m6Ascore model can stratify PDAC patients
into two subtypes, with distinct patterns of immune infiltration,
mutation landscapes and survival. m6A regulators play different roles
on tumor immune surveillance. For example, METTL3 plays critical
roles in the activation of several immune cells, including T cells and
DCs. [40,41] However, another m6A regulator, YTHDF1, contributes
to tumor immune evasion by regulating the activity of DCs. Deletion
of YTHDF1 can increase the response to immune checkpoint blockade
[5]. Considering that integration of these m6A regulators may per-
form better on predicting the survival and response to immunother-
apy, we constructed a m6Ascore model which finally enrolled nine
regulators. It doesn’t necessarily mean these nine regulators are
more important than other m6A regulators. It indicates that the com-
bination of these nine m6A regulators can adequately predict PDAC
prognosis and immune evasion risk. Other m6A regulators may also
play critical roles during tumor progression. For example, as a m6A
“Eraser”, fat mass- and obesity-associated protein (FTO) can promote
tumor progression by activating MYC/CEBPA pathway [42].

We found that markers of NK cells were significantly lower in the
m6Ascore-high tumors, which is consistent to another study suggest-
ing the infiltration of NK cells was associated with better survival in
melanoma patients [23]. Restoration of both the quantity and quality
of Dendritic cells (DCs) could increase the immune surveillance in
PDAC [43]. m6Ascore was inversely correlated with the markers of
DCs, indicating dampened activity and infiltration of these immune
cells, which is consistent to previous studies that showed m6A can
suppress the maturation and function of antigen presenting in DCs
[5,40]. Furthermore, the expression of phagocytosis checkpoint,
SIRPa, was lower in the m6Ascore-high group, which may contribute
to immune evasion. A chemokine signature which consists of four
chemokines (CCL4, CCL5, CXCL9 and CXCL10) was reported to be
associated with CD8+ T cells infiltration in PDAC [32]. The current
study also found that m6Ascore-low tumors are characterized with
increased profiles of CCL and CXCL chemokine ligands, similar to the
“T cell-inflamed” phenotype proposed by Romero and colleagues,
which may partially explain the distinct immune infiltration profiles
between m6Ascore-low and m6Ascore-high tumors. Our findings are
also consistent to another study showing that deletion of CXCL9/
CXCL10 will suppress the efficacy of immune checkpoint inhibitors
[44]. Previous study has found that the upregulation of CTLA4 and
absence of CX3CL1 were associated with the response to ICIs [45].
Meanwhile, cumulative score of Dendritic cells’ signature including
the expression of XCR1, BATF3, IRF8, and FLT3 is associated with anti-
PD-L1 treatment in non�small cell lung cancer (NSCLC) and renal cell
carcinoma (RCC) [46]. All these markers are correlated to m6Ascore,
indicating potential connections between m6A and immune evasion.

DNA damage repair (DDR) is a double-edged sword. DDR can sup-
press tumorigenesis by maintaining genome integrity. On the other
hand, during treatment induced tumor evolution, DDR sufficient can-
cer cells can outgrow the DDR deficient tumor clones, thus leading to
the development of treatment resistance. MRN complex (MRE11,
RAD50 and NBN) is the initial core of DNA double-strand breaks
(DSB) repair machinery, while PALB2, RAD51 among several other
key regulators contribute to the later stages of DDR [47]. Our study
identifies the enrichment of several key regulators of DDR in
m6Ascore-high tumors, indicating a potential link between m6A,
DDR, and immune evasion in PDAC.

Furthermore, previous data showed that SCNAs were correlated
with tumor immune evasion and resistance to immunotherapy [48].
We found that recurrent amplifications were more frequent in
m6Ascore-high tumors, while the recurrent deletions were more fre-
quent in m6Ascore-low tumors. GISTIC analysis identified recurrent
gain of LAMA3, RIOK3 and NPC1, which are critical in driving tumor
progression in m6Ascore-high tumors. We also found recurrent gain
of NUMBL, a tumor suppressor in m6Ascore-low tumors, which may
contribute to suppression of tumor growth. In addition to SCNAs,
m6Ascore is also associated with more events of KRAS and TP53
mutation. Dual inhibition of KRAS and cell cycle pathways can
overcome immune evasion [49,50]. Mutation induced tumor het-
erogeneity and clonal evolution leads to dynamic immune land-
scape in tumor tissue, which may mediate efficacy of
immunotherapy [51]. Besides, hypermethylation is associated
with nearly 20% of silenced neoantigens, indicating that immune
surveillance at the early stages of cancers may result in the selec-
tion of evolving subclones which had silencing neoantigens due
to promoter hypermethylation [52].

To evaluate the role of this m6Ascore model in predicting
response to immunotherapy, we analyzed two independent cohorts
of patients received ICIs treatment [33,34]. m6Ascore-low patients
had higher PR and CR rates. Long term survivors of pancreatic cancer
showed increased T cell infiltration in tumor microenvironment, indi-
cating enhanced tumor immune surveillance [53]. Chemokines and
tumor derived extracellular vesicles (EVs) play critical roles in tumor
progression and cachexia [30,54,55]. Genes that are involved in epi-
thelial-mesenchymal transition (EMT) and release of EVs, including
CREB, ZEB1 and RAB27B were associated with inferior prognosis in
PDAC [56]. Intriguingly, chemokine ligands and receptors were much
lower in m6Ascore-high tumors, which is consistent with the non-T-
cell inflamed phenotype. Reduced response to immunotherapy may
also be attributed to the decrease of chemokines in PDAC. Further
studies are warranted to explore howm6A regulates response to ICIs,
thus charting paths towards the development of effective strategies
to improve the efficacy of immunotherapy.

This study also has limitations. How these m6A regulators cooper-
ate with each other and drive tumor immune evasion remains unex-
plored. Meanwhile, the mechanisms of m6A modification regulated
tumor metastasis and DDR remains unknown. Further studies are
warranted to test the efficacy of m6Ascore on predicting response to
ICIs in larger clinical trials, and to explore the interactions between
these m6A regulators in orchestrating immune evasion.
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In conclusion, m6Ascore is a potential molecular classification for
PDAC, which can identify distinct immune infiltration and mutation
pattern. It provides a practical tool to access the risk of immune eva-
sion and predict response to ICIs immunotherapy.
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