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Abstract. Sirtuin 3 (Sirt3) is an important member of the 
sirtuin protein family. It is a deacetylase that was previously 
reported to modulate the level of reactive oxygen species 
(ROS) production and limit the extent of oxidative damage in 
cellular components. As an important member of the class III 
type of histone deacetylases, Sirt3 has also been documented 
to mediate nuclear gene expression, metabolic control, neuro‑
protection, cell cycle and proliferation. In ovarian cancer (OC), 
Sirt3 has been reported to regulate cellular metabolism, apop‑
tosis and autophagy. Sirt3 can regulate autophagy through a 
variety of different molecular signaling pathways, including 
the p62, 5'AMP‑activated protein kinase and mitochondrial 
ROS‑superoxide dismutase pathways. However, autophagy 
downstream of Sirt3 and its association with OC remains 
poorly understood. In the present review, the known character‑
istics of Sirt3 and autophagy were outlined, and their potential 
functional roles were discussed. Following a comprehensive 
analysis of the current literature, Sirt3 and autophagy may 
either serve positive or negative roles in the regulation of OC. 
Therefore, it is important to identify the appropriate expres‑
sion level of Sirt3 to control the activation of autophagy in OC 
cells. This strategy may prove to be a novel therapeutic method 
to reduce the mortality of patients with OC. Finally, potential 
research directions into the association between Sirt3 and 
other signaling pathways were provided.
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1. Introduction

Ovarian cancer (OC) is a life‑threatening malignancy that 
represents 3.6% female malignancies worldwide (1). It 
currently ranks as the seventh most common type of gyneco‑
logical cancer and 20th as the most common type of cancer 
worldwide. OC has the highest mortality of all gynecologic 
malignancies (1,2). According to a recent report, it was esti‑
mated that there were 295,414 new cases of OC diagnosed in 
2018 and 184,799 cases of mortality resulting from this disease 
worldwide (3). Tumor debulking surgery followed by platinum 
and paclitaxel chemotherapy is currently the standard clinical 
treatment of OC (4). However, the survival rate of patients 
with advanced OC remains at ~30%, with the primary reasons 
being late discovery and chemoresistance. In particular, 
chemoresistance is mediated by both the tumor microenviron‑
ment and inherent resistance of OC cells to chemotherapy (5). 
Therefore, enhancement of responses to current treatment and 
the development of novel therapeutic strategies are urgently 
required to improve the survival rate.

Autophagy is a protective, catabolic process that operates 
to maintain intracellular homeostasis by recycling organelles 
and macromolecules (6). During this process, defective or aged 
organelles and other cytoplasmic components are enclosed 
by double‑membrane vesicles to form autophagosomes. This 
then fuses with a lysosome where the vesicular contents are 
degraded into amino acids, lipids and carbohydrates by the 
lysosomal enzymes. The degradation products are in turn 
recycled to make new proteins and organelles (7). A basal level 
of autophagy is in operation under physiological conditions (8). 
However, downregulation or upregulation of autophagy induced 
by stress factors, including alterations in the levels of growth 
factors, hypoxia and cytotoxic damage, can result in cell death 
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or cell adaptation in response (9). Autophagy also appears 
to serve contradictory roles in the development of cancer. 
Evidence exists reporting that inhibition of genes associated 
with autophagy can promote tumor development, whereas 
the expression of proteins associated with autophagy has also 
been demonstrated to result in inhibitory effects in several 
types of cancers (10‑14). Therefore, autophagy can exert anti‑
tumor effects, but in contrast cancer cells may survive cellular 
stress in adverse microenvironments by utilizing autophagy, 
thereby promoting the development of tumors (15). In addi‑
tion, autophagy is somewhat considered to be a double‑edged 
sword in the clinical field of cancer. Promotion of autophagy 
can induce cell death, in a manner that is similar to apoptosis, 
whilst protective cellular autophagy has also been reported to 
be the major underlying cause of therapy resistance among 
cancer cells. Therefore, increasing the sensitivity of cancer 
cells to anticancer therapy by inhibiting autophagy remains a 
viable option (16).

Sir tuins are nicotinamide adenine dinucleotide 
(NAD+)‑dependent histone deacetylases that are highly 
conserved among eukaryotic organisms, of which seven 
isoforms exist in mammals (17‑19). They serve important 
roles in a number of biological and pathological processes. 
In particular, Sirt3 is localized to mitochondria, where it 
modulates the production of reactive oxygen species (ROS) to 
limit oxidative damage in cellular components (20). A wide 
range of important biological activities have been documented 
to be controlled by Sirt3, including the regulation of nuclear 
gene expression, metabolism, neuroprotection, cardiovascular 
disease, cancer cell cycle progression, and cell prolifera‑
tion and apoptosis (21‑24). Previously, the role of Sirt3 as a 
hallmark of cancer has been attracting significant research 
attention (25). Metabolism is an important caveat to cancer 
development (26), such that ATP is required for the mainte‑
nance of intracellular metabolic activity (27). A number of 
metabolic processes have been revealed to be regulated by 
Sirt3, including fatty‑acid oxidation and oxidative phosphory‑
lation (28,29). These observations suggested that Sirt3 could 
be a key regulator of cancer physiology. 

Currently, there are a number of studies on autophagy and 
Sirt3 in cardiovascular diseases, neuronal diseases and hepa‑
totoxicity (30‑32). However, almost no article has conducted 
research on the relationship between autophagy, OC and Sirt3. 
Therefore, the present review primarily discussed the poten‑
tial relationship between Sirt3 and autophagy in OC, with the 
aim to provide a possible novel direction for OC research and 
therapeutic strategies.

2. Sirt3 in OC

OC poses a significant threat to the health of women world‑
wide, and is a disease in which Sirt3 has been reported serve 
a regulatory role. Of note, this disease is gradually becoming 
the leading cause of mortality associated with gynecological 
cancer worldwide in both developing and developed coun‑
tries (1). Several reports have suggested that OC is regulated by 
Sirt3 using a multitude of mechanisms, which is summarized 
in this section.

In a previous study, it was found that muscle tissues after 
exercise exhibit elevated expression levels of the Sirt3 protein, 

which gave rise to the hypothesis that the expression of Sirt3 
is regulated by energy metabolism (33). Energy metabolism is 
also associated with the regulation of tumor growth and metas‑
tasis. Sirt3 is regarded as a tumor suppressor, due to a previous 
finding that its expression is reduced in tumors (34,35). The 
activation of cellular autophagy and apoptosis was demon‑
strated to be controlled by Sirt3 via the regulation of several 
signaling pathways during the development of OC. A previous 
study found that expression of the Sirt3 protein was signifi‑
cantly downregulated in OC tissues and in highly metastatic 
HO‑8910PM cell lines (35,36). In addition, Xiang et al (37) 
demonstrated that the activation of Sirt3 exerted a proapop‑
totic function in SKOV3 cells. These findings suggested that 
overexpression of Sirt3 can induce OC cell death. In terms of 
mitochondrial dynamics, a previous study revealed that stabi‑
lization of Sirt3 can increase mitochondrial biogenesis and 
cristae remodeling in OC tissues (38). Additionally, stabiliza‑
tion of optic atrophy protein 1, which increased resistance to 
apoptosis, was demonstrated to be regulated by increasing the 
expression of Sirt3 and prohibitin 2 (38). Activation of Sirt3 
has also been found to enhance the sensitivity of OC cells to 
cisplatin (39), rendering Sirt3 to be a novel therapeutic target. 
In addition, Sirt3 was reported to be a favorable independent 
prognostic factor for overall survival for patients with serious 
OC in a previous study (40). In conclusion, Sirt3 serves an 
important role in the development of OC, with therapeutic and 
prognostic implications. 

3. Autophagy in OC

Autophagy is a catabolic process that serves to maintain 
intracellular homeostasis by recycling damaged cellular 
organelles (41), which has been studied since the 1960s (42). 
Over the past decades, the molecular mechanisms under‑
lying this process have been revealed gradually. It has been 
suggested that autophagy is a common phenomenon that 
occurs during both physiological and pathological condi‑
tions. According to the sizes of the substrates involved 
and degradation rate, autophagy can be divided into three 
sub‑categories: i) Macro‑autophagy; ii) microautophagy; and 
iii) chaperone‑mediated autophagy (43). Although different 
types of autophagy utilize distinct mechanisms to degrade 
lysosomal proteins, common underlying characteristics 
remain (44). The autophagy pathway consists of the following 
six steps: i) Initiation of autophagy; ii) biogenesis of the phag‑
ophore; iii) expansion of the phagophore; iv) formation of the 
autophagosome; v) fusion with the lysosome; and vi) reforma‑
tion of the lysosome (45). Autophagy is constitutively active 
at low levels in all cell types under physiological conditions, 
but can be potentiated by nutrient deprivation, hypoxia, endo‑
plasmic reticulum stress, pathogenic toxicity and immune 
injury, to maintain intracellular homeostasis (46). Previous 
studies have demonstrated that autophagy serves an impor‑
tant role in the pathological processes of various diseases, 
including neurodegenerative and cardiovascular disease, 
cancer, infectious diseases and immune deficiency (47‑50). 
Autophagy has been described as a double‑edged sword, 
since it can exert both tumor suppression and growth promo‑
tion (51). In this section, the mechanism of autophagy in OC 
is discussed in detail.
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OC ranks as the most lethal gynecological malignancy, 
with high morbidity and mortality. Autophagy serves an 
important role in OC through the expression of autophagy‑asso‑
ciated proteins, including beclin‑1, microtubule‑associated 
proteins 1A/1B light chain 3B (LC3) and p53. Beclin‑1 is a 
tumor suppressor, which is an important checkpoint protein 
that is involved in autophagy and tumor cell apoptosis (52,53). 
It has been reported to mediate various functions in tumors, 
where its expression level varies depending on the type of 
malignancy. A previous study revealed that the expression level 
of beclin‑1 was higher in ovarian epithelial cancers, which 
can be used as an independent risk factor for the prognosis 
of patients with this disease (54). In addition, other proteins 
linked to autophagy can mediate functions in OC, which 
are in turn associated with a number of signaling pathways, 
including the PI3K/AKT/mTOR and p53 signaling pathway. 
These are summarized in this section.

Autophagy‑related PI3K/AKT/mTOR signaling pathway. 
The autophagic process in OC is regulated by a number of 
factors. The PI3K/AKT/mTOR pathway has frequently been 
associated with the majority of human malignancies, studies 
have demonstrated that other signaling pathways related to 
oncogenesis are also caused by dysregulations in this signaling 
pathway (55‑57). The reason for this dysregulation is manifold, 
including mutations in PI3K, AKT overexpression and the 
sustained activation of tyrosine kinase growth factor recep‑
tors (58). The PI3K/AKT/mTOR signaling pathway has been 
documented to regulate cell survival, proliferation, growth, 
transcription, angiogenesis and metabolism (55‑57). In ~70% 
cases of OC, the PI3K/AKT/mTOR pathway has been revealed 
to be constitutively activated, which has been considered to be 
a therapeutic target (59). To verify if the PI3K/AKT pathway is 
involved in OC cell proliferation, Hu et al (60) treated OC cell 
lines with the specific PI3K inhibitor LY294002 and estab‑
lished a mouse model of OC. Proliferation of OC cells can 
be significantly inhibited by LY294002 treatment in vitro (61). 
In addition, other studies have found that AKT inhibitors 
can prevent the function of mTORC1/2 and AKT itself to 
inhibit the PI3K signaling cascade (61‑63). In another study, 
Ichikawa et al (64) found that the cytotoxic effects of chemo‑
therapeutic agents can be effectively enhanced by co‑treatment 
with the selective non‑competitive AKT inhibitor TAS‑117 
in vivo OC models. In OC, the PI3K/AKT/mTOR signaling 
pathway is frequently activated, which indicates that the inhi‑
bition of this signaling pathway could prove to be a potential 
avenue of treatment strategies, either as a monotherapy or in 
combination with other chemotherapeutic agents.

p53 signaling pathway. p53 is a key tumor suppressor that 
serves an important regulatory role in autophagy in mamma‑
lian cells (65). Expression of the p53 gene is activated by 
various intracellular events, including DNA damage, hypoxia 
and oncogene activation, to prevent cell damage and main‑
tain cellular integrity. Numerous types of modifications, 
including acetylation, methylation, phosphorylation and 
ubiquitination, are involved in regulating the activation of 
p53 on a molecular level (66,67). p53 target genes negatively 
regulate mTOR activity, which in turn induces autophagy 
in the nucleus. p53 can promote autophagy by inhibiting 

mTOR via the 5'AMP‑activated protein kinase (AMPK) 
pathway (68). In addition, p53 can also induce autophagy 
by activating damage‑regulated autophagy modulator (69). 
Several studies have revealed that autophagy may be triggered 
by the inactivation of cytoplasmic p53, such that extranuclear 
p53 is an effective inhibitor of autophagy (70,71). A clinical 
study previously demonstrated the upregulated expression of 
p53 in OC, where it was revealed that at later tumor stages, 
the rate of p53‑positive expression was higher (72). These 
results suggested that p53 serves an important role in the 
development of OC. Additionally, another study previously 
found that silencing the p53 signaling pathway may suppress 
proliferation whilst facilitating apoptosis and cisplatin chemo‑
sensitivity in OC cells (73). Therefore, these aforementioned 
findings suggested that the efficacy of chemotherapeutic treat‑
ments for OC can be improved by inhibiting the p53‑induced 
autophagic process.

4. Relationship between Sirt3 and autophagy

Sirt3 belongs to the NAD+‑dependent protein deacetylase 
family and is responsible for the majority of mitochondrial 
protein deacetylation (74). It has been reported to serve 
an important role in almost every aspect of mitochondrial 
biology, such as mitochondrial biogenesis and mitochondrial 
oxidative stress (30,75‑77). Although Sirt3 is located in mito‑
chondria, almost every major key component of autophagy 
is cytosolic. Therefore, a type of communication mechanism 
must exist between mitochondria and cytosol during the 
regulation of Sirt3 activity and autophagy. In previous years, 
accumulating evidence has suggested that there are a series 
of signaling pathways between Sirt3 and autophagy, including 
the p62, PI3K/AKT, AMPK‑mTOR pathway and the mito‑
chondrial ROS‑superoxide dismutase 2 (SOD2) pathway. This 
section aimed to summarize the known information on its 
mechanism (Fig. 1).

Sirt3 and p62. p62 is the selective cargo receptor for autophagy 
that is indispensable for the degeneration of misfolded 
proteins. Reductions in p62 expression have been previously 
reported to activate autophagy (78). In addition, p62 is consid‑
ered to be a marker of autophagic flux due to its differential 
expression profiles in association with other proteins linked 
to autophagy (79). As for Sirt3, a number of studies have indi‑
cated that there is a close relationship between Sirt3 and the 
p62‑autophagy pathway. A previous study demonstrated that 
treatment with ANXA1sp, an annexin‑A1 bioactive peptide, 
reduced the expression of p62 and concomitantly upregulated 
the expression of the mitochondrial protein deacetylase 
Sirt3 (80). This suggested that Sirt3 is involved in autophagy 
by downregulating p62. Tong et al (81) also reported a similar 
finding, where liraglutide treatment downregulated the expres‑
sion of p62 to promote autophagy via the Sirt1/Sirt3‑forkhead 
box O3‑p62 pathway in mice that were fed a normal‑fat diet or 
high‑fat diet. Additionally, a previous investigation focusing on 
the effects of melatonin on diabetic cardiomyopathy revealed 
that melatonin can upregulate autophagy by increasing the 
expression of LC3‑II whilst downregulating that of p62 (82), 
with the macrophage stimulating 1/Sirt3 signaling pathway 
being the likely associated mechanism. These aforementioned 
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pharmacological studies suggested that Sirt3 is a potent acti‑
vator of autophagy. Supporting this, Xiang et al (83) found 
that small interfering (si)RNA‑mediated silencing of Sirt3 
gene expression inhibited the process of autophagy and p62 
degradation in human umbilical vein endothelial cells.

Sirt3 and PI3K/AKT. The PI3K/AKT pathway serves an 
important inhibitory role in autophagy, and is also involved in 
a variety of physiological and pathological processes (84,85). 
By regulating the PI3K/AKT pathway, Sirt3 can function as an 
autophagy suppressor. A previous report that investigated hepa‑
tocellular carcinoma found that the expression levels of Sirt3 
was higher in adjacent non‑cancerous tissues compared with 
those in hepatocellular carcinoma tissues (86). Furthermore, 
using Sirt3 knockdown, this previous study also demonstrated 
that Sirt3 may serve as a suppressor of autophagy in hepatocel‑
lular carcinoma by targeting the PI3K/AKT pathway. Another 
study revealed a consistent finding, where Sirt3 functioned as 
a growth suppressor in prostate cancer by inhibiting the activa‑
tion of PI3K/AKT both in vitro and in vivo (87). This previous 
study also showed that the progression of prostate cancer may 
be downregulated via the Sirt3/AKT/c‑Myc signaling axis (87). 
Wang et al (88) demonstrated that glioblastoma multiforme 
cell growth was inhibited through the Sirt3/p53‑mediated 
PI3K/AKT/ERK and mitochondrial signaling pathway. In 
addition, Sirt3 was reported to indirectly regulate AKT 
hyperactivation by regulating mitochondrial ROS production 

upstream of the ROS‑mediated Ras‑PI3K‑AKT activation (89). 
In summary, Sirt3 can regulate autophagy by either directly or 
indirectly regulating the PI3K/AKT pathway.

Sirt3 and AMPK. AMPK is a conserved a intracellular energy 
sensor that mediates energy homeostasis by regulating lipid 
and glucose metabolism (90). Dysregulation of AMPK has 
previously been associated with accelerated aging (91). In 
previous years, a number of studies have attempted to unravel 
the mechanism underlying the regulation of autophagy. There 
is increasing consensus that AMPK and mTOR are regarded 
as the main regulators of autophagic degradation (92,93). A 
close mechanistic relationship has been reported to exist 
between Sirt3 and the AMPK‑mTOR‑autophagy pathway. 
Zhao et al (94) previously found that induction of autophagy 
was directly controlled by Sirt3 via the AMPK‑mTOR pathway 
during acute kidney injury. In addition, another study reported 
that Sirt3‑indcued autophagy protected against oxygen 
and glucose deprivation by regulating the AMPK‑mTOR 
pathway (30).

Previous studies have found that AMPK can negatively regu‑
late mTORC1 activity via two different mechanisms. AMPK 
can phosphorylate Thr1227 and Ser1345 residues to activate 
tuberous sclerosis complex (TSC) 2, thereby promoting the 
formation of the TSC1/TSC2 heterodimer to inhibit mTORC1 
activity (95). By contrast, AMPK can also phosphorylate regu‑
latory‑associated protein of mTOR on its Ser722 and Ser792 

Figure 1. Potential signaling pathways underlying Sirt3‑mediated regulation of autophagy. Sirt3 is involved in autophagy via the downregulation of p62. The 
Sirt3/FOXO3a/p62 and macrophage stimulating 1/Sirt3 signaling pathways can downregulate p62 expression. In addition, Sirt3 can directly activate PI3K/AKT 
signaling to inhibit autophagy. Mechanistically, Sirt3 indirectly controls the hyperactivation of AKT by regulating mitochondrial ROS production and 
ROS‑mediated Ras‑PI3K‑AKT activation. Sirt3 can activate LKB1, such that the LKB1‑AMPK‑mTOR pathway serves an important role in autophagy. AMPK 
can inhibit mTOR directly to promote autophagy whilst also acting upstream of Sirt3. ROS can act as a trigger signal to induce autophagy through autophagy 
related protease 4. Autophagy may be suppressed by Sirt3 through the regulation of mitochondrial ROS production. The Sirt3/SOD2 pathway is involved in 
mitochondrial‑derived O2‑stimulated autophagic cell death. Sirt3‑mediated deacetylation can significantly increase the activity of SOD2 to ultimately reduce 
intracellular ROS levels. Sirt3, sirtuin; FOXO3a, forkhead box O3; ROS, reactive oxygen species; LKB1, liver kinase B1; AMPK, 5'AMP‑activated protein 
kinase; SOD2, superoxide dismutase 2.
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residues to inhibit mTORC1 (96). Liver kinase B1 (LKB1) is 
a tumor suppressor and an upstream regulator of AMPK that 
has an essential role in the control of redox homeostasis (97). 
Incidentally, LKB1 can also be activated by Sirt3. A previous 
investigation into a rotenone‑induced SH‑SY5Y cell injury 
model found that the overexpression of Sirt3 promoted LKB1 
phosphorylation, which activated AMPK and reduced the 
phosphorylation of mTOR. This observation suggested that the 
LKB1‑AMPK‑mTOR pathway can be regulated by Sirt3 (98). 
In addition, another previous study documented that activation 
of the LKB1‑AMPK‑mTOR‑mediated autophagy signaling 
pathway can be induced by Sirt3 (99). Notably, AMPK can 
function upstream of Sirt3 during the regulation of insulin 
sensitivity in skeletal muscle via the AMPK‑peroxisome prolif‑
erator‑activated receptor γ coactivator 1α‑Sirt3 autophagy 
signaling pathway in Sirt3‑/‑mice (100). Collectively, this 
indicated that Sirt3 and autophagy have a complex mutual 
regulatory relationship.

Sirt3 and ROS. ROS consists of a group of highly reac‑
tive chemical entities, including oxygen radicals, hydroxyl, 
peroxyl, alkoxyl, non‑radicals, singlet oxygen and hydrogen 
peroxide. These molecules are primarily produced from redox 
transactions as part of the oxidative phosphorylation system in 
mitochondria (100). A number of studies have demonstrated 
that ROS can act as a signal to trigger autophagy through 
autophagy‑regulating protease 4, which serves as part of the 
autophagy process (101,102). Autophagy may be suppressed by 
Sirt3 via the regulation of mitochondrial ROS (mROS) produc‑
tion. Recently, a study investigating the potential antineoplastic 
properties of metformin combined with nelfinavir revealed 
that this drug combination can increase the expression level 
of Sirt3. This increment in Sirt3‑mediated mROS production 

served a vital role in the autophagic mechanism within human 
cervical cancer cells (103). Upstream of ROS, SOD2 activity 
can moderately reduce cellular ROS levels. Sirt3‑mediated 
deacetylation can significantly potentiate SOD2 activity to 
ultimately break down intracellular ROS (104). A previous 
study demonstrated that Sirt3 protein expression and activity 
was downregulated by cadmium (Cd), which can also concur‑
rently promote the acetylation of SOD2 to suppress its activity, 
thereby increasing mROS production (31). In summary, 
mitochondrial‑derived ROS‑dependent autophagic cell death 
can be induced by Cd. Consistent with this notion, Cd‑induced 
hepatotoxicity has been reported to be alleviated by the 
protective properties of melatonin (31). In this particular study, 
the activity, but not the expression of Sirt3, was revealed to be 
enhanced by melatonin treatment (31). Additionally, melatonin 
was also demonstrated to inhibit mitochondria‑derived O2 
production, reduced the acetylation of SOD2 and suppressed 
autophagy (31). This finding suggested that melatonin exerts 
hepatoprotective effects by regulating mitochondria‑derived 
O2‑stimulated autophagic cell death via the Sirt3‑SOD2 
pathway. According to the aforementioned findings, SOD2 
activity and intracellular mROS homeostasis may underlie the 
Sirt3 downregulation of autophagy (31).

5. Potential relationship between Sirt3 and autophagy in OC

Autophagy is a fundamental catabolic process that has 
been reported to be involved in the progression of a variety 
of diseases. It can serve a protective role in OC cells from 
cell death since it may enhance resistance to cisplatin (105). 
A previous investigation revealed that cisplatin treatment 
activated autophagy, whereas Bcl‑2‑associated athanogene 3 
attenuated cisplatin resistance by inhibiting autophagy (106). 

Figure 2. Relationship between Sirt3 and autophagy in ovarian cancer. Metformin‑induced overexpression of Sirt3 activates AMPK, which in turn increases 
the expression of LC3. This results in the elevation in the expression of proteins associated with cell migration, such as MTA1. S1 is a novel pan Bcl‑2 
inhibitor that has been documented to activate autophagy by interrupting the interaction between Bcl‑2 and Beclin1. Sirt3 is involved in the regulation of 
autophagy via the GTSP1/JNK/autophagy pathway. S1 can promote the expression of JNK3. Knocking down Sirt3 expression can alleviate S1‑induced 
apoptosis. MTA1, metastasis‑associated protein; GTSP, glutathione S‑transferase P; LC3, microtubule‑associated proteins 1A/1B light chain 3B; Sirt3, sirtuin; 
AMPK, 5'AMP‑activated protein kinase.
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However, recent studies have also suggested that autophagy 
can inhibit the growth of OC, since it has been found to 
promote OVCAR‑3 cell death (107). By contrast, findings 
from another previous study suggested that inhibition of 
autophagy promoted the proliferation and invasion of OC 
cells via the PI3K/AKT/mTOR pathway (108). These find‑
ings demonstrated that autophagy is a double‑edged sword 
in the regulation of OC physiology. Sirt3 serves an important 
role in the maintenance of intracellular homeostasis in OC. 
Previous studies have indicated that there is a close mutual 
regulatory relationship between Sirt3 and autophagy, which 
are linked by the aforementioned signaling pathways in the 
present review. Metformin‑induced overexpression of Sirt3 
promoted apoptosis and mitochondrial dysfunction whilst 
increasing the activation of AMPK in OC cell lines (109). 
In addition, metformin has been documented to promote 
autophagy in OC (110). S1, a novel Bcl‑2 inhibitor, has also 
been reported to exert autophagic effects in OC by inter‑
rupting the interaction between Bcl‑2 and beclin1 in OC to 
promote apoptosis (111); however, high doses and longer expo‑
sure of S1 can overpower the protective function of autophagy 
and induce apoptosis (112,113). Yang et al (114) previously 
found that S1 promoted JNK3 expression, thus increasing 
cell sensitivity to apoptosis. Sirt3 can also regulate autophagy 
via the glutathione S‑transferase P/JNK/autophagy pathway, 
such that Sirt3 knockdown has been demonstrated to alleviate 
S1‑induced apoptosis (Fig. 2) (37).

6. Conclusion

Autophagy serves an important role in recycling damaged 
organelles and maintaining intracellular homeostasis. Sirt3 
is a potential therapeutic target, since it has been previously 
reported to activate autophagy. In the present review, although 
the potential relationship between Sirt3 and autophagy in OC 
was explored, there remains an insufficient number of studies 
on this topic. The associated underlying mechanism in the 
Sirt3‑induced autophagic process in OC remains unclear. 
With further study, novel insights into the molecular rela‑
tionship between Sirt3 and autophagy may contribute to the 
development of novel therapeutic interventions for OC.
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