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1  | INTRODUC TION

Polygonum cuspidatum is an herbaceous perennial plant in the buck-
wheat and knotweed family Polygonaceae grown in Asia and North 
America (Zhang, Li, Kwok, Zhang, & Chan, 2013). It is commonly 
used as food seasonings with a slight sour taste in China and Japan 
(Peng, Qin, Li, & Zhou, 2013). Abundant in phytochemicals and some 
bioactive compounds, it has been reported to generate antioxidant 
activities (Kuo et al., 2013). Also, polygonum cuspidatum aqueous 
extracts exhibited potent estrogenic activity and antibacterial activ-
ity (Lazurca, Lazurca, Fetea, Ranga, & Socaciu, 2012). The ethanolic 
extract of polygonum cuspidatum shows inhibitory effect on hepa-
titis B virus in a HBV-producing cell line (Chang et al., 2005). From 

the therapeutic perspective, polygonum cuspidatum roots and rhi-
zomes have been used for the suppressing cough, treating hepatitis, 
jaundice, arthralgia, and hyperlipidemia scald, as well as to promote 
blood circulation (Zhang et al., 2013).

Glycation (nonenzymatic glycosylation) is a binding reaction be-
tween the carbonyl group of a reducing sugar and an amino group 
of proteins, lipids, or peptides and finally generates the heteroge-
neous compounds advanced glycation end products (AGEs) (Masaki, 
Okano, & Sakurai, 1999). AGEs exert adverse effects on cell func-
tions based on the mechanisms of free radicals production, protein 
or lipid fragmentation, enzyme activity alternation, and immuno-
genicity modification (Khangholi, Majid, Berwary, Ahmad, & Aziz, 
2016). Thus, it contributes to the development and progression of 
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Abstract
Diabetes is a metabolic disorder disease associated with advanced glycation end 
products (AGEs) and protein glycation. The effect of polygonum cuspidatum extract 
(PE) on AGEs and Nε-(Carboxymethyl)-L-lysine formation, protein glycation, and dia-
betes was investigated. Six primary phenolics in a range of 12.36 mg/g for ellagic acid 
to 0.01 mg/g for piceid were determined in PE. In an intermediate-moisture-foods 
model, inhibition rate of PE was as high as 54.2% for AGEs and 78.9% for CML under 
aw 0.75. The protein glycation was also inhibited by PE. In a diabetic rat model, the 
levels of blood glucose, serum malondialdehyde, cholesterol, triglycerides, and low-
density lipoproteins were effectively reduced by PE treatment. The antioxidation 
capacity (T-AOC) and superoxide dismutase (SOD) activity were also mediated by PE. 
Additionally, the activates of liver function-related enzymes including alkaline phos-
phatase (ALP), glutamate pyruvate transaminase (GPT), and glutamate oxaloacetate 
transaminase (GOT) in diabetic rat were improved by PE.
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diabetes complications, including atherosclerosis, retinopathy, ne-
phropathy, and neuropathy (Khangholi et al., 2016). Diabetes is also 
caused by insufficient insulin secretion due to dysfunction of pan-
creas which was reflected by the increasing level of blood glucose, 
hyperlipidemia, and liver function impairment (Maria, Campolo, & 
Lacombe, 2015). Therefore, inhibition of AGE formation and control 
of blood glucose, lipid parameters, and key liver enzyme are consid-
ered as the therapeutic approaches for diabetic patients. Traditional 
diabetes treatments require pharmacological agents which cause 
side effects such as gastrointestinal issues, weight gain, hypogly-
cemia, and syndrome of inappropriate antidiuretic hormone (Mitri 
& Hamdy, 2009). Thus, medicinal plants have been investigated for 
remedy purpose on different biological system disorders. However, 
a comprehensive study on the phytochemicals and anti-AGE forma-
tion and antidiabetes potential of polygonum has not been well doc-
umented. Therefore, the primary phenolics of polygonum and the 
potential of its extracts in AGE inhibition, and diabetes treatment 
were investigated in this study. It will provide important information 
for further application of herbal polygonum as a natural therapy for 
pharmacological and drug development purpose.

2  | MATERIAL S AND METHODS

2.1 | Chemicals and materials

p-Coumaric acid, ellagic acid, piceid, coumarin, emodin and cinnamic 
acid standards, sodium chloride, sodium bromide, glucose, glycerol, 
streptozotocin (STZ), sodium azide, thionyl chloride, dichloromethane, 
and trifluoroacetic acid anhydride were purchased from Sigma-Aldrich. 
HPLC grade methanol, ethanol, acetic acid, acetonitrile, chloroform, 
acetone, as well as hydrochloric acid were ordered from Thermo Fisher 
Scientific Co. Whey protein isolate (WPI) was purchased from Davisco 
Foods International, Inc. (Eden Prairie, MN). Nε-(Carboxymethyl)-L-ly-
sine (CML) standard was supplied by Toronto Research Chemicals Inc.

2.2 | Preparation of the aqueous polygonum extract

Fresh polygonum leaves were harvested from a local farm (Haikou, 
China) and ground in liquid nitrogen. The aqueous extract was ob-
tained by extracting the ground polygonum (300 g) with 400 ml 
ethanol (70%) using Soxhlet apparatus for 24 hr as described in 
the study of Bokaeian, Nakhaee, Moodi, Farhangi, and Akbarzadeh 
(2010). The extract solution was then filtered and evaporated by a 
vacuum centrifuge evaporator (Labconco). The dried polygonum ex-
tract was stored at −20°C until use.

2.3 | Determination of major phenolics in 
polygonum extract

An aliquot of polygonum extract was redissolved in methanol to 
make a working solution with concentration of 2 mg/ml. It was de-
termined using a high-performance liquid chromatography (HPLC) 
system (Waters 2690) coupled with a C18 column (id 250 × 4.60 mm 

5 micron; Phenomenex) and a photodiode array detector. The HPLC 
operation condition was based on the study of Shen, Prinyawiwatkul, 
Lotrakul, and Xu (2015). The major phenolic compounds were identi-
fied and quantified based on the retention times, spectra, and cali-
bration curves of their corresponding commercial standards.

2.4 | Determination of AGEs, CML, and 
protein glycation

2.4.1 | Preparation of Protein−Sugar‐Rich 
intermediate‐moisture‐foods (IMFs)

For the control group, the IMFs (200 g) consisted of 90 g of WPI, 
60 g of glycerol, 25 g of glucose, and 25 g of DI water and then mixed 
homogeneously. Sodium azide (80 mg) was added in the IMF dough 
to prevent microbial growth. For the treatment group, polygonum 
cuspidatum extract was fortified at a concentration of 10 mg/g (PE1), 
20 mg/g (PE2), or 40 mg/g (PE3) to the IMF dough and was followed 
by the addition of same amount of glucose, water, and glycerol as 
control group. It was homogenized through vigorous stirring before 
the same amount of WPI and sodium azide were added. Both control 
and fortified IMF dough were placed on a Petri dish separately and 
laid on a rack in an airtight plastic box. The experiment was carried 
out under different water activity (aw) conditions (aw 0.75 and aw 
0.56) which were prepared by saturated sodium chloride solution 
and sodium bromide solution, respectively. All of the boxes were 
sealed and incubated at 45°C. Ten grams of each dough was col-
lected for analysis at days 0, 7, 14, 21, 28, and 45 for AGEs; days 0, 7, 
14, 21, and 45 for CML; and days 1, 3, 5, and 7 for protein glycation.

2.4.2 | Determination of AGEs

The control IMF or fortified IMF sample (500 mg) was extracted 
by dissolving in 10 ml of double distilled water (DDW). After mag-
netic stirring at room temperature for 80 min, the extract solution 
was centrifuged at 4,000 g for 30 min. Four milliliters of the super-
natant was collected for AGE determination. The fluorescence in-
tensity was measured by an F-4500 Luminescence Spectrometer 
(Shimadzu, Japan) at the excitation wavelength of 370 nm and emis-
sion wavelength of 440 nm with a slit width of 5 nm. Level of AGEs 
in the sample was expressed by the fluorescence intensity.

2.4.3 | Determination of CML

The level of CML was determined by GC-MS method as described 
in the study of Sheng et al. (2016) with minor modification. Control 
IMF or fortified IMF sample (200 g) was defatted with 20 ml of 
chloroform/acetone solvent (1:3, v:v). After vortexed and soni-
cated for 10 min, the mixture was centrifuged at 4,000 g for 
15 min. The precipitated protein was collected and dried. Then, 
it was hydrolyzed by hydrochloric acid solution (8 ml of 6 mol/L) 
at 110°C for 24 hr. Fifty microliters of protein hydrolysate was 
dissolved in 1.0 ml of DDW, filtered, and dried. The extract was 
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reacted with 1 ml of thionyl chloride/methanol (v: v, 1.46:100) at 
110°C for 30 min and dried again. Derivatization was performed 
by adding 2 ml of dichloromethane and 400 μl of trifluoroacetic 
acid anhydride to the dried extract and incubated at room temper-
ature for 1 hr. The CML in the extracted sample was determined 
by GC-MS (Agilent 7890B, 7693 mass selective detector single 
quadrupole mass spectrometer system) coupled with an HP-5MS 
column (30 m × 0.25 mm × 0.25 μm, Palo Alto, CA). The GC pro-
gram was described as follows: initial oven temperature was set at 
40°C and held for 1 min. Then, it increased to 70°C at the rate of 
20°C/min, ramped to 300°C at the rate of 50°C/min, and held for 
2 min. High purity helium was used as carrier gas with a flow rate 
set at 1.20 ml/ min. The transfer line temperature and ion source 
temperature were set at 250 and 230°C, respectively. The MS was 
operated in electron ionization (EI) mode with electron energy 
70 eV and ion scan range of m/z 40−800. A calibration curve of 
CML was used for quantification.

2.4.4 | Determination of protein glycation

The degree of glycated protein was determined by LC-MS (Waters 
UPLC ZMD 4000 (Waters Co.) and TOF mass spectrometer). Control 
IMF or fortified IMF (300 g) was extracted by dissolving in 15 ml of 
DDW and stirred at room temperature for 80 min. After centrifuga-
tion at 4,000 g for 30 min, 100 µl of the supernatant was collected 
and diluted 10 times with DDW then filtered. The BEH C18 column 
(2.1 × 100 mm, Waters Co.), mobile phase A (100% acetonitrile) and 
B (formic acid, 0.1%, v/v) with the flow rate of 0.3 ml/min were used. 
The gradient program was described as B% decreased from 80% to 
50% from 0 to 15 min; 50% to 0% from 15 to 20 min; 0% to 80% 
from 20 to 21 min; and equilibrated at 80% from 21 to 23 min. The 
electrospray ion source was in positive mode at a spray voltage at 
4.1 kV.

2.5 | Animals experiment and blood sample analysis

Healthy male Sprague–Dawley (origin) rats with the weight ranging 
from 180 to 200 g were used in the animal experiment. A total of 
24 rats were randomly divided into the following three groups of 
8 animals each: group I, normal control (NC); group II, diabetic con-
trol (DC); group III, PE treatment. Animals were maintained in envi-
ronmentally controlled conditions with a 12/12-hr light/dark cycle 
at temperature of 23°C and relative humidity of 55 ± 5%. All the 
rats were housed in cage with free access to food and water. After 
1 week's adaptive feeding with the basic diet, the rats were fasted 
for 12 hr and received intraperitoneal injection of streptozotocin 
(STZ) at a dose of 45 mg/kg body weight except the rats in the NC 
group. At 72 hr after injection, the fasting blood glucose level higher 
than 16.7 mmol/L was considered as DC group. NC and DC contin-
ued with basal diet consist of 7% of fat, 13% of protein, and a highly 
digestible starch for 4 weeks. Oral gavage of PE was performed in 
treatment group at the level of 0.2 g/ kg of body weight once a day 
for 4 consecutive weeks.

Blood was collected from tail vein for determination of glucose 
level every week during the experimental period. After 4 weeks, all 
of the rats were sacrificed and blood samples were drawn through 
heart puncture. The blood sample was then centrifuged at 1,500 g 
for 10 min, and the supernatant serum was collected for further 
analysis. Levels of triglycerides (TG), cholesterol (CHO), low-density 
lipoprotein cholesterol (LDL-C), high-density lipoprotein choles-
terol (HDL-C), and activities of liver enzymes alkaline phosphatase 
(ALP), glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic 
transaminase (GPT), as well as antioxidant enzyme superoxide dis-
mutase (SOD), antioxidation capacity (AOC), malonaldehyde (MDA) 
were determined by commercial kits. Experimental procedures were 
approved and complied with the Chinese Code of Practice for the 
Care and Use of Animals for Scientific Purposes.

2.6 | Data analysis

Value was expressed as mean ± standard deviation with triplicates 
for each determination. The experimental data were analyzed using 
ANOVA (General Linear Model procedure, SAS system, SAS 9.1.3). 
The significant differences among treatments were conducted at 
p < 0.05 (SAS, 9.1.3).

3  | RESULTS AND DISCUSSION

3.1 | Primary phenolics in polygonum cuspidatum 
extract

In this study, a total of six primary phenolics including p-coumaric 
acid, ellagic acid, piceid acid, coumarin, salicylic acid, and cinnamic 
acid were identified in polygonum extracts. The chemical structures 
and HPLC chromatograms of the phenolic compounds are shown in 
Figure 1 and Figure 2. Ellagic acid and cinnamic acid were the highest 
two phenolics with the concentration of 12.36 ± 0.93 mg/g DW and 
12.05 ± 0.67 mg/g DW, respectively, which was followed by coumarin 
(8.40 ± 0.41 mg/g DW). The concentrations of p-coumaric, emodin, 
and piceid were in a descending order of 2.56 ± 0.03, 1.17 ± 0.01, 
and 0.74 ± 0.01 mg/g DW, respectively (Table 1). It has been re-
ported that ellagic acid plays cardioprotective, hepatoprotective, 

TA B L E  1   Major phenolic compounds in the polygonum 
cuspidatum extracts

Peak No. Compounds Concentration (mg/g DW)

1 p-Coumaric acid 2.56 ± 0.03c

2 Ellagic acid 12.36 ± 0.93e

3 Piceid 0.74 ± 0.01a

4 Coumarin 8.40 ± 0.41d

5 Emodin 1.17 ± 0.01b

6 Cinnamic acid 12.05 ± 0.67e

Abbreviation: DW, Dry weight basis.
Different letters in the table indicate a significant differences (p < 0.05).
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and gastroprotective roles in human body (Beserra et al., 2011). 
Meanwhile, p-coumaric acid has been proved to generate antiag-
ing, anticancer, and antidiabetes functions (Saibabu, Fatima, Khan, 
& Hameed, 2015). Piceid, a precursor of resveratrol, had anticar-
cinogenic effects, antioxidation activity, and inhibition of platelet 
aggregation (Su et al., 2013). Additionally, coumarin has anti-inflam-
matory, antiviral, and antihypertension effects (Venugopala, Rashmi, 
& Odhav, 2013). Moreover, cinnamic acid is associated with a benefi-
cial influence on diabetes and its complications as well as antioxidant 
ability (Adisakwattana, 2017). Belonging to the same Polygonaceae 
family, Rheum had p-coumaric acid of 9–26 µg/g DW and buckwheat 
had cinnamic acid of 3.10–3.70 mg/g DW, which were significantly 
lower than those in polygonum, respectively (Wiczkowski et al., 

2016). Compared with other herb plants, polygonum cuspidatum had 
higher concentration of coumarin (8.40 ± 0.41 mg/g DW) than guaco 
(0.775–1.131 mg/g DW) and higher ellagic acid (12.36 ± 0.93 mg/g 
DW) than geum (0.44–0.57 mg/g DW) (de Melo & Sawaya, 2015; 
Owczarek, Olszewska, & Gudej, 2015).

3.2 | Effect of polygonum cuspidatum extract on 
AGEs, CML, and glycated protein formation

The advanced glycation end products (AGEs) are mainly generated 
from glycation, with the reaction of free amino group of protein and 
carbonyl group of reducing sugar. A typical AGE compound CML 
can be generated from either reaction of Amadori products and 

F I G U R E  1   Chemical structures of 
major phenolic compounds in polygonum 
cuspidatum extract

p-Coumaric acid Ellagic acid

Piceid Coumarin

Emodin Cinnamic acid

F I G U R E  2   Chromatogram of 
polygonum cuspidatum extract under 
the wavelength of 280 nm: 1. p-coumaric 
acid (25.6 min); 2. ellagic acid (27.7 min); 
3. piceid (34 min); 4. coumarin (41 min); 
5. emodin (41.5 min); 6. cinnamic acid 
(52 min)
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amino acids or oxidative breakdown of α-oxoaldehydes mediated 
polyol pathway (Goldin, Beckman, Schmidt, & Creager, 2006). Thus, 
total AGEs and CML have been recognized as reliable biomarkers 
of oxidative damage and pathogenetic factors of some oxidative-
based diseases such as diabetes, atherosclerosis, and Alzheimer's 
disease (AD), since a positive correlation between the accumula-
tion of AGEs in tissues/fluids and those disease was observed 
(Younessi & Yoonessi, 2011). The AGE level in control and all treat-
ments showed a decreasing trend in the first 14 day under both aw 
(Figure 3a,b). It was due to some glycosylation products from early 
storage of high protein food which had no fluorescence absorbance 
(Poulsen et al., 2013). During the early stage of Maillard reaction, 
the consumption of some amino acids also caused the decrement of 
fluorescence intensity (Poulsen et al., 2013). However, when incu-
bation time reached 28 day, AGEs significantly increased under both 
aw (Figure 3a,b). It was because more reactive compounds were 
generated and reacted with free amino groups and thiol groups of 
protein. It dramatically increased AGE levels (Wu, Hsieh, Wang, & 
Chen, 2009). Figure 3a shows polygonum cuspidatum extract was 
the most effective at 28 day in inhibiting AGEs. It reduced by 32.0% 
and 54.2% in PE2 and PE3 treatments, respectively, under aw 0.75. 
Similarly, PE2 and PE3 reduced 34.6% and 39.7% of AGEs at 28 day, 

respectively, under aw 0.56 (Figure 3b). In the CML assay, the po-
lygonum extract (PE3) had the highest inhibition rate at 7 day, which 
was 78.9% under aw 0.75 (Figure 4a). However, the CML was only 
slightly inhibited under aw 0.56 at 7 day and there was no significant 
difference at different times (Figure 4b). AGEs at the early glycation 
stage are known to associate with increased superoxide radical and 
hydroxyl radical production, especially with the presence of transi-
tion metals (Suantawee et al., 2015). Antioxidants are able to inhibit 
the radical-based reactions involved in AGE formation and quench 
radicals which act as AGE precursors (Aldini et al., 2013). Thus, the 
phenolic compounds such as ellagic acid, coumarin, and coumaric 
acid in polygonum cuspidatum extract contributed to the inhibition 
of AGEs by scavenging free radicals (Priyadarsini, Khopde, Kumar, & 
Mohan, 2002; Teixeira, Gaspar, Garrido, Garrido, & Borges, 2013). 
It was in agreement with the result in the study of Liu et al. (2014) 
that the ellagic acid in pomegranate fruit extract contributed to the 
anti-AGE effect.

Nonenzymatic glycation reaction proceeds slowly through dif-
ferent stages. Thus, during the reaction, the radicals also partici-
pate in accelerating the protein glycation by oxidizing side chains 
of amino acid residues of protein (Suantawee et al., 2015). It fur-
ther leads to the formation of protein-bound carbonyl or the loss of 
protein thiol group which causes protein oxidative damage (Elosta, 

F I G U R E  3   Fluorescence absorbances of AGEs in control and 
polygonum cuspidatum extract treatments under (a) aw 0.75 and (b) 
aw 0.56
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F I G U R E  4   Concentrations of CML in control and PE treatment 
during storage under aw (a) 0.75 and (b) 0.56
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F I G U R E  5   Mass spectrum of protein glycation in control and PE treatment during storage
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Slevin, Rahman, & Ahmed, 2017). As a result, free radicals scaveng-
ing ability would be important for antiglycation purpose, especially 
at the early stages of glycation. In this study, the influence of po-
lygonum cuspidatum extracts against fructose-medicated nonen-
zymatic glycation was investigated based on the IMF model and 
only PE3 treatment. The protein glycation degree was evaluated 
by the modification of primary components α-lactalbumin (LA), 
α-lactoglobulin (LG-A), and β-lactoglobulin (LG-B) in WPI protein 
during storage at 1, 3, 5, 7, and 21 day under aw 0.75. The molecular 
weights of LA, LG-A, and LG-B were 14,177, 18,362, and 18,277 Da, 
respectively (Figure 5a). At day 1, there was no significant differ-
ence between control and PE3 since the most abundant glycated 
proteins in these two groups were LG-B+5G (19,173 Da) and LG-
B+4G (19,011 Da) which were 5 and 4 glucose bound with LG-B, 
respectively (Figure 5b,c). At day 3, LG-A+8G (19,820 Da) showed 
the highest intensity in control, which had one more glucose mol-
ecule bound to the LG-A compared with LG-A + 7G (19,657 Da) in 
PE3 treatment (Figure 5d,e). At day 5, higher molecular weight gly-
cated LG-A, LG-A+10G (20,143 Da) was observed in control than 
LG-A+9G (19,981 Da) in PE3 treatment (Figure 5f,g). Similarly, the 
highest intensity of glycated protein was LG-A+11G (20,302 Da) 
in control, while it was LG-A+10G (20,141 Da) in PE3 treatment 
(Figure 5h,i). The antiglycation ability of polygonum cuspidatum ex-
tract might be attributed to its abundant phenolics. The free radical 
scavenging activities played as the antioxidant role in the chain-
breaking performance on glycoxidation as exemplified in the study 
of Ardestani and Yazdanparast (2007) and Suantawee et al. (2015). 
For example, ellagic acid has been reported to inhibit AGE formation 
in diabetic mice and decrease the level of CML (Raghu, Akileshwari, 
Reddy, & Reddy, 2017). Coumarin has also been demonstrated to 
have antiglycation effect because the hydroxyl group of aromatic 
ring in coumarin molecule hinders the incorporation of albumin 
with glucose, thereby interferes with glycation and AGE formation 
(Aminjafari et al., 2016). In the study of Adisakwattana, Sompong, 
Meeprom, Ngamukote, and Yibchok-anun (2012), approximately 
35% of AGEs was inhibited by cinnamic acid in the incubation of 
BSA and fructose. Additionally, protein glycation was attenuated 
by cinnamic acid via reducing oxidation of thiol group oxidation 
and suppressing protein carbonyl formation (Adisakwattana et al., 
2012). It has been evidenced that individual phenolic compounds 
could act synergistically in the crude extract of polygonum (Amin 
et al., 2016). Several edible plants including red grape skin, pom-
elo, and Cyperus rotundus have been proved to prevent reducing 
sugar-mediated protein glycation (Ardestani & Yazdanparast, 2007; 
Caengprasath, Ngamukote, Makynen, & Adisakwattana, 2013; 
Jariyapamornkoon, Yibchok-anun, & Adisakwattana, 2013). Due to 
the abundant phenolic and flavonoids such as catechin, epicatechin, 
quercetin, rutin, kaempferol, ellagic acid, gallic acid, and p-coumaric 
acid, the consistent inhibition of protein glycation was observed in 
both in vitro and in vivo models (Atawodi et al., 2011). Also, the stil-
bene glucoside compounds in Polygonum multiforum Thun has been 
reported to effectively trap MGO and inhibit protein glycation (Ho 
& Wang, 2013).

3.3 | Effect of polygonum cuspidatum extract on 
oxidative stress, blood glucose, lipid profile, and liver 
function of diabetic rats

3.3.1 | Oxidative stress

Oxidative stress is caused by an imbalance between excessive reac-
tive species such as reactive oxygen species (ROS) and the natural 
antioxidant defense in biological system because of tissue damage 
or cell death (Rajeshwari, Shobha, & Andallu, 2013). The produc-
tion of ROS is usually in balance with the availability antioxidant en-
zymes (Birben, Sahiner, Sackesen, Erzurum, & Kalayci, 2012). SOD 
is the main protective enzyme in the antioxidation system, which 
can catalyze the disproportion reaction of the superoxide anion and 
prevent damages to tissues caused by the superoxide anion (Ding, 
Wang, Song, & Zhou, 2017). Besides, malondialdehyde (MDA) is one 
of the end products with low-molecular-weight, so the increased 
MDA level can be also an indicator of oxidative stress (Ding et al., 
2017). Thus, oxidative stress could determine the onset and pro-
gress of late diabetes complications (Rajeshwari et al., 2013). In this 
study, under the oxidative stress induced by STZ, the abnormal level 
of MDA was observed (Table 2). The DC had significant higher level 
of serum MDA (8.43 ± 0.53 nmol/L) than NC (6.74 ± 0.49 nmol/L); 
however, it was 6.05 ± 0.24 nmol/L in PE which was back to nor-
mal level (Table 2). The SOD activity was also slightly reduced in PE 
(0.48 ± 0.05 U/mL) compared with DC (0.54 ± 0.04 U/mL) (Table 2). 
Generally, the augmentation and propagation of oxidative stress lead 
to a simultaneous increase in free radical production (Adisakwattana 
et al., 2012). Thus, the great performance of polygonum cuspidatum 
extract was due to multiple phenolic compounds which played anti-
oxidant or free radical scavenging roles. For example, ellagic acid has 
demonstrated to attenuate the MDA and reduce SOD activity in gin-
gival tissue of diabetic rat (Al-Obaidi, Al-Bayaty, Al Batran, Hussaini, 
& Khor, 2014). On the other hand, p-coumaric acid was evidenced to 
decrease the production of MDA which further reduces the risks of 
atherosclerosis (Guven et al., 2015).

The T-AOC of blood can reflect overall cellular endogenous an-
tioxidative capability (Tong, Lin, Lippi, Nie, & Tian, 2012). Due to the 
oxidative stress and inflammatory reaction, T-AOC decreased from 
2.19 ± 1.44 U/mL in NC to 1.65 ± 0.10 U/mL in DC (Table 2), while 
it increased to 6.13 ± 0.82 U/mL (Table 2). It has been reported that 
phenolics such as ellagic acid, gallic acid, and coumaric acid had strong 
free radical scavenging activities (Guven et al., 2015). Additionally, 
other herbs species such as Ilex paraguariensis and panax notogin-
seng were able to improve plasma T-AOC activity (Hong et al., 2015; 
Sánchez Boado, Fretes, & Brumovsky, 2015). Thus, the phenolics in 
PE could mediate the T-AOC activity in diabetic rats by inhibition of 
ROS and amelioration of oxidative stress (Guven et al., 2015).

3.3.2 | Blood glucose

Generally, insulin is responsible for mediating glucose up-
take (Maria et al., 2015). Once the pancreas function has been 
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suppressed, there will be a resistance of insulin secretion resulting 
in metabolic syndrome such as hyperglycemia (Maria et al., 2015). 
Therefore, the increase in blood glucose could be used as a hall-
mark of diabetes. In the current study, the blood glucose levels of 
NC, DC, and PE were monitored for 6 weeks. Table 2 shows NC had 
a relatively stable blood glucose ranging from 5.07 ± 0.38 mmol/L 
to 6.17 ± 0.56 mmol/L throughout 6 weeks experiment. However, 
it was approximately twice higher in DC at 1W and four times 
higher in DC at 6W compared with NC (Table 2) due to destruction 
of pancreatic insulin-secreting β-cells induced by STZ. PE demon-
strated the inhibition performance from 1W to 5 W and had the 
best inhibitory effect at 5W which inhibited about 20% of blood 
glucose compared with DC (Table 2). At 6W, there was no sig-
nificant difference between DC and PE (Table 2). The reversal of 
blood glucose changes with administration of the polygonum cus-
pidatum extract proved that insulin deficiency had been improved. 
This might attribute to an increase in glucose utilization through 
mitochondrial respiratory chain which promotes peripheral glu-
cose utilization by enhancing anaerobic glycolysis (Coller, 2014). 
In the study of Saibabu et al. (2015), treatment with ellagic acid 
markedly elevated the insulin-secreting activity from pancreatic β-
cell, which attenuated the dyslipidemia. On the other hand, ellagic 
acid could indirectly attenuate hypoglycemic effects through reg-
ulating blood glucose homeostasis and glucose uptake which were 
mediated through AMP-activated protein kinase (AMPK) activa-
tion (Li, Yao, & Li, 2017). It has been addressed that cinnamic acid 
itself is not able to stimulate glucose uptake; however, it exhibited 
a synergistic effect with other phenolics on the uptake of glucose 
(Adisakwattana, 2017). Similarly, p-coumaric acid also induced the 
glucose uptake and exerts insulin-like activity in human omental 
adipocytes as reported in the study of Scazzocchio et al. (2011).

3.3.3 | Lipid parameters

Relative insulin deficiency plays a role in creating the features of 
diabetic. Dyslipidemia is recognized by the elevation of plasma TG 
and LDL-C, as well as lower HDL-C (Taskinen, 2005). In STZ-induced 
diabetic rats, increasing levels of LDL-C and CHO were observed 
due to the stimulation of hepatic triglyceride synthesis which further 
over produce TG and LDL-C (Mohan, Jesuthankaraj, & Ramasamy 
Thangavelu, 2013). In this study, the effect of PE on lipid param-
eters, including CHO, TG, HDL-C, and LDL-C, in diabetic rats was 
investigated. As shown in Table 2, DC had significantly twice LDL-C 
(0.71 ± 0.14 mmol/L) than NC (0.37 ± 0.01 mmol/L); however, it was 
only 0.45 ± 0.09 mmol/L in PE. Approximately 12% of TG was inhib-
ited in PE compared with DC which was associated with a decrease 
of the LDL‐C fraction (Table 2). Compared with DC (2.97 ± 0.12 
mmol/L), A slight reduction of CHO was observed in PE (2.63 ± 0.12 
mmol/L). PE maintained a similar level of HDL‐C (1.57 ± 0.07 mmol/L) 
with NC (1.45 ± 0.23 mmol/L) (Table 2). It might be the abundant 
phenolics, especially ellagic acid, p-coumaric acid, and coumarin at-
tributed to the ameliorative effect of lipids by hepatic LDL receptor 
site activity (Harnafi et al., 2013). For example, the lipid lowering 
effect of ellagic acid and p-coumaric acid has been reported to be 
associated with the decreased alteration in lipoprotein fractions in 
STZ-induced diabetic rats (Guven et al., 2015; Malini, Kanchana, & 
Rajadurai, 2011). Rich in coumarin, the cinnamon was investigated 
to generate CHO lowering effect (Ranasinghe et al., 2012). Another 
possible mechanism was described in the study of Das and Barman 
(2012) on molecular basis. Similar to Punica granatum leaves, polygo-
num cuspidatum extracts with the presence of phenolics could in-
crease LDL-C receptor mRNA levels, which, in turn, speed up hepatic 
uptake and degradation of LDL-C, resulting in a decrease in serum 

 Normal Control Diabetes Control PE Treatment

Blood lipid HDL-C (mmol/L) 1.45 ± 0.23 b 0.92 ± 0.22 a 1.57 ± 0.07 c

LDL-C (mmol/L) 0.37 ± 0.01 a 0.71 ± 0.14 c 0.45 ± 0.09 ab

TG (mmol/L) 0.80 ± 0.05 a 1.35 ± 0.08 c 1.20 ± 0.02 b

T-CHO (mmol/L) 2.48 ± 0.42 a 2.97 ± 0.12 a 2.63 ± 0.12 a

ROS T-SOD (U/mL) 0.42 ± 0.02 a 0.54 ± 0.04 ab 0.48 ± 0.05 a

T-AOC (U/mL) 2.19 ± 1.44 a 1.65 ± 0.10 a 6.13 ± 0.82 b

MDA (nmol/mL) 6.74 ± 0.49 a 8.43 ± 0.53 b 6.05 ± 1.19 a

Liver 
Function

AKP (U/100 ml) 43.81 ± 3.64 a 366.95 ± 10.99 c 320.40 ± 28.16 b

GOT (U/L) 47.34 ± 2.42 a 64.93 ± 2.35 c 57.36 ± 4.97 b

GPT (U/L) 37.37 ± 1.23 a 64.07 ± 3.29 c 56.13 ± 3.58 b

Blood 
Glucose

1W (mmol/L) 5.43 ± 0.50 a 10.42 ± 1.33 c 8.18 ± 0.37 b

2W (mmol/L) 5.07 ± 0.38 a 10.64 ± 0.96 b 9.20 ± 1.18 b

3W (mmol/L) 5.16 ± 0.34 a 14.37 ± 1.21 c 11.80 ± 1.10 b

4W (mmol/L) 5.18 ± 0.47 a 21.27 ± 1.83 c 18.65 ± 1.25 b

5W (mmol/L) 5.35 ± 0.35 a 24.88 ± 2.16 c 20.06 ± 2.37b

6W (mmol/L) 6.17 ± 0.56 a 27.81 ± 3.54 b 26.97 ± 1.24 b

Abbreviation: W, Week.
Different letters in the table indicate a significant differences (p < 0.05).

TA B L E  2   Lipids parameters, ROS, liver 
functional enzymes, and blood glucose of 
experimental rats
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LDL-C levels. Thus, PE can be absorbed, metabolized, and biologi-
cally active in biological system and had the potential of maintaining 
lipid profiles in diabetic rats.

3.3.4 | Liver function

The liver is responsible for the maintenance of blood glucose biologi-
cal system. Targeting key metabolic and regulatory hepatic enzymes 
such as GOT, GPT, and ALP are associated with glycolysis and gluco-
neogenesis (Adisakwattana, 2017). Thus, the control of GOT, GPT, 
and ALP activities could serve as feasible approaches for diabetes 
treatment (Han, Kang, Kim, Choi, & Koo, 2016). The hepatotoxic ef-
fect of STZ was reflected by the increased activities of serum GOT, 
GPT, and ALP due to liver dysfunction which led to the leakage of 
these enzymes from the liver cytosol into the blood stream (Karan, 
Mondal, Mishra, Pal, & Rout, 2013).

In this study, PE reduced AKP activity from 366.95 ± 10.99 
U/100 ml in DC to 320.40 ± 28.16 U/100 ml (Table 2). However, PE had 
difficulty in generating a reversible effect on AKP in diabetic rats. Due 
to the leakage of these enzymes from the liver cytosol into the blood 
stream, an elevation of GOT and GPT activity of plasma was observed 
in DC (Table 2). The GOT and GPT activities in DC were significantly 
higher than those in NC (Table 2). However, with the administration 
of PE, the hepatoprotective effect was observed which normalized 
GOT and GPT activities to 57.37 ± 4.97 U/L and 56.13 ± 3.58 U/L, 
respectively (Table 2). The improvement of the liver function-related 
enzymes might be attributed to the phenolics in polygonum cuspida-
tum, especially cinnamic acid. In the report of Rajeshwari et al. (2013), 
cinnamic acid has been examined to lower the GOT and GPT activ-
ities in the cinnamon-fed diabetic rats. On the other hand, cinnamic 
acid has demonstrated the modulatory effects on gene and protein 
expression which were related to cellular signaling transduction of 
insulin-targeting organs (Adisakwattana, 2017). Other herbs such 
as Pseudarthria viscidaaqueous and Rhus verciflua extracts showed a 
protective action in releasing the elevated levels of GOT and GPT in 
the liver of diabetic rats (Jung et al., 2006; Kuppusamy, Shirwaikar, 
Sam, & Kaitheri, 2012). It indicated that the bioactive compounds in 
polygonum cuspidatum extracts could partially reverse the enhanced 
gluconeogenic activity by revival of insulin secretion to normal lev-
els (Kuppusamy et al., 2012). Besides, significantly reduced activity 
of ALP was observed in V. amygdalina‐ and Psidium guava-treated di-
abetic rats, suggesting hepatoprotective potentials of herbal plants 
extracts. (Khan, Shanmugavalli, Rajendran, Bai, & Sorimuthu, 2013).

4  | CONCLUSION

The polygonum cuspidatum extract significantly reduced the AGE 
formation and protein glycation in a protein sugar-rich food system. 
It could also help attenuate the blood glucose level and normalize 
the serum lipid parameters including LDL-C, HDL-C, and TG in dia-
betic rat. Additionally, it exhibited the antihyperlipidemic, hepato-
protective, and antioxidant function as well. Therefore, the results 

of this study indicated that polygonum cuspidatum has a potential 
medication application for treatment of diabetic patients and reduc-
tion of unhealthy compounds in food products.
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