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Abstract

Background: Proteomics and metalloproteomics are rapidly developing interdisciplinary fields providing enormous
amounts of data to be classified, evaluated and interpreted. Approaches offered by bioinformatics and also by biostatistical
data analysis and treatment are therefore of extreme interest. Numerous methods are now available as commercial or open
source tools for data processing and modelling ready to support the analysis of various datasets. The analysis of scientific
data remains a big challenge, because each new task sets its specific requirements and constraints that call for the design of
a targeted data pre-processing approach.

Methodology/Principal Findings: This study proposes a mathematical approach for evaluating and classifying datasets
obtained by electrochemical analysis of metallothionein in rat 9 tissues (brain, heart, kidney, eye, spleen, gonad, blood, liver
and femoral muscle). Tissue extracts were heated and then analysed using the differential pulse voltammetry Brdicka
reaction. The voltammograms were subsequently processed. Classification models were designed making separate use of
two groups of attributes, namely attributes describing local extremes, and derived attributes resulting from the level= 5
wavelet transform.

Conclusions/Significance: On the basis of our results, we were able to construct a decision tree that makes it possible to
distinguish among electrochemical analysis data resulting from measurements of all the considered tissues. In other words,
we found a way to classify an unknown rat tissue based on electrochemical analysis of the metallothionein in this tissue.
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Introduction

The attention of biologists, biochemists, chemists and numerous

scientists from other fields is currently targeted towards proteo-

mics, which provides information about protein localization,

structure and function, and most importantly, interactions with

other proteins. Metallothioneins (MTs) were discovered by

Margoshes and Valee in 1957 as newly identified proteins isolated

from horse renal cortex tissue [1]. Mammalian MTs are low

molecular mass proteins (app. 6 kDa) with a unique abundance of

cysteine residues (more than 30% of all aminoacids) occurring in

conserved sequences cys-x-cys, cys-x-y-cys and cys-cys, where 6
and y represent some other amino acid. Four mammalian MT

isoforms (MT-1–MT-4) are known, and 13 MT-like human

proteins were identified [2]. MT-1 and MT-2 are present in

almost all types of soft tissues [3]. MT-3 is expressed mostly in

brain tissue but also in heart, kidneys and reproductive organs [4],

and the MT-4 gene has been detected in epithelial cells. The main

function of MTs is metal ion transport, maintenance of oxidative-

reducing conditions, and regulation of gene expression in an

organism. Attention is nowadays focused on the role of MT in

cancerogenesis, and on the relation of these proteins with the

cancer cell cycle [5–11]. Although the cause and the mechanism

are not clear, it is considered that its increased level is responsible

for protecting cancer cells from apoptosis, and for increasing

proliferation and the ability to metastasize [11].

It is not easy to detect and quantify MT due to the high content

of cysteine and relatively low molecular mass. Analytical methods

are usually based on a) detection of bonded metal ions, b)

detection of free thiol moieties, c) protein mobility in an electrical

field and d) interaction with various types of sorbent, or e)

Enzyme-Linked Immuno Sorbent Assay (ELISA). However, the

Brdicka reaction in connection with differential pulse voltammetry

(catalytic reaction) is the only direct method able to quantify these

proteins both in blood and in tissue extract samples. The

differential pulse voltammetry Brdicka reaction is a sensitive and

widely-used tool for determining metallothioneins –for each

studied sample it generates from tens to hundreds of values of

a measured signal exhibiting some relation to the composition of

the sample. However, no theoretical explanation has yet been
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offered that could provide a complete model of the behaviour

observed during the Brdicka reaction and the influence or role of

MT. It is almost impossible to process all data collected during the

Brdicka reaction manually, even with the help of instrument

software. It is probable that each proteome has to be characterized

by information resulting from a combination of several in-

dependent analytical approaches. However, finding relational

dependencies is a task of such combinatorial complexity [12] that

it is beyond the scope of manual evaluation to ensure an

exhaustive search if the data consists of more than just a few

values. Tasks of this kind can be resolved using computer

processing if the size of their input is measured in dozens, but it

is untreatable when the input is measured in hundreds. Since the

Brdicka curve is usually described by a set of several hundred

measured values, it is clear that this representation cannot be used

to solve the problem of a search for relational dependencies. On

the other hand, the Brdicka curve can be viewed as a smooth

curve, and this kind of object can be characterized in a more

abstract way, e.g. as a list of its local extremes, or using a wavelet

transform. This paper reports on the results of our experiments

with several abstract representations of the Brdicka curve that we

tested while trying to find a method that could automatically

separate biochemical samples taken from different sources, as

described in Section 2.

We have focused our attention on observing the shape of the

curves corresponding to different organs obtained from 28-day-old

male Wistar albino laboratory rats, using the Brdicka reaction. The

experimental data was analysed using our own software tool,

which was designed and implemented with the intention to help in

determining the type of tissue from which an extract was prepared.

Our approach is based on several alternative descriptions of the

measured curves resulting from sophisticated aggregation of the

original data, leading to more compact representation by

a significantly smaller set of derived attributes that maintain the

strength to construct a reasonable model (in our case a decision

tree) or support the intended decision. These alternatives were

tested for liver, kidney, spleen, heart, brain, eye, gonads, blood and

femoral muscle fingerprinting, with the intention to identify the

best choice from the alternative representations of the Brdicka

curve that are introduced in section 3.2.1. Our experiments

reported in section 3.2.2 not only confirm that it is possible to

classify with high precision an unknown tissue sample character-

ized only by its Brdicka curve, but also point to the importance of

the neighbourhood of the inflexion point of the Brdicka curve in

the interval (21.65 V; 21.5 V). It is surprising that these inflexion

points appear in a much smaller interval, namely within (21.61 V;

21.575 V).

Results and Discussion

2.1 Electrochemical measurement
2.1.1 Brdicka reaction. A method for polarographic de-

termination of proteins that contain SH-groups in an ammonia

buffered cobalt(III) solution was first described by Brdicka [13].

The Brdicka reaction is a frequently employed electrochemical

method for determining MT in biological samples. One of the

most important results from studies of the Brdicka reaction was the

discovery that, in the presence of cobalt ions in solution, even

a simple sulphide ion in a concentration below the solubility

product of CoS can catalyse hydrogen evolution on HMDE [14].

This confirms that the essential catalytic agent in such systems is

the hydrogen atom attached to the sulphur bound to cobalt, and

that whatever is bound to sulphur in addition to cobalt and

hydrogen is of secondary importance [15]. In a proton nuclear

magnetic resonance study of metallothionein clusters of cobalt, it

was observed that the protons hydrogen-bonded to sulphur atoms

binding cobalt behave anomalously in that they are unusually

exchangeable, similarly to the hydrogen bonds encountered in

various iron containing proteins. With hanging mercury drop

electrode, the reaction of the catalytic evolution of hydrogen from

slightly alkaline buffered solutions containing thiols and cobalt ions

was found to take place in two potential ranges [15,16]. The

catalytic signals are a special case of the kinetic signals; the limiting

catalytic current can significantly exceed the limiting current

corresponding to a given catalyst concentration [17].

The experimental conditions for detecting MT using the

Brdicka method were modified several times, with the aim to

study the effect of the concentration of some substances in the

Brdicka solution, which commonly consists of cobalt(III) complex

and ammonia buffer. Raspor et al. [18] used 2 M

NH4Cl+NH4OH, with 1.2 mM [Co(NH3)6]Cl3 and carried out

the measurements within the potential range from 20.9 to

21.9 V. Olafson and Sim suggested the use of 1 M

NH4Cl+NH4OH, with 0.6 mM [Co(NH3)6]Cl3 [19,20]. The most

frequently employed method for detecting MT using Brdicka

procedures is differential pulse voltammetry. The Brdicka reaction

has been used for the study of physiological concentrations of MT

in many animal species [21]. The Brdicka reaction finds a wide

range of use in determining MT in freshwater and sea fishes

[20,22].

2.1.2 A description of voltammograms. The mechanism

of the reaction is based on the catalytic evolution of hydrogen on

mercury electrodes from solutions of protein-containing –SH

group in ammonia buffer and hexaammincobalt chloride complex

(Co(NH3)6Cl3), known as the Brdicka solution [15]. The mechan-

isms of the reaction have not been explained in detail, but it has

been proposed that a complex of cobalt (II) ions with the protein,

peptide or basic nitro compounds play a decisive role in the

catalytic process [23]. The interaction between cobalt(II) ion and

protein causes a decrease in the cobalt peak and the occurrence of

two new voltammetric peaks in the potential area from 21.2 to

21.5 V (Fig. 1A). The reduction of complex R(SH)2 and Co(II) at

potential app. 21.2 V to 21.35 V corresponds to the first

catalytic signal (RS2Co). Two other signals, Cat1 and Cat2,

correspond to the reduction of hydrogen at the mercury electrode,

and can be used for quantification because their height is

proportional to the concentration of MT. In addition, the signal

called Co1 could occasionally result from reduction of [Co(-

H2O)6]
2+ [18]. Under our conditions, we observed the formation

of catalytic signals in potential from 21.2 V to 21.35 V 1.0 to

1.1 V for the first catalytic signal (RS2Co) and somewhere around

21.3V and 21.5V 1.2 and 1.5 for Cat1 and Cat2, respectively.

Signal Co1 of varied strength was observed in potential 0.8. The

hydrogen evolution mechanism at the mercury electrode in the

Brdicka solution is shown in Figure 1B.

2.1.3 Determining the metallothionein content in rat

tissues. Using electrochemical detection of metallothionein,

we monitored its content in the blood and in rat body tissues: liver,

kidney, spleen, heart, brain, eye, gonads, blood and femoral

muscle (number of different tissues taken into consideration p= 9).

The catalytic peak Cat2 was used to quantify metallothionein

(Fig. 1C). A comparison of the average MT levels in single tissues

shows their variability (Fig. 1C). The highest content was found in

kidney (67.061.1 mg/g) and liver (48.760.9 mg/g), i.e. in organs

responsible for detoxifying xenobiotics. The content was two times

higher than in other organs. A higher level was also determined in

the brain (50.561.5 mg/g) and in the spleen (41.561.4 mg/g). The
concentration in the brain corresponds only to the content of
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isoform MT-3, which occurs in the brain only [24]. The MT level

in the heart (without blood) is near to the MT level in muscle,

which can be explained by the similar physiological function of the

two tissues. Moreover, we made a statistical evaluation of the

differences in the MT content determined in the organs. We found

that the MT content in the heart was not statistically different from

the MT content in the gonad and in the eye. In addition, the MT

content in the gonad was not statistically different from the MT

content in the eye. All other mutual differences were significantly

different (p,0.05). In addition to the height of peak Cat2, the

heights of RS2Co and Cat1 were determined and are shown in

Figures 1D and 1E, respectively. However, no dependence on

concentration or on other parameters, including type of tissue, was

observed.

In addition, we focused our attention on the shape of the curves

corresponding to the different organs. We found that each tissue

provided a voltammogram of characteristic shape. The curves

differed not only in their height and in the potential of the peaks,

but also in their shape. Some voltammograms contained RS2Co,

Cat1 and Cat2 only, but in other curves, peak Co1 was detected at

20.7 V. Voltammograms with three peaks (without Co1) were

obtained by measuring the spleen, gonad and muscle homo-

genates. Analyses of kidney, liver, brain, eye and heart homo-

genates gave four peaks. Although apparent differences among

measured voltammograms were observed visually, we were not

able to distinguish between voltammograms of certain tissues using

standard data treatment tools.

2.2 Mathematical data analysis, and some of its
implications

2.2.1 Alternative data set representations. In our case

study, each Brdicka curve represented a unique measurement.

Since each sample was measured 5 times, our dataset consisted of

40 curves (5 measurements for each of 8 rats) for each body part.

The main goal of our data analysis was to find a preprocessing

method that would lead to the definition of a small number of

derived attributes that.

N characterize the voltammograms well enough to allow the

construction of a classification model for identifying the

corresponding body parts from the measured data curve, and

N permit a natural interpretation in the electrochemical domain.

Figure 1. Brdicka reaction of metallothionein. (A) Presumable scheme of the sequence of electrochemical reactions at the mercury electrode
when the Brdicka reaction is applied for MT analysis. (B) A typical DPV voltammogram of MT measured in the presence of a supporting electrolyte
containing 1 mM Co(NH3)6Cl3 and 1 M NH3(aq)+NH4Cl, pH= 9.6; dotted line: voltammogram of a supporting electrolyte without MT. During MT
analysis four peaks, Co1, RS2Co, Cat1 and Cat2 that correspond to the MT level can be observed. Heights of (C) Cat2, (D) RS2Co and (E) Cat1 peaks
measured in extracts of various rat tissues. (C) Metallothionein level in single tissues. The highest level is in liver and kidney, i.e. organs providing
detoxification, and in brain. In comparison, the level of MT in muscle and in heart is almost 50% lower.
doi:10.1371/journal.pone.0049654.g001
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The wavelet transform, described later in this section, proved to

offer efficient means for constructing a set of derived attributes of

this kind. Using these attributes resulting from careful processing

of the original data curves, we were able to specify interesting parts

of curves exhibiting the most significant differences for various

body parts, and to design decision trees that distinguished different

body parts.

The first step in our analysis was data cleaning. The data set

contained 5 data curves for each sample (body part of one of the

rats) resulting from 5 repeated consecutive measurements of the

identical sample. Obviously, it was expected that the 5 curves

resulting from repeated analysis of a single sample should be very

similar to each other. Visual inspection allowed us to point to 8

cases where we identified one of the five curves under

consideration that was dramatically different from the others.

There seemed to be no reason for this behaviour except

a measurement error – errors cannot be excluded since the

analytical process is highly automated: there are numerous

possible sources of errors, e.g. failure in dosing the sample or in

the basic electrolyte, or the occurrence of an impurity somewhere

in the equipment. A situation of this kind occurred in samples from

rat no. 6 and rat no. 8 taken from muscle, blood, heart or gonad.

We carefully assessed the corresponding data, and we came to the

conclusion that these 8 measurements out of a total of 360 must be

the result of a failure during the measurement (e.g. 2 of the 8

measurements proved to be incomplete). We therefore decided to

neglect these measurements, and to delete these dramatically

different curves from the original data set. The resulting dataset

(used for our experiments – described in the text below) therefore

consisted of 352 Brdicka curves only, because 6 out of 72 groups of

repeated measurements did not include 5 curves, as originally

planned, but a lower number (usually 3 or 4).

There is a natural representation of the continuous signal that is

close to the representation used in biochemistry, namely an array

of the positions and functional values of its local extremes (local

maxima and minima). The main advantage of this approach is

that the accurate position of all the extremes is maintained,

including the corresponding functional value.

The preliminary review of the voltammograms showed that

almost all the curves had six local extremes. The only exception

occurred in the graphs depicting data obtained from samples of

blood and muscle - no more than 4 extremes were observed here.

The positions of the extremes (i.e. their horizontal coordinates)

seemed to be very similar for the same body part, while they

showed significant variability among different body parts. Due to

this inter-part variability, it was impossible to specify for all

samples a single short common interval with firm ranges where

one should search for the first (or other) extreme. Consequently,

the full range of values had to be carefully scanned to identify

reliable positions of all local minima and maxima.

Since the treated data represents a discrete signal, it was not

possible to identify the extremes as those points where the

derivation is equal to 0. Instead, we had to rely on an appropriate

approximation of a discrete signal derivation, which can be

obtained using a simple differentiator, namely a first order FIR

filter described by the a differential equation below.

y j½ �~x j½ �{x j{1½ �

After applying this differentiator to the original signal, we

searched for zero crossings of this new signal, because these points

correspond to the exact position of the extremes of our interest.

The zero crossings were obtained as an array of logical values

resulting from normalization of the differential signal, using

a function similar to ‘signum’ (this function assigns value+0.5 to

input higher or equal to zero, and value 20.5 elsewhere). By

applying the differentiator to the normalized signal and setting up

the length of the new signal by adding zeros, we obtained a binary

signal with two possible values, namely zero and one, of the same

length as the original signal. The values of the local extremes were

obtained by indexing the original signal with our computed signal

of logical values.

A straightforward application of the suggested simple algorithm

for identifying the local extremes proved to have a serious

drawback due to the experimental nature of the signals. Some of

the signals were not entirely smooth, and consequently some

minor waves appeared in the graph, resulting in the identification

of insignificant extremes within a small interval. These minor local

extremes can be caused by noise, and are difficult to recognize and

remove. Luckily, this problem occurred in just a few cases, which

could be eliminated by setting the requirement for a minimum

distance between two neighbouring extremes, which were merged

if their distance was below a predefined threshold. To do this, first

the distance between all neighbouring extremes was calculated by

applying a differentiator to the positions of the extremes, and

the places below the threshold were identified as the positions of

the suspicious pairs of extremes – for each suspicious pair, one of

the two was removed. This simple method is far from optimal, and

should be improved or replaced by a better method later. Its main

advantage is low approximate time complexity – it is linearly

dependent on the number d of treated values, i.e. O (d) =d.

To ensure uniformity of the data representation during further

processing of the local extremes of the Brdicka curves, and their

utilization in the design of a decision tree, we decided to focus our

attention first on signals having precisely 6 significant extremes.

This requirement was not met by the blood and muscle samples,

which were excluded from the initial part of our experimental

evaluations. In the rest of our paper, whenever our attention is

restricted to a smaller set of Brdicka curves, we will offer a clear

description of how they were selected (e.g. the data without all the

blood and muscle samples).

Each curve from our data set is described by 518 points

obtained from equidistant measurements in the interval (21.8 V,

20.7 V) – domain experts confirmed that it is safe to take the line

connecting all these points as a reasonable approximation of

a continuous line. A well-known approach for handling data of this

type is to apply Haar’s Simple Wavelet (HSW) transform

[25,26,27], which significantly compresses the input data by

approximating the continuous line by a stepwise function with 2k

steps (columns) of the same width, where parameter k is referred to

as the HSW level. To ensure this plan, HSW transformation sets

a strict requirement on the number d of points used for

representing the curve - this number has to be a power of 2. In

this case, log d is the upper limit for the HSW level parameter

denoted as levelmax. The nearest power of 2 to the number of points

that we have, i.e. 518, is 512= 29. In order to use HSW for our

Brdicka curve data, we set levelmax=9, and we were forced to

abandon six points only. For that purpose, we decided to select the

6 points with the value on the horizontal axis close to (20.7 V),

because their measured values were the same for most of the

curves.

Haar’s Simple Wavelet transform has a single parameter

referred to as level, which cannot exceed levelmax and which specifies

the number of iterations of the process described below, as well as

the number of coefficients to be used for a description of the curve.

More precisely, the number of coefficients is equal to 2level. The

initial wavelet coefficient c0 represents the mean of the whole

Electrochemical Fingerprinting

PLOS ONE | www.plosone.org 4 November 2012 | Volume 7 | Issue 11 | e49654



curve. In the next steps the following process is repeated: the

domain is divided into two equal parts and each part is analysed

separately (the mean of this part is considered) and is then

compared to its ‘parent part’ to obtain further wavelet parameters.

The interpretation of the resulting wavelet coefficients is not very

transparent. We therefore applied the inverse wavelet transform,

which results in the same number of novel derived attributes

(denoted as coef0, …, coef15 in the case that level is set to 4)

computed by aggregating the original wavelet coefficients. These

new attributes offer a more natural description of the original

curve, because they represent its approximation by a stepwise

function with 2level steps of equal width which roughly copies the

shape of the original data: each new attribute coef0, …, coef15

corresponds to the average of the original curve in the considered

interval (step).

Initially, we started with parameter level=4, resulting in the

output set of all wavelet coefficients with 16 members. In other

words, the transformation that was used took the original 512

measurements (points of the curve) from the input dataset and

transformed them into 16 derived attributes that can be visualized

as the height of 16 steps of constant width, see Figure 2A. This

transformation ensuring significant compression of the input data

proved to be able to characterize the original data reasonably well

as long as each peak of the original curve appears inside one of the

steps, see Figure 2A, where the values of coef0, …, coef15

(corresponding to the average value of the function within the

considered interval or step) roughly copy the shape of the original

curve. However, a steep peak on the break between two steps can

influence the values of the derived coefficients in such a way that

these values become misleading. A situation of this kind can be

observed in Figure 2B in the vicinity of 21.25 V, where the value

of the corresponding derived attributes no longer copies the shape

of the original data well enough.

The simplest way to deal with the problem of the steep jump

would be to use finer steps in its neighbourhood. However, all the

steps in the simple wavelet transform have to be of the same width.

In our case, the constant width requirement suggested an increase

in the parameter level of the HSW transform from level=4 to

level=5. This parameter change provided a better description of

the Brdicka curve around the steep jump approximately in the

middle of the curve. Setting the level to 5 resulted in the creation of

32 new derived attributes that could be used for constructing

a decision tree in the next section. To ensure all the data

preprocessing steps described here, we developed a dedicated SW

tool implemented in the JAVA environment that also supports

visualization of the data.

2.2.2 Classification. Classification models were designed

using two groups of attributes separately - attributes describing

local extremes (see section 3.1.3), and derived attributes resulting

from the level=5 wavelet transform (see section 3.1.3). Among

various available classification models [28], we selected decision

trees because they highlight possible dependencies among the

considered attributes, and thus they offer a clear insight into the

task, due to the algorithm used for constructing the decision tree.

This algorithm applies iteratively a routine for identifying the most

informed attribute to the considered dataset. This attribute is then

used for partitioning the dataset – further on, a significantly

smaller dataset is processed and in this way the complexity of the

task is reduced step by step. Those attributes that appear in the

names of the upper nodes of the decision tree (close to its root)

seem to be of special importance - the decision tree can also be

understood as a feature selection algorithm.

The Rapid Miner software tool and its Decision Tree module

were applied [25]. The parameter named minimal leaf size,

corresponding to the minimal number of instances per leaf was

set to 10 to prevent over-specialization when the leaves of the

decision tree could be characterized by the attribute values of

a single rat (one rat = 5 curves). This setting helped in finding more

general decision trees. In both experiments described in the

following two paragraphs, which used two different groups of

attributes selected for an abstract representation of the Brdicka

curve, we applied the same approach for estimating the quality of

the designed model, namely 10-fold cross-validation. The available

data S, corresponding to different Brdicka curves, was divided into

10 disjunctive sets S1,…, S10, each of which maintained the same

percentage of the considered body tissues as the original set

(stratified samples). For i=1 to 10, the following experiments were

performed: the decision tree model was created from the training

data set (S - Si ), and was tested on the remaining data, namely on

Si. The overall results of the 10 experiments were summarized

using a confusion matrix with columns denoted by the body part

from which the sample was taken, and with rows denoted by the

classification suggested by the decision trees (Table 1). Conse-

quently, the resulting table denoted as a confusion matrix for the

experiment depicts all the correctly classified examples on the

diagonal of the matrix, while all the other points represent errors.

Moreover, this presentation of the results enables us easily to

identify the most frequent mistakes or confusions appearing in our

data, namely the names of the body tissues that the misclassified

Figure 2. Transformation of DP voltammograms. (A) Haar’s Simple Wavelet transformation – brain. (B) Haar’s Simple Wavelet transformation –
eye.
doi:10.1371/journal.pone.0049654.g002
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examples came from, and the predicted class that does not seem to

be fully reliable.

Our first experiment was inspired by common notation used in

biochemistry. To ensure uniformity of the data representation

during further processing of the local extremes of the Brdicka

curves, and their utilization in the design of a decision tree, we

decided to focus our attention on signals with precisely 6

significant extremes. There are only two body parts that do not

meet this requirement, i.e. the blood and muscle samples. The

corresponding samples were therefore neglected. What remained

was the set of 280 voltammograms resulting from 5 measurements

of samples taken from 7 different body parts from 8 rats. The

cleaning described above reduced this number further to 275

curves. First, a decision tree was constructed from the coordinates

of the well-known points RS2Co, Cat1 and Cat2, only. The

confusion matrix of the resulting decision tree exhibited many

errors in the classification of the body part, and the accuracy

obtained during 10-fold cross-validation was 80.77% 65.01%. It

is worth noting that the body parts were assigned to three groups

on the basis of the branches on which they appeared: the first

group comprised liver, kidney and gonad, the second group was

brain and heart. while the last group was eye and spleen.

Surprisingly, most of the errors in the confusion matrix

misclassified one body part for another in the same group, or in

other words misclassification did not occur between two different

groups.

In the second experiment with the same data set of 275 curves,

the attributes from the first experiment were complemented by

additional local extremes appearing in the studied interval

(21.8 V, 20.7 V), i.e. by the local maxima of the considered

voltammograms. It should be stressed that this is a major

enhancement of the former data representation, since points

RS2Co, Cat1 and Cat2 are the local minima from a purely

mathematical point of view, though they look like maxima. This is

due to the standard representation of biochemical graphs, where

the two axes are mirrored. The confusion matrix of decision trees

constructed from all 6 local extremes proved to have a somewhat

lower number of errors, but it still failed to classify gonad, spleen

and brain correctly. The accuracy obtained during 10-fold cross-

validation rose to 86.56% 64.54%. While the resulting decision

trees were simpler, they pointed to the same three groups of body

parts as before.

In the last classification experiment, decision trees were

constructed from 32 derived attributes taken from wavelet

transformation, see Figure 3. This meant that we were no longer

forced to skip data from blood and muscle measurements, because

wavelets provide a good description even of curves with a lower

number of extremes. Thus we could take advantage of all the data

obtained after cleaning the original dataset, and again work with

the full set of 352 curves. Although this makes the classification

task more complex, since the data has to be classified into 9 classes

(as against 7 before), the resulting classification is nearly perfect:

10-fold cross-validation reported impressive accuracy of 96,31%

62.56%. The only body part exhibiting serious error is the brain

(Table 1).

The decision tree that was created divided the Brdicka curves

into 3 clusters again: the first group containing liver, kidney, gonad

and brain, the second group containing blood and muscle, and the

last group containing heart, eye and spleen. The three groups

identified earlier were then merged into two groups: the group

with liver, kidney and gonad curves was supplemented by brain

curves, while the heart curves were added into the group with eye

and spleen curves. We can observe a certain correspondence

between this clustering and the MT levels of the body parts

(Fig. 1C). MT levels only are not sufficient to provide a reasonable

explanation. In the case of the tree based on wavelet coefficients,

we cannot neglect the importance of attributes w5coef27 and

w5coef26. They correspond to the part of the curve between the

point denoted as Cat2 and the last local maximum, denoted as

Max3. The corresponding part of the Brdicka curves is explored in

the next section.

2.2.3 Analysis of the interval between point Cat2 and local

extreme Max3. Our aim was to gain a better understanding of

the behaviour of the Brdicka curves in the neighbourhood of those

selected parts that are described by attributes w5coef26 and

w5coef27. First, we tried to find whether there is some relation

between the values of these attributes and attributes w5coef24 and

w5coef25. Very preliminary information can be obtained by

visualizing these points. At first sight this may seem to be a bizarre

goal, as human imagination is limited to 3 dimensions.

Fortunately, we can use the RadViz visualization solution briefly

explained below to depict relations in data with more than three

dimensions [29,30,31].

RadViz (Radial Coordinate Visualization) [29,32] is a visualiza-

tion method that uses the Hookes law from physics for mapping

a set of n-dimensional points into a plane. It offers a unique

method which can help to identify relations among data. Its main

Table 1. Confusion matrix for decision trees constructed from attributes obtained by a wavelet transform of level 5.

true liver true blood true kidney true brain true eye true spleen true heart true muscle true gonad
Class
precision

pred. liver 40 0 0 0 0 0 0 0 0 100%

pred. blood 0 39 1 0 0 0 0 0 0 97.50%

pred. kidney 0 0 37 1 0 0 0 0 0 97.37%

pred. brain 0 0 2 34 0 0 0 0 0 91.89%

pred. eye 0 0 0 1 39 0 1 0 0 95.12%

pred. spleen 0 0 0 0 0 38 0 0 0 100%

pred. heart 0 0 0 4 1 0 37 0 0 89.10%

pred. muscle 0 0 0 0 0 1 0 38 0 97.44%

pred. gonad 0 0 0 0 0 0 0 0 37 100%

Class recall 100% 100% 92.50% 85.00% 97.50% 97.44% 97.37% 100% 97.37%

doi:10.1371/journal.pone.0049654.t001
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advantage is that it needs no multiple projections, while it provides

a global view on multidimensional data.

Each RadViz mapping of points from n-dimensional space into

a plane is uniquely defined by the position of the corresponding n

anchors (points Sj), which are placed in a single plane. The anchors

are most often situated around a circle. In this case, each anchor is

characterized just by its angle aj, which specifies the radial distance

of this anchor j from the position of the first anchor. The point

y = [y1, …, yn] in an n-dimensional space is mapped to the point

u= [u1, u2] with the following coordinates:

u1~

Pn
j~1 yj cos (a1)Pn

j~1 yj

u2~

Pn
j~1 yj sin (a1)Pn

j~1 yj

Figure 4A shows the resulting RadViz image for the w5coef24 …

w5coef27 projection of the selected wavelet coefficients: each curve

is represented by 4 values of its coefficients w5coef24 … w5coef27,

and it is depicted by a unique point. Surprisingly, individual body

parts seem to form lines in this image – unfortunately the image

with all classes is confusing in black and white colour. To make our

argument clearer, we decided to limit the number of body parts

presented in this picture. The linear dependence among values

w5coef24, …, w5coef27 could be explained by the existence of

a significant linear section in the considered part of the Brdicka

curves, i.e. between point Cat2 and local extreme Max3 (it is the

part of the curve between approximately 21.5 and 21.6 V on the

horizontal axis).

The next step in our analysis is an approximation of the Brdicka

curve between points Cat2 and Max3 by a line y= kx+q. The best
point at which the line can be anchored is the inflection point. We

proceeded as follows for each curve: 1) The inflection point of the

curve was found. 2) The nearest neighbourhood of the inflection

point was selected (5 points to the left and to the right). 3) Line

coefficients k and q were counted using well-known linear

regression formulas, where number of points m=11.

k~
m
Pm

i~1 xiyi{
Pm

i~1 xi
Pm

i~1 yi

m
Pm

i~1 (xi)
2{(

Pm
i~1 xi)

2

q~

Pm
i~1 yi{k

Pm
i~1 xi

m

Now, each Brdicka curve in the considered interval is

characterized by a pair of coefficients k and q – their values can

be depicted in a plane, see Figure 4B. The resulting relation is

almost perfectly linear – a closer inspection shows that there is

a narrow bundle of lines corresponding to the individual body

parts. Does the existence of linear dependence between the values

of the calculated coefficients k and q characterizing our curves

imply something we can observe in the original images of these

curves? Yes, it means that all the considered lines cross at a single

point, the coordinates of which can easily be calculated, as we

show briefly:

Let us restrict our attention to the considered linear approxima-

tions y= kx+q of all the curves corresponding to a selected unique

Figure 3. Decision tree of all samples from the cleaned dataset.
doi:10.1371/journal.pone.0049654.g003

Electrochemical Fingerprinting

PLOS ONE | www.plosone.org 7 November 2012 | Volume 7 | Issue 11 | e49654



body tissue. Moreover, let us suppose that the value of q is a linear

function of k with the following coefficients a; b, i.e. it holds that
q=ak+b. Assuming this relation, we can substitute for q in the

equation y= kx+q of the original line between the points Cat2 and

Max3 in order to obtain y= kx+ak+b or better to obtain y= k *

(x+a)+b. Now, it is clear that all the considered lines share exactly

the point ,2a; b.. Since we assume that our curves in this part

of the voltammogram are well approximated by the considered

lines, the Brdicka curves corresponding to a single body part

should also cross at a single point. Namely, they have to share the

point ,2a; b..

Figure 4C and 4D confirm this hypothesis by showing the cross

points for all the voltammograms obtained for kidney and spleen.

Figure 5 depicts in detail the relevant part of the Brdicka curves for

all the studied tissues. The intersection points are not identical for

different issues, which match the fact that the calculated values of

coefficients k and q, as depicted in the Figure 4B, form not a single

line but a very narrow bundle of lines (one line for each body part)

similarly as in the RadViz visualization. Each body part is

therefore characterized by its own values a and b. The correlation
coefficient between -a and the concentration of MTs in tissue is

r=72%.

The surprising finding that there is a single common point at

which all the Brdicka curves intersect (Figs. 4C and 4D), resulting

from the same tissue of various rats described in the previous

paragraph, made us ask the final question addressed in this paper:

Is there some precise mathematical characterization of this

common point? Could this point be positioned close to the

inflection point that we calculated at the beginning of the previous

paragraph? Figure 5, which shows the local extremes as well as the

inflection points for each curve, hints at the answer to this

question. We can confirm that the intersection point is in the

vicinity of the inflection point. Unfortunately, this image also

proves that neither the position of the inflection point nor the

position of the intersection point is sufficient to support the

classification of an as yet unclassified Brdicka curve. The details in

Figure 5 highlight, for example, that the part of the Brdicka curves

considered for liver, kidney, brain and heart are very similar in the

interval ,21.7, 21.45.: in order to distinguish among them,

more information would be needed about the measured values

outside this interval. A description based on the wavelet

coefficients presented in section 3.2.1 seems to suggest a promising

direction for providing a compact, expressive and valuable

representation of the Brdicka curves treated here.

2.3 Biological importance of the discovered
phenomenon
Tissues differ between themselves from the numerous points of

view including the most basics as type of cells. The morphology as

well as biochemistry of the cell are various among tissues.

Distinguishing of tissues is easy, when fundamental microscopic

Figure 4. Similarities in DP voltammograms. (A) RadViz image for the w5coef24 … w5coef27 projection of selected wavelet coefficients. (B)
Approximation of the Brdicka curve between points Cat2 and Max3 by the line y = kx+q. (C) Cross point for the set of kidney and (D) spleen.
doi:10.1371/journal.pone.0049654.g004
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evaluation is done. If we consider possibility of distinguishing

between tissue extracts prepared using various preparation

protocols, we are not able to determine the tissue, in spite of the

fact that there are great biochemical differences. In our

knowledge, there is no easy-to-use and low cost method how to

distinguish tissues based on their extract analysis. Based on the

scheme shown in Figure 6, coupling of DPV Brdicka reaction with

above optimized software is able to distinguish liver, kidney,

spleen, heart, brain, eye, gonads, blood and femoral muscle

extracts with confidence above 95%. Considering number of

samples and number of replicates, the confidence is one the bests,

which can be achieved and could be of great interest for

metabolomics, which can be seen as data driven strategy trying

to find markers of a situation under study without a priori

hypothesis. These types of studies has rapidly caught the attention

and evolved from the simple pattern recognition strategy, which

was a great innovation at its origins, to the interest for the final

identification of markers responsible for class separation, i.e., from

data to knowledge [33].

One may speculate that the suggested approach may reveal

some interesting biochemical features of a sample. Considering

the fact of differences of tissues, Brdicka reaction can somewhat

determine compounds, of which level is strictly dependent on

a tissue type. Rudolf Brdicka, which was born one hundred

years ago, published in Nature in 1937 his discoveries about

using polarography to diagnose a tumour disease [34,35]. He

found out a sensitive polarographic ‘‘protein effect’’, conspicu-

ously exhibited by serum, which he explained as due to the

catalytic activity of the sulphydryl groups of proteins. The

‘‘protein effect’’ consisting of the appearance of characteristic

wave on the current voltage curve, has been always found

larger in normal serum sample than when the same procedure

with cancer serum was used [34,35]. One year ago, Brdicka’s

colleague Jaroslav Heyrovsky, holder of Nobel Prize in

Chemistry 1959, published a paper in the same journal, where

he summarized results obtained in the field of Polarographic

Research on Cancer [36]. Heyrovsky believed that this field of

study would be of general interest of many scientific groups

around the world. But he was mistaken. Since then, electro-

chemistry has been slowly disappearing from tumour disease

diagnostics due to using modern techniques of analytical

chemistry and molecular biology. Thus, this unique and

interesting technique has not been used with several exceptions

[19] for more than fifty years. Based on the above mentioned

facts Brdicka discovered very similar behaviour, i.e. difference

between two types of biochemically difference extracts. The

Figure 5. Detail of intersections of Brdicka curves for all considered body tissues.
doi:10.1371/journal.pone.0049654.g005

Electrochemical Fingerprinting

PLOS ONE | www.plosone.org 9 November 2012 | Volume 7 | Issue 11 | e49654



possible explanation of this phenomenon probably lies in the

presence of some proteins, mainly metallothioneins and heat

shock proteins, with the ability to withstand heat treatment.

Metallothionein as low molecular mass thiols are abundant in

all tissues but at low concentrations. Due to the presence of four

isoforms, there are also differences in the concentrations of these

isoforms with some remarkable exceptions as the presence of MT-

3 in brain only. Considering the fact that differential pulse

voltammetry Brdicka reaction belongs to the method mostly

sensitive to MTs, differences of the content of individual isoforms

should be one of the main reasons for variances in the

voltammograms. Heat shock proteins (HSPs) are ubiquitous

proteins in eukaryotic cells. As the name suggests, HSPs are

induced in cells exposed to heat although stress proteins

(Chaperonins) can be induced by many different kinds of insults

allowing the cells to survive in otherwise lethal conditions [37].

Mammalian HSPs have been classified into six families according

to their molecular size: HSP100, HSP90, HSP70, HSP60, HSP40

and small HSPs (15 to 30 kDa) including HSP27 [38,39,40]. High

molecular weight HSPs are ATP-dependent chaperones, while

small HSPs act in an ATP-independent fashion [41]. Each family

of HSPs is composed of members expressed either constitutively or

regulated inductively and is targeted to different subcellular

compartments [42]. Constitutive activation of HSPs may occur

in cells even in the absence of environmental stressors. HSP-90 can

constitute up to 1% of total cellular protein in unstressed cells

indicating that these proteins have a role in maintaining protein

conformation even under normal conditions [38]. Based on the

constitutive expression and relative constant level of these proteins

in tissues, these can be also considered as the main contributors to

tissue specific phenomena determined by DP voltammograms.

Due to differences in physico-chemical properties and concentra-

tions of the metabolites, but also due to differences in matrix

properties, DPV Brdicka reaction was proving to be capable of

giving us the information on tissue specificity and also, we can

assume that some other biologically interesting phenomena

including cancer should be also detected.

Materials and Methods

3.1 Chemicals
Rabbit liver MT (MW 7143 g/mol), containing 5.9% Cd and

0.5% Zn, was purchased from Sigma Aldrich (St. Louis, USA).

Co(NH3)6Cl3, and the other chemicals were purchased from

Sigma Aldrich (Sigma-Aldrich, USA) unless noted otherwise. A

stock standard solution of MT (10 mg mL21) was prepared with

ACS water (Sigma-Aldrich, USA) and stored in the dark at

220uC. Working standard solutions were prepared daily by

diluting the stock solutions with ACS water. The pH value was

measured using a WTW inoLab pH meter (Weilheim, Germany).

3.2 Animals
Ethics statement. The research was approved by the

Independent Ethics Committee at Mendel University, Brno,

Figure 6. Suggested Tissue Electrochemical Fingerprinting is based on sampling a tissue, which is then extracted and heat treated.
The denatured sample is further electrochemically analysed using the differential pulse voltammetry Brdicka reaction. The data that is obtained is
processed using an optimized protocol, and a tissue is identified.
doi:10.1371/journal.pone.0049654.g006
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Czech Republic. Selected 28-day-old male Wistar albino laboratory

rats were used without any treatment in our experiments. Eight

experimental animals were used. They were kept in a vivarium with

a controlled air temperature (2361uC) and photo-period (12 hours

day: 12 hours night with maximal intensity 10,800 LUX).

Tempered feed mixtures of natural barley and drinking water

were accessible ad libitum for four weeks. At the end of the

experiment, the animals were euthanized and the tissues and

blood were sampled.

3.3 Preparation of the Biological Sample
Rat tissues (liver, kidney, spleen, heart, brain, eye, gonads

and femoral muscle) and rat blood were used for the analysis.

The animal tissues were mixed with extraction buffer (100 mM

sodium phosphate, pH 6.8) and subsequently homogenized

using a semi-automatic homogeniser (Schuett homgen,

Schuett-Biotec, Germany). The homogenates and also the blood

samples were centrifuged at 10,000 g for 15 min at 4uC
(Eppendorf 5402, USA). Further, the samples were heat treated

at 99uC in a thermomixer (Eppendorf Thermomixer Comfort,

USA) for 15 min. with occasional stirring, and then cooled to

4uC. The denatured homogenates were centrifuged at 4uC,
15,000 g for 30 min. (Eppendorf 5402, USA). Heat treatment

effectively denatures and removes high molecular weight

proteins out from samples [18,43,44]. The supernatants that

were obtained were 100 6 diluted with extraction buffer

(100 mM potassium phosphate, pH 6.8) prior to the electro-

chemical measurements.

3.4 Electrochemical Determination of Metallothionein
Electrochemical measurements were performed with a 747 VA

Stand instrument connected to a 746 VA Trace Analyzer and

a 695 Autosampler (Metrohm, Switzerland), using a standard cell

with three electrodes and a cooled sample holder (4uC). A hanging

mercury drop electrode (HMDE) with a drop area of 0.4 mm2 was

the working electrode. An Ag/AgCl/3M KCl electrode was the

reference, and a glassy carbon electrode was the auxiliary

electrode. GPES 4.9 supplied by EcoChemie was employed.

The Brdicka supporting electrolyte containing 1 mM

Co(NH3)6Cl3 and 1 M ammonia buffer (NH3(aq)+NH4Cl,

pH=9.6) was used, and was changed after each analysis. The

DPV parameters were as follows: initial potential of 20.7 V, end

potential of21.75 V, modulation time 0.057 s, time interval 0.2 s,

step potential 2 mV, modulation amplitude 2250 mV,

Eads = 0 V. All experiments were carried out at a temperature of

4uC (Julabo F12 cooler, Germany).

3.5 Data Resulting from the Measurements and Our SW
Tool for Processing the Data
Our software tool was specially created for the tasks described in

this paper. The whole system is built in the Netbeans platform

framework for Java desktop applications, using an integrated

development environment (IDE) for developing with Java. Our

tool is structured into four main modules that carry out the basic

operations on the data produced during the measurements,

namely import, storage, visualization and preprocessing. The first

module responsible for data import loads curves from the native

format created during measurement into the storage module,

Figure 7. A screenshot of the SW tool that was used, depicting all Brdicka curves measured for all the body parts of a single subject,
namely P3.
doi:10.1371/journal.pone.0049654.g007

Electrochemical Fingerprinting

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e49654



which can be described as a classic relational database. The

visualization module draws each Brdicka curve as a classic XY

graph, and this enables an arbitrary set of curves stored in the

database to be selected for depiction in a single image, see Figure 7.

This feature proved to be very helpful when comparing various

sets of curves. The data preprocessing module deals with counting

the requested wavelet transformation coefficients as well as all

other values utilized throughout the paper (e.g., the minimum and

maximum in a specified interval, etc.).

All pictures of curves in this paper were generated by our

software tool, which is available from its author on request - please

send an e-mail to vyslouzilova@labe.felk.cvut.cz. The original data

is available from the first author of the paper on request.
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