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Abstract: Flavonoids are natural polyphenolic compounds with desired bio-functions but with
chemical instability and sensitivity to temperature, oxygen, and other factors. Apigenin and luteolin,
two flavones of the flavonoid family in plant foods, were; thus, assessed and compared for their
stability, especially the changes in anti-cancer activity in response to the conducted heat treatments
and the addition of ferrous or cupric ions. The two flavones in aqueous solutions showed first-order
degradation at 20 and 37 ◦C. The addition of ferrous or cupric ions (except for Cu2+ at 37 ◦C) enhanced
luteolin stability via forming the luteolin–metal complexes; however, Fe/Cu addition (especially at
37 ◦C) consistently impaired apigenin stability. Using the human cervical cancer Hela cells and two
cell treatment times (24 and 48 h), it was evident that heat treatments (37 and 100 ◦C) or Fe/Cu addition
could endow apigenin and luteolin with decreased activities in growth inhibition, DNA damage,
intracellular reactive oxygen species (ROS) generation, and apoptosis induction. In general, higher
temperature led to greater decrease in these activities, while Fe2+ was more effective than Cu2+ to
decrease these activities. The correlation analysis also suggested that the decreased ROS generation of
the two flavones in the Hela cells was positively correlated with their decreased apoptosis induction.
It is; thus, concluded that the two treatments can influence the two flavones’ stability and especially
exert an adverse impact on their anti-cancer activities.

Keywords: apigenin; luteolin; degradation; ferrous ions; cupric ions; cervical cancer cells; growth
inhibition; apoptosis

1. Introduction

Flavonoids are a class of secondary plant phenolic compounds existing in a wide range of
human diets. Flavonoids are interesting target compounds to many researchers because they
have anti-oxidative, anti-microbial, anti-inflammatory, and anti-cancer effects [1]. Flavonoids,
as natural anti-oxidants, even can exert stronger anti-oxidant activity than that of anti-oxidative
vitamins and synthetic phenols [2]. Flavonoid compounds, such as hesperetin, naringenin, poncirin,
and diosmetin, are effective to inhibit harmful microorganisms; for example, they can inhibit the
growth of Helicobacter pylori [3]. Furthermore, flavonoids have profound immune-regulatory and
anti-inflammatory effects [4]. Cocoa flavonoids had immuno-regulation in the EL4.BU.OU6 cells by
increasing the release of interleukin-4 [5]. Rutin, hesperidin, hesperetin, and quercetin were effective
for both chronic and neurogenic inflammation [6]. Moreover, many researchers have paid special
attention to the anti-cancer functions of flavonoids and flavonoid extracts. Quercetin, luteolin, chrysin,
kaempferol, apigenin, and myricetin have cytotoxic effects on the human esophageal adenocarcinoma
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OE33 cells, resulting in growth inhibition, cell-cycle arrest, and apoptosis [7]. Baicalin could inhibit
the growth of several human prostate cancer cells, including DU145, PC-3, LNCaP, and CA-HPV-10
cells [8]. Naringenin from citrus fruits could inhibit the proliferation of human colon cancer HT29
cells [9]. All results suggest that dietary flavonoids are promising natural compounds with desired
ability to reduce cancer risk. Subsequently, an inverse correlation between flavonoid intake and the
incidence of laryngeal and esophageal cancers has been reported [10].

Fe and Cu are two essential trace elements in the body, and are widely found in human diets.
Fe/Cu ions have active redox property and thus can easily react with dietary flavonoids, which
might alter chemical structures, especially the bio-functions of flavonoids. When flavonoids interact
with Fe/Cu ions, they are oxidized by the two ions with decreased absorbance at their maximum
absorption peaks [11]. Flavonoids can chelate with the two ions and thus form complexes with changed
properties. Flavonoid–Fe2+ complexes showed enhanced stability, while flavonoid–Cu2+ complexes
had auto-oxidation [12,13]. Furthermore, flavonoid oxidation by Cu2+ was irreversible [13]. However,
superoxide scavenging capacities of rutin, taxifolin, epicatechin, and luteolin were weaker than their
respective Fe/Cu complexes [14]. Overall, it is reasonable to believe that the anti-cancer potentials of
flavonoids could be affected by these transition metal ions.

During food processing, Fe/Cu ions may easily enter food matrices, as food matrices have the
opportunity to contact the surfaces of pipes and equipment made from the two metals. Furthermore,
some treatments used in food processing might exert potential impacts on dietary flavonoids;
for example, heat treatment is necessary or unavoidable. In general, flavonoids are sensitive to high
temperature [15], because high temperature can promote their degradation. The higher temperature
of elderberry anthocyanins gave rise to higher degradation rate constants [16], while flavonoids in
cloudy apple juice at 80 to 145 ◦C also experienced increased degradation rates [17]. Dietary flavonoids
at higher temperatures; therefore, might be endowed with changed bio-functions, mainly due to
flavonoid degradation. Brazilian bean after boiling and draining had decreased flavonoid content and
lower anti-oxidant capacity [18]. Thermal treatment of galangin, kaempferol, morin, and myricetin led
to weakened growth inhibition on the human colon carcinoma HCT-116 cells [19,20]. Thus, the effects
of heat treatment and metal entrance on anti-cancer functions of flavonoids in other cancer cells, like
the human cervical cancer Hela cells, deserve further study.

The flavones are commonly found flavonoid compounds in natural foods, among those flavone
members are apigenin and luteolin. Apigenin is rich in Chinese cabbage, bell pepper, garlic, bilimbi
fruit, guava, wolfberry leaves, and local celery, while luteolin is rich in bird chili, onion leaves, and
bilimbi fruit and its leaves [21]. Normally, flavones had been reported to have stronger anti-cancer
activities due to their high lipophilicity [22]. Apigenin is a promising anti-cancer compound, because it
could inhibit the growth of several cancer cells [23]. Luteolin also is served as a potential and emerging
anti-cancer compound, due to its clear toxic effect on eukaryotic DNA topoisomerase I [24]. From a
chemical point of view, apigenin and luteolin have several −OH groups in their molecules (Figure 1)
and thus have different stability once they are heated or mixed with Fe/Cu ions. Whether apigenin
and luteolin after these treatments still have good anti-cancer functions is important but unsolved at
present. Such a study; thus, deserves consideration.

Figure 1. The chemical structures of flavone compounds apigenin and luteolin.
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In this study, both apigenin and luteolin were measured for their stability under two temperatures
(20 and 37 ◦C) or Fe2+/Cu2+ addition. The two temperatures are regarded as room temperature of
diet storage and average temperature of the body, respectively. Moreover, the latter is also the culture
temperature of most cells. Afterwards, the two flavones were subjected to heat treatments at 37 and
100 ◦C or Fe/Cu addition, and then evaluated for their changes in anti-cancer activity using the human
cervical cancer Hela cells as a cell model. Four indices including growth inhibition, cell morphology
(or DNA damage), reactive oxygen species (ROS) generation, and apoptosis induction were used to
clarify or compare activity changes. The study aimed to reveal whether the two treatments (heat
treatment and Fe/Cu addition) could affect the stability of apigenin and luteolin as well as their
anti-cancer effects in Hela cells.

2. Materials and Methods

2.1. Chemicals and Reagents

The apigenin and luteolin (purity >98%) were bought from Dalian Meilun Biological Technology
Co. Ltd. (Dalian, Liaoning, China). The cell counting kit-8 (CCK-8) was purchased from Dojindo
Molecular Technologies Inc. (Kyushu, Japan). The reactive oxygen species (ROS) assay kit, Annexin
V-FITC apoptosis detection kit, and Hoechst 33258 kit were obtained from Beyotime Institute of
Biotechnology (Shanghai, China). 5-Fluorouracil (5-Fu) was bought from Tianjin Jinyao Pharmaceutical
Co. Ltd. (Tianjin, China). All other chemicals used were of analytical grade. The water used in this
study was ultrapure water generated with Milli-Q PLUS (Millipore Corporation, New York, NY, USA).

2.2. Cell Line and Culture Conditions

The Hela cells (STR: Amelogenin: X; CSF1PO: 9,10; D13S317: 12,13.3; D16S539: 9,10; D18S51: 16;
D19S433: 13, 14; D21S11: 27,28; D2S1338: 17; D3S1358: 15, 18; D5S818: 11, 12; D7S820: 8,12; D8S1179:
12, 13; FGA: 18,21; TH01: 7; TPOX: 8,12; vWA: 16,18) used in this study were purchased from the Cell
Bank of Shanghai Institute of Biochemistry and Cell Biology (Shanghai, China). As recommended
by the cell supplier, the cells were cultured in the Dulbecco’s modified eagle’s medium (DMEM)
(Sigma-Aldrich, Co. St. Louis, MO, USA) supplemented with 10% fetal bovine serum (FBS) (Hyclone,
Logan, UT, USA) and 1% penicillin/streptomycin solution at 37 ◦C in a 5% CO2 atmosphere.

2.3. Assays of Degradation Rates of the Two Flavones

Both apigenin and luteolin were dissolved in dimethyl sulfoxide (DMSO) to prepare stock solutions
of 0.1 mol/L. The stock solutions were diluted with ethanol and then with 0.1 mol/L phosphate buffer
solution (PBS, pH 7.3) to two final concentrations of 20 and 30 µmol/L, using respective dilution
factors of 5000 and 3333. Otherwise, the stock solutions were diluted with ethanol and PBS similarly
but with addition of CuCl2 or FeCl2, which resulted in a fixed molar ratio of flavones to Fe/Cu (3:1).
All prepared solutions were incubated at two temperatures (20 and 37 ◦C) for 6 h, and measured for
their absorbance values at various time points using two wavelengths (apigenin 354 nm; luteolin
360 nm) and a UV-visible spectrophotometer (UV-2401 PC, Shimadzu Co., Kyoto, Japan). PBS was
used as blank in this assay. Residual levels of apigenin and luteolin were estimated using the respective
standard curves generated from a serial of standard solutions.

Based on the established first-order reaction model of flavonoid degradation [25], the degradation rate
constants (k, h−1) of apigenin and luteolin were calculated using a derived linear regression equation.

2.4. Treatments of the Two Flavones for Cell Experiments

Apigenin and luteolin were dissolved in DMSO to obtain 0.3 moL/L stock solutions, and diluted
by the DMEM supplemented with 5% FBS to yield flavone concentrations of 20 to 80 µmoL/L using
the dilution factors ranging from 15,000 to 3750. The stock solutions were also diluted by DMEM
without FBS to a fixed flavone concentration of 42.1 µmoL/L (using dilution factor of 7126), and heated
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in the dark with a thermostatic water bath operated at 37 ◦C (or 100 ◦C) for 6 h (or 0.5 h). After heat
treatment, the two solutions were immediately cooled in the ice water and added with the FBS to yield
a final flavone concentration of 40 µmoL/L. The FBS was not involved in these thermal treatments.
Or else, the stock solutions were diluted with DMEM supplemented with 5% FBS, and added with
100 mmoL/L CuCl2 or FeCl2 solution to yield a final flavone concentration (40 µmoL/L) together with a
fixed molar ratio (3:1) of flavones to Fe/Cu.

2.5. Assay of Growth Inhibition

The cells (1 × 104 cells per 100 µL per well) were seeded onto the 96-well plates and incubated
for 12 h. After removal of cell medium, the cells were treated with 0.1% DMSO (negative control),
100 µmol/L 5-Fu (positive control), and the prepared flavone samples for 24 and 48 h, respectively,
and then washed twice with the PBS. The CCK-8 solution of 100 µL (10 µL CCK-8 plus 90 µL DMEM
containing 5% FBS) was added to each well, and the cells were further incubated at 37 ◦C for 1.5 h.
A microplate reader (Bio-Rad Laboratories, Hercules, CA, USA) was then used to measure the optical
density values at 450 nm, which were used to calculate the percentages of growth inhibition as
previously described [26].

2.6. Hoechst 33258 Staining

The cells in 6-well plates were grown to 70% confluence and incubated with the untreated or
treated flavone samples (40 µmol/L) for 24 h. After discarding cell media, 4% methanol of 1 mL
was added into each well to fix the cells at 4 ◦C for 10 min. After washing twice with the PBS
buffer, the Hoechst 33258 (200 mg/mL) of 1 mL was added into each well to stain the cells for 10 min.
The cells were then observed under a fluorescence microscope (Zeiss Axio Observer A1m, Carl Zeiss,
Oberkochen, Germany), while cell images were taken at 350 nm using an objective of 40-fold.

2.7. Assay of Apoptosis Induction

The proportions of the apoptotic cells in different cell groups were detected using flow cytometry
technique and Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double staining as
previously described [27]. The cells were grown to 70% confluence in 6-well plates, incubated with the
untreated and treated flavones at 40 µmoL/L for 24 and 48 h, harvested, washed with the cold PBS, and
centrifuged at 110× g for 5 min to discard the supernatants. The pellets were re-suspended gently in
the Annexin V-FITC binding buffer of 200 µL, and incubated with the Annexin V-FITC of 10 µL for
15 min in the dark at 20 ◦C. The binding buffer (300 µL) and PI (5 µL) were added into each well and
mixed gently. The stained cells were assayed with a flow cytometer (FACS Calibur, Becton Dickson,
San Jose, CA, USA), to detect the percentages of necrotic, late apoptotic, intact, and early apoptotic
cells (Q1–Q4).

2.8. Assay of Intracellular Reactive Oxygen Species

In this assay, the cells were treated similarly as those in the assay of apoptosis induction. After
cell harvesting and PBS washing, the cells were re-incubated with 20,70-dichlorofluorescein (DCF-DA,
5 mmoL/L) at 37 ◦C for 30 min in the dark, washed three times with the PBS, and re-suspended in the
PBS of 1 mL. The cell suspension was seeded onto the 96-well plates and measured for their fluorescence
intensities using a fluorescence microplate reader (Infinite 200, Tecan, Männedorf, Switzerland) and
respective emission and excitation wavelengths of 488 and 525 nm. The relative ROS levels were
expressed as the percentages of the control cells as previously described [28].

2.9. Statistical Analysis

All reported data collected from three independent experiments or assays were expressed as
means or means ± standard deviations, and compared using the SPSS 20.0 software (SPSS Inc., Chicago,
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IL, USA). All obtained data meet the assumptions of normality and constant variance. Significant
differences (p < 0.05) between the means of multiple groups were evaluated by the one-way analysis of
variance with Duncan’s multiple range tests and two-way analysis of variance (ANOVA). The Pearson’s
correlation coefficient was also calculated using this software.

3. Results

3.1. Instability of Apigenin and Luteolin at Two Temperatures or in the Presence of Fe2+/Cu2+

Apigenin and luteolin showed typical UV-spectra with maximum absorption peaks around
354 and 360 nm, respectively. This study; thus, used two wavelengths to detect residual apigenin and
luteolin, which were exposed to two temperatures or Fe2+/Cu2+ for different time periods. The results
indicated that both apigenin and luteolin were chemically instable in these cases, because their residual
levels showed a decreasing trend (Figure 2). The calculated degradation rate constants (k) revealed how
the higher temperature (37 ◦C) and the two ions affected the stability of apigenin and luteolin (Table 1).
When their solutions were kept at 20 or 37 ◦C, apigenin and luteolin showed k values of 0.0207 and
0.0214 or 0.0226 and 0.0245 h−1, respectively. Higher temperature clearly led to higher k value (i.e.,
decreased stability). In the presence of Fe2+/Cu2+, apigenin gave greater degradation, because the
measured k values were increased to 0.0395–0.0728 h−1. More importantly, higher temperature (37 ◦C)
combined with Cu2+ brought about more drastic apigenin degradation. As for luteolin, Fe2+ resulted in
lower k values (i.e., decreased degradation), while Cu2+ at 37 ◦C led to enhanced degradation (i.e., larger
k value). These results suggested that: (1) Both higher temperature and Fe2+/Cu2+ caused structural
instability for apigenin; and (2) only higher temperature and Cu2+ could increase the instability of
luteolin. Both heat treatments and Cu/Fe addition; therefore, might alter the anti-cancer activities of
these two flavones.

Figure 2. Residual levels of apigenin and luteolin in the solutions incubated at 20 ◦C (A,C) and 37 ◦C
(B,D) for different time periods.
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Table 1. Degradation rate constants (k, h−1) of apigenin and luteolin in solutions treated with two
temperatures or added with Fe2+/Cu2+ s.

Indices Added Metals
(Flavones:Metals 3:1) Apigenin Luteolin

Temperature

37 ◦C
None 0.0207 ± 0.0012 F 0.0214 ± 0.0004 c

Fe2+ 0.0395 ± 0.0011 D 0.0149 ± 0.0009 f

Cu2+ 0.0480 ± 0.0015 C 0.0176 ± 0.0021 e

100 ◦C
None 0.0226 ± 0.0001 E 0.0245 ± 0.0006 b

Fe2+ 0.0520 ± 0.0002 B 0.0203 ± 0.0005 d

Cu2+ 0.0728 ± 0.0010 A 0.0317 ± 0.0004 a

Significance
Temperature ** **

Metals ** **
Temperature ×Metals ** **

Different lowercase or capital letter superscripts after the values in the same column indicate that the means differ
significantly according to one-way ANOVA (p < 0.05). The two asterisks indicate that the means differ significantly
according to two-way ANOVA (p < 0.05).

3.2. Growth Inhibition of the Flavone Samples on Hela Cells

The CCK-8 assaying results indicated that both apigenin and luteolin at 20–80 µmoL/L dose- and
time-dependently had cytotoxic effects on the Hela cells (Figure 3), resulting in inhibition percentages
of 30.6%–62.7% and 33.8%–70.6% (24 h) or 59.5%–76.4% and 62.3%–88.6% (48 h), respectively. Both
apigenin and luteolin at 40 µmoL/L caused corresponding inhibition percentages of 52.0% and 57.9%
(24 h) or 65.7% and 73.2% (48 h) in the cells. Thus, flavone concentration of 40 µmol/L was used in later
study, because this concentration led to growth inhibition up to 50%–70%.

Figure 3. Growth inhibition of apigenin (A) and luteolin (B) of various concentrations on the Hela
cells at treatment times of 24 and 48 h. 5-Fu, 5-fluorouracil as a positive control. Different capital or
lowercase letters above the columns indicate that the means within the same group differ significantly
according to one-way ANOVA (p < 0.05).

This flavone concentration was then used to compare different growth inhibition of these flavone
samples with or without heat treatment or Fe/Cu addition in the Hela cells (Figure 4). Heat treatment
at 37 ◦C decreased the inhibition percentages of apigenin and luteolin to 50.5% and 55.0% (24 h) or
63.2% and 67.5% (48 h), respectively. Heat treatment at 100 ◦C brought about much decreased growth
inhibition, because the measured inhibition percentages of apigenin and luteolin were reduced to
48.4% and 51.1% (24 h) or 59.0% and 64.0% (48 h), respectively. Overall, heat treatment at 100 ◦C and
Fe addition showed greater potential to decrease growth inhibition of the two flavones.
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Figure 4. Growth inhibition of 40 µmoL/L flavonols (with or without thermal treatments and Fe/Cu
addition) on the Hela cells with treatment times of 24 (A,C) and 48 h (B,D). Different capital or lowercase
letters above the columns indicate that the means within the same group differ significantly according
to one-way ANOVA (p < 0.05).

3.3. Morphological Alteration of Hela Cells Treated by the Flavone Samples

Morphological alteration of the treated cells can reflect potential apoptosis induction of the target
substances. Morphological features of the treated Hela cells were; thus, observed using the Hoechst
33258 staining and fluorescence microscopy. In these results, the cell nuclei were dyed and observed in
the fluorescent images. The apoptotic cells were observed as light blue while the viable cells were
observed as dark blue. Moreover, the apoptotic cells often showed apoptotic morphology as the
condensation and fragmentation of nuclei shrinkage as well as the formation of apoptotic bodies.
In general, the untreated flavones were more effective than the treated ones to alter the morphological
features of Hela cells, while 100 ◦C treatment and Fe addition brought about relatively higher cell
density (Figure 5). Compared with the control cells without any treatment, the treated cells showed
the typical apoptotic morphology and decreased cell density in the observation field. These results
suggested that these assessed samples could damage DNA and thus had potential (but different)
apoptosis induction towards the Hela cells.



Foods 2019, 8, 346 8 of 15

Figure 5. Morphological features of the Hela cells treated with 0.1% DMSO, 100 µmol/L 5-fluorouracil
(5-Fu), and 40 µmol/L flavone samples (with or without thermal treatment and Fe/Cu addition) for 24 h.
A fluorescence microscope was used to photograph images (40×). The red and green arrows indicate
the corresponding apoptotic and intact cells.

3.4. Pro-Oxidation of the Flavone Samples

The Hela cells treated with or without these flavone samples were; thus, detected for their ROS
levels (Table 2). The results indicated that all assessed samples had pro-oxidation in the cells, as the
treated cells showed increased relative ROS levels (larger than 200%) than in the control cells (p < 0.05).
The untreated apigenin and luteolin brought about relative ROS levels of 229% and 284% (24 h) or
263% and 281% (48 h), respectively. The apigenin and luteolin treated at 37 ◦C for 6 h resulted in lower
ROS levels of 212% and 272% (24 h) or 260% and 263% (48 h), respectively. Apigenin and luteolin
treated at 100 ◦C for 0.5 h showed much weaker ability to increase ROS generation than those heated
at 37 ◦C for 6 h. For apigenin and luteolin, Fe addition led to the highest ROS reduction in the cells;
however, Cu addition only decreased ROS levels to a slight extent, compared with Fe addition. Overall,
both heat treatment and Fe/Cu addition consistently led to decreased ROS generation in the Hela cells.

Table 2. The measured reactive oxygen species (ROS) levels in the Hela cells treated with different
samples for 24 and 48 h.

Flavones Heat Treatment (◦C) Added Ions (Flavones:Metals 3:1)
ROS Levels (% of Control)

24 h 48 h

Apigenin

None None 228.6 ± 2.4 A 262.8 ± 1.5 A

37 None 211.7 ± 3.8 B 260.0 ± 6.4 B

100 None 206.9 ± 3.4 C 245.3 ± 1.6 C

None Fe2+ 205.6 ± 3.8 C 223.6 ± 1.0 E

None Cu2+ 212.1 ± 1.6 B 237.4 ± 1.9 D

Luteolin

None None 284.1 ± 8.2 a 280.9 ± 3.8 a

37 None 271.8 ± 5.0 b 262.9 ± 3.5 b

100 None 234.2 ± 7.7 c 256.8 ± 2.5 c

None Fe2+ 232.1 ± 1.0 c 225.1 ± 5.7 e

None Cu2+ 268.4 ± 2.7 b 246.4 ± 0.7 d

Different lowercase or capital letter superscripts after the values in the same column indicate that the means are
significantly different according to one-way ANOVA (p < 0.05).

However, ROS generation of luteolin at 48 h was lower than that at 24 h (except 100 ◦C heat
treatment) (Table 2). In these cases, the respective samples had stronger pro-oxidation, could enhance
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ROS to much higher levels and, thereby, caused greater cell apoptosis, which led to a lower number of
viable cells. After a longer period, only a few viable cells continued to generate ROS. Finally, ROS
generation with incubation time of 48 h was less than that with incubation time of 24 h.

3.5. Apoptosis Induction of the Flavone Samples

Apoptosis induction of the untreated and treated flavones were then assessed with the flow
cytometry technique using the Annexin V-FITC/PI double staining and treatment times of 24 and 48 h
(Figures 6 and 7).

Figure 6. Cell percentages of the Hela cells treated with 0.1% DMSO (control) and 40 µmoL/L flavone
samples with or without thermal treatments and Fe/Cu addition for 24 h.
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Figure 7. Cell percentages of the Hela cells treated with 0.1% DMSO (control) and 40 µmol/L flavone
samples with or without thermal treatments and Fe/Cu addition for 48 h.

The control cells at 24 or 48 h only had total apoptotic cells (Q2 + Q4) of 3.4% or 3.7%. The cells
treated with the untreated apigenin and luteolin for 24 (or 48) h led to increased total apoptotic cells
about 12.8% and 16.1% (or 15.7% and 26.8%). If the cells were treated with the heated flavones,
the total apoptotic cells were measured with the reduced percentages, especially using heat treatment
at 100 ◦C. Subsequently, the total apoptotic cells were 7.3% and 10.2% (24 h) or 11.3% and 13.2%
(48 h) with corresponding apigenin and luteolin treatments. When the two flavones were added with
Fe2+, the respective apigenin and luteolin treatments resulted in the total apoptotic cells of 7.0% and
9.1% (24 h) or 8.2% and 10.1% (48 h). When the two flavones were added with Cu2+, the measured
total apoptotic cells were 8.5% and 13.5% (24 h) or 10.7% and 21.2% (48 h) with respective apigenin
and luteolin treatments. Data comparison further revealed how these treatments had positive or
negative impacts on the apoptosis induction of the two flavones. Overall, the conducted heat treatment
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(especially at 100 ◦C) caused decreased total apoptotic cell proportions, while Fe addition also resulted
in much decreased total apoptotic cell proportions than Cu addition did.

Further data analysis revealed that the measured ROS levels (Table 2) in the cells with a treatment
time of 24 h were positively and significantly correlated with the detected total apoptotic cell percentages
(Figures 6 and 7), because the calculated Pearson’s correlation coefficient (i.e., r-value) of the two
indices was 0.854 (p < 0.05). This correlation meant that the decreased abilities in ROS generation of
apigenin and luteolin possibly resulted in decreased apoptosis induction. In other words, the used
treatments brought about flavone degradation and lower abilities to generate ROS in Hela cells, and
thereby led to decreased apoptosis induction. However, this phenomenon was no longer observed
when the cells were treated with a longer time of 48 h. The treatment time of 48 h led to too much
cell death or the lower number of viable cells (Figure 4). Consequently, only fewer viable cells in the
media were able to generate ROS. This fact meant that much higher extent of apoptosis induction of
apigenin and luteolin led to lower ROS generation. Therefore, the calculated Pearson’s correlation
coefficient (r-value) of the two indices (i.e., ROS levels versus apoptotic cell percentages) decreased to
0.589 (p > 0.05). In this case, the measured apoptosis induction and ROS generation were positively
but insignificantly correlated.

4. Discussion

Flavones, in general, have several −OH groups in their molecules, and; therefore, they as phenolic
compounds are susceptible to oxidation. Heat treatment; thus, promotes flavone degradation, and
is adverse to the stability and bio-activities of flavonoids. Polyphenols in the solid grape marc were
degraded at 100–150 ◦C, leading to decreased anti-oxidation [29]. At the temperature of 250 ◦C,
catechins might lose their DPPH radical scavenging ability completely due to the thermal degradation
of catechins [30]. The anti-cancer activities of flavonoids (e.g., growth inhibition) are governed by their
chemical structures [31,32]. Subsequently, structure changes of flavonoids will result in increased or
decreased activity. It was found that heat treatment of cymaroside (i.e., luteolin-7-O-β-glucoside) led
to the increased immuno-modulation by enhancing NK cells activity [33]. Additionally, the heated
flavonoids showed decreased activities in the human colon carcinoma HCT-116 cells [19,20]. Thus, heat
treatments (especially using 100 ◦C) in the present study caused greater degradation and decreased
growth inhibition for both apigenin and luteolin.

It is well-known that Fe/Cu are capable of oxidizing flavonoids in solutions, resulting in flavonoid
degradation [34]. However, flavonoids also can complex with multi-valent metal ions [35], resulting
in changed stability. Thus, Fe/Cu added to apigenin and luteolin solutions might bring two major
reactions: forming flavone–metal complexes and catalyzing flavone degradation [12,13]. From a
chemical point of view, the redox cycling exists between transition metals and ligands [36]. Quercetin,
rutin, and 3-hydroxyflavone in the presence of Fe2+/Cu2+ exhibited a significant decomposition,
yielding semiquinone compounds [36]. Both apigenin and luteolin; thus, could be oxidized by the
added Fe/Cu, resulting in changed chemical stability. However, apigenin and luteolin are different
in their chemical structures that; thus, govern their stability changes in the presence of Fe2+/Cu2+.
Normally, one luteolin molecule can chelate 1.5 Fe2+/Cu2+, but apigenin without two adjacent −OH
groups is almost unable to chelate the two ions [11]. Apigenin in the present study; thus, was instable
in the presence of Fe2+/Cu2+ (Table 1). On the contrary, luteolin has two adjacent −OH groups in its
C-ring and thus can chelate the two ions; subsequently, it mainly showed enhanced stability in the
presence of Fe2+/Cu2+ (Table 1). Moreover, the Cu-added luteolin also showed decreased stability at
37 ◦C (but not at 20 ◦C), which was attributed to the stronger oxidation of Cu2+ at this temperature.
Consistent with the present finding, it was also found that quercetin bound with Fe2+ had inhibited
oxidation, while that bound with Cu2+ received promoted oxidation [12]. In methanol medium, Cu2+

also promoted quercetin oxidation [13]. It was reasonable in the present study that the two flavones
showed worse stability in the presence of Cu2+, especially at the higher temperature.
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Hela cells have the potential to proliferate indefinitely and have been widely used for cancer
research. It was reported that many flavonoids and their derivatives had the ability to inhibit Hela cells.
Natural flavone eupatorine inhibited Hela cells through inducing cell-cycle arrest and apoptosis [37].
Wang and coauthors reported that quercetin could induce the apoptosis and autophagy of Hela
cells [38]. Other researchers proved that quercetin had anti-cancer effects on HeLa cells via the
adenosine 5‘-monophosphate -activated protein kinase (AMPK)-induced HSP70 and down-regulation
of epidermal growth factor receptor (EGFR) [39]. In this study, Fe2+/Cu2+ showed different behaviors
to affect the growth inhibition of apigenin and luteolin in the cells. Fe is one of the required nutritive
elements for tumor growth [40], and is also reported to influence cell-cycle regulation at multiple
sites [41]. Fe2+ chelation of flavonoids is one of the important mechanisms in response to their growth
inhibition in cancer cells. Fe addition thereby decreased luteolin’s Fe-chelating activities, promoted
apigenin oxidation, thus reasonably reduced its growth inhibition. Cu2+ is capable of inducing cellular
oxidative stress, bringing DNA damage, and then initiating cell apoptosis [42]. Cu addition for the
two flavones; thus, gave rise to two chemical reactions: enhancing flavone degradation and increasing
cellular Cu content. The enhanced flavone degradation led to decreased growth inhibition, whilst the
increased Cu content brought about extra oxidative stress or higher cytotoxic effect on the Hela cells.
Subsequently, Cu addition of the two flavones in this study was observed with less decreased growth
inhibition than Fe addition. The bio-activity changes of flavonoids in the presence of transition metal
ions had been observed in other studies; for example, the complexes of rutin and dihydroquercetin with
Fe, Cu, and Zn had higher anti-oxidation than the free counterparts as the inhibitors of asbestos-induced
cell injury [43]. Similarly, the free radical scavenging ability of quercetin–Cu complex was higher than
free quercetin [44]. Metal ions such as Cu, Fe, and Zn also had been evidenced to impact anti-microbial,
anti-viral, and anti-inflammatory activities of flavonoids [45]. The present results also provided another
evidence to show different effects of Fe2+/Cu2+ on anti-cancer activities of the two flavones.

Flavonoids have both anti- and pro-oxidation in cells, depending on flavonoid concentrations and
free radical sources [46]. The pro-oxidation of flavonoids plays an important role in their anti-cancer
activities, via promoting the generation of intracellular ROS in cancer cells [47]. In general, a relative
higher flavonoid level in cancer cells leads to pro-oxidation, promotes ROS generation, and, thereby,
induces DNA damage [48]. Pro-oxidation of a tea polyphenolic compound, epigallocatechin-3-gallate,
has been proved to govern its growth inhibition on colorectal HT29 cells, oral squamous carcinoma
SCC-25 and SCC-9 cells, and premalignant leukoplakia MSK-Leuk1cells [49], while cytotoxic effects of
quercetin, morin, and kaempferol on promyelocytic leukemia HL-60 cells were found to be caused
by their pro-oxidation [22]. Both heat treatment and Fe/Cu addition of apigenin and luteolin led to
oxidation and, thereby, altered the redox potential of the two flavones; the assessed samples; thus, had
different abilities to generate intracellular ROS, and then showed different growth inhibition on Hela
cells. Moreover, the enhanced ROS generation in cells suggests cell apoptosis, because this phenomenon
is regarded as a classic way to trigger cell apoptosis [50]. Thus, flavonoids such as quercetin, luteolin,
chrysin, kaempferol, apigenin, myricetin, and baicalin showed clear apoptosis induction to the human
esophageal adenocarcinoma OE33 cells and three human prostate cancer cells, resulting in increased
total apoptotic cells [7,8]. The conducted treatments in this study; thus, decreased ROS generation and
apoptosis induction of the two flavones in the cells. It is reasonable that decreased ROS generation
of the two flavones with treatment time of 24 h was positively and significantly consistent with their
decreased apoptosis induction, as the correlation analysis results showed.

5. Conclusions

Two flavones, apigenin and luteolin, in aqueous solutions, had degradation to different extents,
while Fe2+/Cu2+ addition mainly resulted in stability (i.e., decreased degradation) for luteolin due to
the formation of luteolin–metal complexes, but also led to instability (i.e., increased degradation) for
apigenin. The flavone degradation was clearly enhanced at 37 ◦C (the classic temperature of cell culture)
rather than 20 ◦C. The used heat treatments (37 and 100 ◦C) and Fe2+/Cu2+ addition were adverse to
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the anti-cancer activities of the two flavones against human cervical cancer Hela cells; subsequently,
growth inhibition, DNA damage, and especially apoptosis induction (positively correlated with the
intracellular ROS generation) of the two flavones were decreased. It is; thus, proposed that more
attention should be paid to both heat treatment and some metal ions like Fe2+/Cu2+ due to their
negative effects when assessing the bio-activities of flavonoid compounds. However, this study only
aimed to verify how the used heating treatments and two metal ions impacted flavone stability and
anti-cancer activities in vitro. The related molecular mechanisms and an in vivo investigation will be
carried out in a further study.
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