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Limited knowledge exists about the impact of physical workload on oxidative stress in different occupational categories. Thus, we
aimed to investigate the oxidative and inflammatory status in employees with different physical workloads. We enrolled a total of
79 male subjects, 27 office workers (mean age 38.8± 9.1 years) and 52 heavy workers, in a slaughterhouse (mean age 40.8± 8.2
years). Fasting blood was drawn from an antecubital vein in the morning of the midweek before an 8-hour or 12-hour work shift.
The antioxidative capacity was assessed measuring total antioxidant capacity (TAC), uric acid, total polyphenols (PPm), and
endogenous peroxidase activity (EPA). Total peroxides (TOC), malondialdehyde (MDA), and myeloperoxidase (MPO) were
analyzed as prooxidative biomarkers, and an oxidative stress index (OSI) was calculated. In addition, hsCRP, interleukin-6
(IL-6), MDA-LDL IgM antibodies, galectin-3, adrenocorticotropic hormone (ACTH), and the brain-derived neurotrophic
factor (BDNF) were measured as biomarkers of chronic systemic inflammation and emotional stress. TOC (p = 0 032),
TAC (p < 0 001), ACTH (p < 0 001), OSI (p = 0 011), and hsCRP (p = 0 019) were significantly increased in the heavy
workers group, while EPA, BDNF (p < 0 001), and polyphenols (p = 0 004) were significantly higher in office workers.
Comparison between 8 and 12 h shifts showed a worse psychological condition in heavy workers with increased levels for
hsCRP (p = 0 001) and reduced concentration of BDNF (p = 0 012) compared to office workers. Oxidative stress and
inflammation are induced in heavy workers and are particularly pronounced during long working hours, that is, 12-hour versus
8-hour shifts.
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1. Introduction

Modern life-style, that is, physical inactivity and fast food as
well as occupational and environmental conditions, may
induce oxidative stress. Different types of stress can be dis-
tinguished at the cellular and tissue level—namely, photoox-
idative stress, drug-dependent oxidative stress, metabolic
oxidative stress, environmental oxidative stress, and nitrosa-
tive stress [1].

Reactive oxygen species (ROS) are endogenously gener-
ated, among others, in the respiratory chain. Hence, meta-
bolic activity increases ROS production. These species react
with biological molecules like lipids, carbohydrates, proteins,
and even DNA, which are associated with the pathogenesis of
degenerative diseases. Oxidative stress (OS) is associated with
chronic inflammation, with a potential impact on diabetes
mellitus, atherosclerosis, and cardiovascular and neurodegen-
erative diseases [2–5]. An increased consumption of oxygen
during physical exercise also increases ROS production lead-
ing to oxidative stress and lipid peroxidation in athletes [6–8].
Nevertheless, increased ROS production during sports is also
beneficial because it stimulates the antioxidative system [9].
Moreover, OS is a key factor during aging [10] together with
other factors like deregulated autophagy, mitochondrial dys-
function, and telomere shortening [11]. Besides its involve-
ment in the physiologic process of aging, OS appears to play
an important role in the pathophysiology of several occupa-
tional diseases [12, 13]. Common problems in night and shift
workers, such as fatigue, sleep problems, anxiety, difficulties
inmaintaining regular life-styles, and reduced recovery times,
represent an increased health risk due to physiological
exhaustion and a decreased capacity for regulation [14].

Nevertheless, there is limited knowledge about the
impact of physical workload on OS in different occupational
groups. Heavy workers often suffer from excessive workload
and lack of social support. Shift work with extended working
hours might negatively affect the psychological status of
employees and reduce their motivation. It can be hypothe-
sized that high physical and emotional stress in heavy
workers is associated with increased OS and inflammation.

The present study aimed at comparing the oxidative and
inflammatory status between office workers and heavy
workers with a particular focus on the biochemical effect of
extended working hours (8- to 12-hour shifts).

2. Materials and Methods

2.1. Study Population. We enrolled 79 healthy male volun-
teers between 18 and 65 years at their workplace. Thereof,
27 employees were office workers (age 38.8± 9.1 years) and
52 heavy workers in a slaughterhouse (age 40.8± 8.2 years).
Exclusion criteria were infections, for example, flu-like infec-
tion, chronic diseases, and certified reduced work capacity
due to illness. The study was approved by the ethics commit-
tee of the Medical University of Graz (EK number 26-488 ex
13/14) and conducted in compliance with guidelines for
human studies as described in the Helsinki Declaration of
1975, revised in 1996. Written inform consent was obtained
from all study participants.

2.2. Laboratory Analysis

2.2.1. Blood Sampling. Blood was drawn from an antecubital
vein between 6:00 a.m. and 6:30 a.m., before an 8-hour work
shift from 79 workers (27 office and 52 heavy workers). In a
subgroup of 26 office workers and 8 heavy workers, we inves-
tigated the effects of twelve hours of work. Blood sampling
was performed in the midweek, Wednesdays or Thursdays.
Samples were immediately transferred on ice to the Lab
within two hours, centrifuged, and stored at −80°C until use
(6 to 13 months).

2.2.2. Inflammatory Parameters. High-sensitivity C-reactive
protein (hsCRP) and interleukin 6 (IL-6) were determined
on a COBAS® 8000 analyzer with turbidimetric and electro-
chemiluminescence immunoassays (ECLIA), respectively,
from Roche Diagnostics (Rotkreuz, Switzerland). All mea-
surements were batched into a single run. The total impreci-
sion of both assays were below 5%. Galectin-3 was measured
using the Human Galectin-3 Quantikine ELISA Kit from
R&D (Minneapolis, USA).

2.2.3. Oxidative Stress Biomarkers. Malondialdehyde (MDA)
was determined by GC-MS from Thermo Fisher Scientific
(CA, USA). After addition of MDA-d 2 as internal standard,
derivatizationwith 2,4-dinitrophenylhydrazine, and chemical
ionization in negative mode, the representative ions m/z 204
(for MDA) andm/z 206 (for MDA-d 2) were recorded [15].

Colorimetricmethodswere used to determine total perox-
ides (TOC), endogenous peroxidase activity (EPA), and the
total antioxidant capacity (TAC) purchased fromLDN (Labor
Diagnostika Nord, Nordhorn, Germany). These assays are
based on the reaction between hydrogen peroxide, horserad-
ish peroxidase, and tetramethylbenzidine to give a blue-
green colour. After the addition of the stop solution, the
colour changes to yellow, which can be measured at 450nm
(reference wavelength 620nm). A linear standard curve was
used for quantification. The intra- and interassay coefficients
of variance were less than 5% for all assays [16]. MDA-LDL
IgM was measured with the MDA-LDL-IgM ELISA from
Omnignostica Ltd. (Höflein/D., Austria), which is standard-
ized on a human monoclonal antibody as described previ-
ously [17]. Serum myeloperoxidase (MPO) concentrations
were measured with the MPO enzyme-linked immunosor-
bent assay (ELISA) Kit (Immundiagnostik AG, Bensheim,
Germany) according to the manufacturer’s instructions.
The total imprecision of both ELISA assays was below 7%.
Uric acid was determined with the enzymatic colorimetric
test from Roche on a COBAS 8000 analyzer.

In the case of the brain-derived neurotrophic factor
(BDNF), we used the Quantikine human BDNF immunoas-
say from R&D systems (Minneapolis, USA). Adrenocortico-
tropic hormone (ACTH) was determined with the ACTH
ELISA from Hölzel Diagnostica (Köln, Germany), and total
polyphenols (PPm) were determined according to the manu-
facturer’s instructions with an adapted Folin-Ciocalteu
microtitre method from Omnignostica Ltd. (Höflein/D.,
Austria). In short, the principle of this method is based on
the reaction of polyphenols with transition metals. This leads
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to a dark-coloured complex, which can be measured at
766nm. Samples are quantified by the use of a standard curve
with serial dilutions of a polyphenol standard. The intra- and
interassay coefficients of variance were less than 5%.

2.3. Statistical Analysis. Statistical analyses were carried out
using SPSS 23.0 for Windows 10 (IBM Corp., USA) and Stata
12 (StataCorp, TX, USA). Comparisons between groups were
done by the use of the general linear model including body
mass index (BMI) as a covariate because heavy workers had
significantly higher BMI which itself could be related to oxi-
dative stress and inflammation, as reported previously [18].
Residuals of analyses were stored and tested for deviations
from a normal distribution by Kolmogorov-Smirnov tests
with Lilliefors-corrected p values. In case of a significant
deviation, distribution of residuals was inspected, and in case
of a skewed distribution, a logarithmic transformation was
applied. In all such cases, normality of residuals was obtained
after transformation. Homogeneity of variance was tested by
Levene’s tests. Data are summarized as means within groups
and 95% confidence intervals (back-transformed if necessary
to the original scale). A similar approach was applied for
comparison of 8 h versus 12 h shifts. In this case, the
within-subject factor (8 h/12 h shift length) and between-
subject factor groups (office versus heavy workers) and their
interaction were tested by analysis of variance. Comparisons
of 8 h and 12 h shifts within groups were done by linear
contrasts. Variables were log-transformed in accordance with
the analysis of baseline data. Based on the ratio between ROS
and serum antioxidant capacity, the oxidative stress index
(OSI) was calculated using the formula TOC mmol/L /TA

C mmol/L × 100 . For all statistical tests, p < 0 05 was con-
sidered significant.

3. Results

An overview about the anthropometric data of the study
cohort is given in Table 1. Due to the fact that the BMI was
significantly increased in heavy workers versus office
workers, all further analyses were corrected with respect to
this biometric parameter, because BMI itself was shown to
be associated with OS [18].

Heavy workers had significantly increased TAC (p <
0 001), TOC (p = 0 032), hsCRP (p = 0 019), and ACTH
(p < 0 001) (for details, see Figures 1 and 2 and Table 1)
and OSI levels (p = 0 011; Table 1). In contrast, EPA (p <
0 001), polyphenols (p = 0 004), and BDNF (p < 0 001) levels
were significantly higher in office workers (Figures 3 and 4).
Uric acid, MDA, MPO, IL-6, MDA-LDL IgM, and galectin-
3 did not differ between the groups (Table 1).

Comparison between 8-hour and 12-hour shifts revealed
significant differences exclusively after a 12-hour shift in
heavy workers, that is, a significant increased ACTH level
(p = 0 001), while BDNF was significantly decreased at over-
time work (p = 0 012) (Table 2). Correlation analysis
between oxidative stress biomarkers revealed a significant
negative correlation between TAC and EPA in both working
groups whereas a positive correlation was found for TAC
and uric acid (Table 3). TOC correlated positively with
hsCRP in both working groups (r = 0 612 and 0.493 in office
and heavy workers, resp.). In contrast, IL-6 was correlated
to TOC merely in office workers (r = 0 462), while the

Table 1: Baseline characteristics of study participants and results of measurements after an 8-hour work shift.

Office workers (n = 27) Heavy workers (n = 52)
Mean (95% confidence interval) p

Age, yrs 38.2 (35.2–41.1) 40.8 (38.5–43.0) 0.175

Body mass index, kg/m2 26.1 (24.5–27.6) 28.3 (27.1–29.5) 0.026

hsCRP, mg/L 1.0 (0.7–1.5) 1.7 (1.4–2.2) 0.019

IL-6, pg/mL 1.9 (1.6–2.2) 2.0 (1.7–2.2) 0.220

Uric acid, mg/dL 5.3 (4.8–5.7) 5.6 (5.3–5.9) 0.245

Total antioxidant capacity, mmol/L 1.06 (0.91–1.21) 1.41 (1.29–1.53) <0.001
Total oxidant capacity, mmol/L 0.08 (0.06–0.11) 0.12 (0.10–0.15) 0.032

Oxidative stress index (OSI), % 5.7 (3.5–8.4) 10.4 (8.2–12.8) 0.011

Endogenous peroxidase activity, U/L 7.2 (6.2–8.4) 3.7 (3.3-4.1) <0.001
Polyphenols, mmol/L 9.9 (9.7–10.1) 9.5 (9.4–9.7) 0.004

Malondialdehyde, μmol/L 0.74 (0.68–0.80) 0.69 (0.65–0.73) 0.144

Myeloperoxidase, μg/L 61.7 (56.4–67.4) 68.3 (63.7–73.2) 0.078

MDA-LDL-IgM, U/L 184 (149–228) 150 (127–177) 0.141

ST2, ng/mL 14.5 (12.3–16.6) 15.3 (13.7–17.0) 0.521

ACTH, pg/mL 12.0 (9.1–16.0) 27.6 (22.2–34.4) <0.001
Galectin-3, ng/mL 5.9 (5.0–6.9) 4.8 (4.2–5.4) 0.052

BDNF, pg/mL 22880 (16051–32616) 7417 (5651–9735) <0.001
p values from the general linear model with body mass index included as covariate. hsCRP = high-sensitivity C-reactive protein; IL-6 = interleukin-6;
OSI = oxidative stress index; ACTH= adrenocorticotropic hormone; ST2 = suppression of tumorigenicity 2; BDNF = brain-derived neurotrophic factor.
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correlation with polyphenols was only significant in heavy
workers (r = 0 565). Furthermore, TAC showed a highly
significant negative correlation with TOC in office workers
(r = −0 526) (Table 3).

4. Discussion

In the present study, we indicated an increased inflamma-
tion through raised hsCRP levels at baseline in heavy
workers compared to office workers. This was associated
with oxidative stress, that is, increased total peroxides and
a concomitant decrease of peroxidase activity. In addition,
we observed a decrease in polyphenols, although the total
antioxidant capacity was increased (Table 1). OSI, which
reflects the redox balance between prooxidants and antioxi-
dants, showed significant differences between these two
working groups.

This was further related to psychological stress, due to an
increase in ACTH and a very low level of BDNF indicating
emotional stress (Table 1). In spite of significant differences

in several biomarkers between office workers and heavy
workers in a slaughterhouse, it must be emphasized that this
might even be an underestimation due to the working envi-
ronment of the latter; that is, low temperatures were previ-
ously associated with reduced OS [19, 20].

A stressful working environment may affect the health
of employees. Night shifts disrupt the circadian rhythm
and increase OS [21]. There can be no doubt that a better
understanding of the main stressors in the workplace would
be effective in preventing disease and that determination of
oxidative stress biomarkers could be helpful in this context
[7]. Since reduction of sickness-related absenteeism implies
economic benefits, individual health care at the workplace
should be given priority. Increased disease risks in workers
with demanding jobs have frequently been reported, among
others by Ramey et al. [22]. Release of catecholamines and
increased blood pressure, along with chronic work-related
stress, may lead to cardiovascular diseases. A combination
of psychological and physical stress could induce chronic
inflammation and subsequent disease [23]. For such reasons,
a dietary regimen including antioxidants was suggested
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Figure 2: Box plots (medians, interquartile, and nonoutlier ranges)
of hsCRP by groups of workers.
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Figure 3: Box plots (medians, interquartile, and nonoutlier ranges)
of endogenous peroxidase activity by groups of workers.
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Figure 4: Box plots (medians, interquartile, and nonoutlier ranges)
of brain-derived neurotrophic factor by groups of workers.

Figure 1: Box plots (medians, interquartile, and nonoutlier ranges)
of total oxidant capacity by groups of workers.
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[24, 25], but it is not clear if such a strategy is of much
help [26], especially if the working conditions otherwise
remain unchanged.

Notably, sensitive biomarkers identified these effects,
pointing to early development of an imbalance in the redox
system. Nevertheless, there were no changes in MDA, one
of the end products of lipid peroxidation, MDA-LDL IgM,
a biomarker for immune activation, MPO, uric acid, and
galectin-3. Although the significant differences seen between
occupational groups were fluctuations within “normal”
ranges, it must be kept in mind that individuals may be
exposed to these changes throughout their working lives.
Such mild chronic stress responses over prolonged time
periods are in line with our results and were also reported
in an animal experiment with increased oxidative stress and

consumption of antioxidants, especially in the pancreas. This
led to systemic inflammation and contributed to degenera-
tive diseases [27].

It was striking that overtime was accompanied by an
almost threefold increase of ACTH and a significant decrease
in BDNF in laborers only (Table 2), pointing to a combined
impact of a heavy workload and 12 h shift.

Overtime, shift work [23] and extended exposure to
occupational and environmental stressors diminish antioxi-
dative capacity, which may elevate the impact of increased
production of OS due to a heavy workload [28, 29]. Walker
et al. [30] reported that inflammation and alterations of the
immune system were associated with altered mood and
reduced well-being, thus highlighting the need for improved
risk management in the workplace.

Table 2: Comparison of stress and inflammatory biomarkers between 8 and 12 h shifts in office and heavy workers.

Office workers (n = 26) Heavy workers (n = 8)
After 8 hours
Mean (95% CI)

After 12 hours
Mean (95% CI)

p
After 8 hour

Mean (95% CI)
After 12 hour
Mean (95% CI)

p

hsCRP, mg/L 1.23 (0.89–1.71) 1.08 (0.82–1.43) 0.311 0.98 (0.54–1.79) 0.84 (0.50–1.39) 0.482

IL-6, pg/mL 1.89 (1.57–2.28) 1.71 (1.51–1.93) 0.350 1.79 (1.27–2.53) 1.97 (1.57–2.46) 0.641

Total antioxidant capacity,
mmol/L

1.03 (0.81–1.25) 1.20 (0.94–1.46) 0.236 1.26 (0.91–1.61) 0.98 (0.56–1.40) 0.220

Total oxidant capacity, mmol/L 0.10 (0.07–0.16) 0.10 (0.07–0.15) 0.786 0.05 (0.02–0.10) 0.07 (0.03–0.14) 0.110

Endogenous peroxidase
activity, U/L

6.54 (5.12–8.36) 7.23 (6.21–8.43) 0.434 8.00 (5.40–11.86) 8.00 (6.26–10.23) 0.998

Malondialdehyde, μmol/L 0.72 (0.64–0.80) 0.75 (0.65–0.86) 0.610 0.79 (0.64–0.96) 0.76 (0.59–0.98) 0.857

Myeloperoxidase, μmol/L 65.9 (55.0–78.8) 67.5 (59.0–77.4) 0.812 64.5 (46.4–89.7) 56.3 (43.9–72.2) 0.488

Paraoxonase, ng/mL 14.6 (13.1–16.2) 14.2 (12.9–15.5) 0.441 12.7 (10.4–15.4) 11.5 (9.8–13.6) 0.171

ACTH, pg/mL 12.2 (7.7–19.4) 13.6 (10.3–18.0) 0.510 8.8 (3.8–20.5) 24.9 (15.0–41.4) 0.001

BDNF, pg/mL 24030 (21661–26658) 22941 (20777–25330) 0.479 24634 (20370–29790) 17921 (14947–21485) 0.012

p values from linear contrasts after analysis of variance with body mass index included as a covariate.

Table 3: Spearman correlation coefficients between stress and inflammation biomarkers.

TAC TOC EPA Polyphenols
Office
workers
(n = 27)

Heavy
workers
(n = 52)

Office
workers
(n = 27)

Heavy
workers
(n = 52)

Office
workers
(n = 27)

Heavy
workers
(n = 52)

Office
workers
(n = 27)

Heavy
workers
(n = 52)

hsCRP −0.181 0.217 0.612∗∗∗ 0.493∗∗∗ 0.172 −0.074 −0.132 0.290∗

IL-6 −0.219 0.167 0.462∗ 0.168 0.228 −0.069 −0.098 0.033

Uric acid 0.506∗∗ 0.516∗∗∗ −0.105 −0.001 −0.343 −0.069 −0.083 0.218

TAC −0.526∗∗ −0.058 −0.648∗∗∗ −0.633∗∗∗ −0.164 0.075

TOC −0.526∗∗ −0.058 0.184 −0.196 0.123 0.565∗∗∗

EPA −0.648∗∗∗ −0.633∗∗∗ 0.184 −0.196 −0.160 −0.292∗

Polyphenols −0.164 0.075 0.123 0.565∗∗∗ −0.160 −0.292∗

MPO 0.177 0.152 0.075 0.010 −0.093 −0.097 −0.050 −0.112
Paraoxonase 0.206 0.075 0.106 −0.154 −0.249 −0.221 0.040 −0.016
ACTH −0.042 0.059 −0.026 −0.096 −0.014 −0.031 0.129 −0.069
BDNF −0.001 0.048 0.121 −0.003 −0.014 −0.072 0.296 0.007
∗p < 0 05, ∗∗p < 0 01, and ∗∗∗p < 0 001. hsCRP = high-sensitivity C-reactive protein; IL-6 = interleukin-6; TAC = total antioxidant capacity; TOC= total
oxidant capacity; EPA = endogenous peroxidase activity; MPO=myeloperoxidase; ACTH= adrenocorticotropic hormone; BDNF = brain-derived
neurotrophic factor.
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We observed a significant correlation between the total
antioxidant capacity and uric acid, as has been reported pre-
viously [18]. There is also a strong inverse correlation
between endogenous peroxidase activity and total antioxi-
dant capacity. The correlation between (hsCRP) and oxida-
tive stress (TOC) underlines the link between inflammation
and cellular stress responses (Table 3).

Monitoring with sensitive biomarkers may be advisable,
particularly in cases of smoking, obesity, and older age, to
counteract an accumulation of stress-related biological
changes that couldhave adversehealth effects. Researchofoxi-
dative stress under real-life working conditions is a win-win
situation for both employers and employees. It could help to
tailorhealth care andcounseling forworkers,minimizing sick-
ness absenteeism and reducing fluctuation in the workforce.

The small number of manual laborers doing a 12-hour
work shift could be a limitation for this study due to insuffi-
cient compliance. In addition, the lack of female subjects is a
constraint of this work. Therefore, further research in these
working groups with a larger collective, including female
workers, should be performed.

In conclusion, we found increased oxidative stress and
inflammation in manual laborers as compared to office
workers. Indications of psychological stress were observed
for overtime work in combination with hard physical work.
The relationship between antioxidant consumption, oxida-
tive stress, and inflammation was clearly shown in the corre-
lation analysis. These data provide a solid basis for further
research on this important subject with a larger collective.
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