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Abstract

Closed-loop neurofeedback has sparked great interest since its inception in the late 1960s. However, the field has
historically faced various methodological challenges. Decoded fMRI neurofeedback may provide solutions to some of these
problems. Notably, thanks to the recent advancements of machine learning approaches, it is now possible to target
unconscious occurrences of specific multivoxel representations. In this tools of the trade paper, we discuss how to
implement these interventions in rigorous double-blind placebo-controlled experiments. We aim to provide a step-by-step
guide to address some of the most common methodological and analytical considerations. We also discuss tools that can be
used to facilitate the implementation of new experiments. We hope that this will encourage more researchers to try out this
powerful new intervention method.
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Introduction
Thanks in part to the development of sophisticated machine
learning techniques (Cohen et al., 2017), scientists can now read
out specific brain representations using multixovel pattern anal-
ysis (Haxby et al., 2001; Kriegeskorte et al., 2008a; Haxby et al.,
2014; Taschereau-Dumouchel et al., 2019). However, we rarely
think of these methods as tools for intervention. Here, we sug-
gest that when coupled with associative learning by pairing
multivoxel patterns with online reward, punishment or another
stimulus, we can exploit the power of machine learning for the
manipulation of brain activity.

Decoded neurofeedback is a special type of fMRI-based multi-
voxel neural reinforcement. It aims to provide participants with
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control over some specific brain processes. Essentially, in this
method, a terminal monetary reward is paired with feedback
representing the activation likelihood of a targeted multivoxel
pattern (see Figure 1; Watanabe et al., 2018). Importantly, partic-
ipants are not provided with any explicit training strategy; they
are simply asked to manipulate their brain activity in order to
maximize their reward. As a result, both the participants and
the experimenters can be kept unaware of the precise nature of
the intervention. Importantly, this allows one to conduct double-
blind placebo-controlled interventions, which represent a high
level of experimental rigour that few psychological intervention
methods can achieve (see (deBettencourt et al., 2015; Young et al.,
2017; Taschereau-Dumouchel et al., 2018a, 2018b; Bu et al., 2019).
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Fig. 1. Sequences of events in one trial of (A) decoded neurofeedback and

(B) associative decoded neurofeedback. Echo-planar images are acquired in the

fMRI scanner during the induction period. Basic preprocessing is conducted

online before the data is inputted into the target decoder. This target decoder

was previously trained offline to provide an activation likelihood of the target

category (e.g. 70% probability of the brain representing a cockroach). Decoded

neurofeedback involves pairing this activation likelihood with a reward and

providing feedback to the participant that represents this information (e.g. the

diameter of the inner gray circle). Two methods have been used previously.

(A) Pairing the activation likelihood with a reward (see Shibata et al., 2011;

Koizumi et al., 2016; Cortese et al., 2016b; Taschereau-Dumouchel et al., 2018b). (B)

Presenting a stimulus visually during the induction period, which might allow

the creation of a new unconscious association between the visual stimuli and

the target decoder (see Amano et al., 2016; Shibata et al., 2016). (The face stimulus

was adapted from Strohminger et al. (2016)).

Two main approaches of decoded neurofeedback have been
used. The first approach involves directly pairing a monetary
reward with the activation of a specific multivariate pattern (see
Figure 1A). The second approach is what we can call associative
decoded neurofeedback (Amano et al., 2016). It has been used
to create an unconscious association between a specific multi-
variate pattern and a target stimulus presented visually during
reinforcement (see Figure 1B).

Using these approaches, previous studies showed that it is
possible to target specific processes, such as perceptual learning
(Shibata et al., 2011; Amano et al., 2016), metacognition (Cortese
et al., 2016a), emotion perception (Shibata et al., 2016), finger
movements (Oblak et al., 2020) and physiological threat reactivity
(Koizumi et al., 2016; Taschereau-Dumouchel et al., 2018b, 2020),
directly and unconsciously in the human brain. Importantly,
these interventions changed specific behavioral or physiological
outcomes related to the targeted representations. This provides

strong evidence suggesting a causal link between the targeted
brain representations and the associated outcomes. This repre-
sents an important feature of decoded neurofeedback because,
in human neuroscience, few tools can help establish such a
causal link at the level of brain representations with high speci-
ficity.

Our goal is to provide an overview of decoded neurofeedback
research with a specific focus on the technical considerations
for the implementation of new research protocols. We will cover
the history and scientific principles of decoded neurofeedback
before discussing the step-by-step procedure to develop new
decoded neurofeedback experiments. While decoded neurofeed-
back has also been successfully conducted in electroencephalog-
raphy (EEG) see (Bu et al., 2019; Faller et al., 2019; Keynan et al.,
2019), here we will primarily focus on fMRI applications.

How is decoded neurofeedback different
from traditional neurofeedback approaches?
The first successful neurofeedback experiments were conducted
in the late 1960s and early 1970s. Early studies showed that
primates could be trained to increase the firing rate of spe-
cific precentral neurons (Fetz, 1969). Around the same period,
experiments using human EEG also suggested that participants
could be trained to regulate the power of some specific fre-
quency bands (Kamiya, 1968, 2011; Beatty et al., 1974). These first
demonstrations sparked an interest in the method, and many
investigations followed using diverse approaches such as fMRI
(Weiskopf, 2012), EEG (Evans and Abarbanel, 1999), electrocor-
ticography (Gharabaghi et al., 2014), and functional near-infrared
spectroscopy (Kober et al., 2014). The potential for therapeutic
applications was quickly identified (Hardt and Kamiya, 1978),
and numerous studies explored the possibility of conducting
treatments using neurofeedback (Hammond, 2005; Arns et al.,
2009; Cortese et al., 2016b; Mennella et al., 2017; Young et al., 2017;
Van Doren et al., 2019).

However, concerns were also raised regarding the scientific
validity of these interventions (Thibault et al., 2015; Schabus
et al., 2017; Schönenberg et al., 2017). Critics notably pointed
out that many neurofeedback interventions lacked specificity
and were prone to the placebo effect. Decoded neurofeedback
emerged from this scientific tradition and uses modern solu-
tions to address problems previously raised in the field. In the
next sections, we discuss the technological and methodological
improvements that differentiate decoded neurofeedback from
traditional neurofeedback experiments.

One important feature of decoded neurofeedback is the
reliance on modern machine learning approaches (Cohen et al.,
2017). Many previous neurofeedback studies determined the
intervention targets using univariate group statistics. This
can be problematic because such targets are known to vary
substantially between individuals (Gonçalves et al., 2006). As
such, it is difficult to determine if the provided feedback
accurately reflects the intended brain process. For this reason,
decoded neurofeedback is typically preceded by an initial
experimental session called the decoder construction session.
During this session, a multivariate predictive model (also
called a decoder) is trained to predict a specific brain process.
Importantly, the accuracy of this prediction can be determined
within-subject and at the single-trial level. For instance, in order
to design an experiment to train selective attention, we first
need to acquire brain data when the participant is attending
or not attending to visual stimuli. Using machine learning
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algorithms, it will then be possible to train a decoder of selective
attention and to determine how accurately this decoder can
predict the data of the target participant. This process allows one
to determine if the targeted decoder is indeed accurate for each
participant. Previous decoded neurofeedback experiments were
primarily conducted using binary decoders in a classification
framework. Using this approach, the feedback provided to the
participant represents the activation likelihood of the decoder.
However, it is also possible to conduct decoded neurofeedback
in a regression framework with a continuous outcome. Here,
the feedback represents the predicted value of the continuous
outcome. For instance, a previous study provided feedback
using the continuous value predicted by a decoder of facial
preference (Shibata et al., 2016). As such, decoded neurofeedback
experiments can be designed to target both dichotomous and
continuous constructs.

Decoded neurofeedback is also conducted without providing
any explicit training strategies. Some previous neurofeedback
approaches (e.g. de Charms et al., 2005) provided such explicit
strategies to participants in order to help facilitate their learning
(e.g. ‘learn to enhance your control over a localized brain region
associated with attention’). However, this approach makes it
difficult to dissociate the effect of neurofeedback from the effect
of the strategy (de Charms et al., 2005). This is important because
if the explicit strategy is the main driver of the observed effect,
neurofeedback may actually be irrelevant, and conducting only
a cognitive intervention would be sufficient. For this reason,
in decoded neurofeedback, participants are provided with as
little information as possible regarding the task. They are sim-
ply asked to maximize their reward by modulating their brain
activity (see Figure 1).

In decoded neurofeedback, it is also important to determine
the level of awareness associated with the intervention. This is
important because even if no explicit strategies are provided, it
might still be possible for the participant to guess the purpose
of the intervention and to use a related mental strategy. In
order to document this possible confound, experimenters usu-
ally explicitly ask participants to report the strategies used dur-
ing the procedure. In previous decoded neurofeedback studies,
participants typically reported using various unrelated strate-
gies, which suggests that they were unaware of the nature of
the intervention (Shibata et al., 2011; Koizumi et al., 2016; Cortese
et al., 2016a; Taschereau-Dumouchel et al., 2018a). This approach
can be complemented by explicitly asking participants, at the
end of the experiment, what was the purpose of the intervention
using a two or three forced-choice question (e.g. do you think the
purpose of the intervention was X or Y?). If the participants were
unaware of the nature of the task, we can expect them to answer
randomly.

Another key aspect of decoded neurofeedback is the reliance
on an external monetary reward provided using intermittent
feedback. These two reinforcement parameters were explored in
previous studies and present some clear advantages for decoded
neurofeedback. First, it was shown that neurofeedback is more
effective when paired with a monetary reward, as opposed to
visual feedback only (Sepulveda et al., 2016). Second, recent com-
putational modeling suggested that intermittent feedback, as
opposed to continuous feedback, is preferable when conducting
implicit neurofeedback training (Oblak et al., 2017). One critical
advantage of intermittent feedback is that the induction period
is clearly bounded in time (see Figure 1). As such, participants
can associate the reward with their brain activity during a pre-
cise time period (Watanabe et al., 2017). This is typically difficult
to achieve in fMRI when the feedback is provided continuously

(however, see Ramot et al., 2017; Ramot and Gonzalez-Castillo,
2019).

Why use decoded neurofeedback?
Decoded neurofeedback can reveal the causal link between brain
representations and their associated behavioral or psychological
outcomes. For instance, in a previous experiment, the repre-
sentation of a Gabor patch in the primary visual cortex was
targeted using decoded neurofeedback (Shibata et al., 2011). This
training was associated with perceptual learning specific to
the orientation of the targeted representation. Such a precise
behavioral consequence was achieved while (i) the target of the
intervention remained unknown to participants, (ii) no related
physical stimuli were presented and (iii) little information was
transmitted to brain regions outside of the targeted area. Taken
together, these represent strong evidence for the existence of
a causal link between the targeted brain representation and
the behavioral outcome. As such, decoded neurofeedback can
reveal causal links where most other neuroimaging tools can
only reveal associations. Furthermore, decoded neurofeedback
represents a rather unique opportunity to test the functional
consequences of forming unconscious associations in the brain.
This highlights the potential importance of decoded neurofeed-
back for human neuroscience, as few non-invasive methods can
rigorously assess such causal hypotheses.

The mechanisms by which decoded neurofeedback might
achieve such an influence are still incompletely understood.
Three main mechanisms of action have been suggested. First,
the training might lead to an increased activation likelihood of
the target decoder. This has been observed in some previous
decoded neurofeedback experiments (Shibata et al., 2011; Amano
et al., 2016; Taschereau-Dumouchel et al., 2018b). One possibility
is that the brain might be capable of using visual feedback in
order to more reliably activate the target representation. This
might be achieved in a process akin to operant conditioning
(Bray et al., 2007). While this task appears to be difficult to solve,
recent results indicate ways in which this could be achieved. For
instance, Shibata et al. (2019) recently showed that fMRI brain
signals during decoded neurofeedback training are drastically
less complex than previously thought. Only a limited number
of components were necessary to explain most of the induc-
tion data, which suggests that the space of possible multivoxel
patterns to explore could be in fact small. As such, conducting
operant conditioning within a limited number of trials might
be feasible (Cortese et al., 2019). This possibility is supported by
computational simulations conducted with similar parameters
as those used in previous decoded neurofeedback experiments.
These simulations showed that an increased activation likeli-
hood follows the reinforcement of a multivariate pattern in an
array of simulated neural activity (Oblak et al., 2017; Shibata
et al., 2019). Therefore, decoded neurofeedback training might be
achieved through a simple reinforcement learning rule.

Second, during decoded neurofeedback, participants might
also learn to unconsciously associate the multivoxel pattern
with a reward, which might potentially act as a form of counter-
conditioning. This process is closely related to the mechanism
of exposure-based psychotherapy, which is one of the most
effective psychological treatments for anxiety disorders (Craske
et al., 2008). Through inhibitory learning (Craske et al., 2008),
exposure to a feared object allows the development of a new
association between the feared object and a more neutral affect.
Previous experiments indicated that decoded neurofeedback
might achieve a similar process. For instance, Koizumi et al.
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Fig. 2. General design of a decoded neurofeedback intervention. In order to conduct decoded neurofeedback interventions, we first need to conduct a decoder

construction session. This session will notably allow us to determine an accurate decoder to be used for the intervention. Typically, the decoded neurofeedback sessions

will be preceded and followed by experimental sessions that can allow us to determine if the intervention successfully changed the targeted process (here, pre- and

post-test).

(2016) showed that decoded neurofeedback could decrease the
physiological threat reactivity (i.e. as indexed by amygdala
and skin conductance reactivity) associated with conditioned
stimuli. Furthermore, pairing a reward with the unconscious
activation of the multivoxel pattern of a feared animal led to a
similar decrease in physiological threat reactivity (Taschereau–
Dumouchel et al., 2018a). In addition, Chiba et al. (2019) recently
suggested that a similar effect could be achieved with patients
presenting post-traumatic stress disorders. Although the sample
size was limited, this study still provides the first evidence
that decoded neurofeedback might be effective at decreasing
the symptoms of patients presenting anxiety disorders. While
the mechanisms behind the effect of these interventions are
still uncertain and need further elucidation, it is possible that
both counterconditioning and an effect akin to exposure (as
a result of an increased activation likelihood) might have
occurred (see Chiba et al., 2019 for meta analyses on these two
effects).

Lastly, another interesting feature of decoded neurofeed-
back is the possibility of creating new unconscious associa-
tions between a stimulus presented visually (or through other
sensory channels) and a targeted multivoxel pattern (Figure 1B;
Amano et al., 2016; Shibata et al., 2016). Of particular interest,
a study showed that the preference for a previously neutral
face can be changed as a function of the targeted multivoxel
pattern. More precisely, targeting the pattern of a face with
a higher preference led to a greater preference of the neutral
faces after decoded neurofeedback, while targeting the pat-
tern for lower preference had the opposite effect (Shibata et al.,
2016).

How to perform decoded neurofeedback?
Conducting decoded neurofeedback presents technical chal-
lenges. The next sections are meant to detail the general
methodological steps of decoded neurofeedback (Figure 2) and
discuss some of the main challenges. This information is meant
for the novice reader who would like to get acquainted with the
implementation of decoded neurofeedback.

Multiple resources related to decoded neurofeedback can be
found at https://bicr.atr.jp/decnefpro/. This includes access to
scripts to conduct both decoded neurofeedback and functional
connectivity neurofeedback. Furthermore, functional brain
scans in nifti format, anonymized anatomical scans, decoder
information, demographic data and experimental conditions of
previous decoded neurofeedback studies are similarly available.
These resources are available for non-commercial uses and upon
the reception of a signed agreement on terms and conditions for
academic use.

General technical and methodological
considerations
Some may expect decoded neurofeedback to require particularly
powerful computers to be conducted. However, while decoder
construction sometimes requires great computational power,
the actual reinforcement sessions can be conducted with rela-
tively standard laptop computers (e.g. Intel Core i7 processors
with 16 GB of RAM memory). Using such hardware, most online
analyses can be implemented within a few hundred millisec-
onds. As such, conducting decoded neurofeedback may not be
much more computationally demanding than conducting ROI-
based feedback. The most important hardware consideration
for the proper implementation of a real-time procedure is the
speed of the connection between the scanner and the computer
performing the online analyses. A good approach is to set up
a wired local network through optic fibers to directly transfer
the DICOM files to a ‘shared folder’ on the hard drive of the
processing computer. This way, the online processing of the
acquired images can start as soon as they are made available
by the fMRI scanner.

Other general considerations pertain to the design of the
interventions. How many sessions of how many runs should be
provided? How many participants should be included? There is
no straightforward answer to these questions. However, the state
of current knowledge has been summarized in a recent paper
that can be consulted when designing new experiments (Watan-
abe et al., 2017). Some useful computational approaches have
also been discussed to determine some of the key experimental
parameters (Oblak et al., 2019; Ramot and Gonzalez-Castillo,
2019). Most of the previous protocols used runs of 16 trials in
such a way that roughly 10 runs could be conducted in each
session. The number of sessions has varied among studies; some
included 3 sessions carried out on 3 consecutive days, while oth-
ers included as many as 10 sessions. The number of participants
has also varied; some studies included 10 participants (Shibata
et al., 2011; Cortese et al., 2016b) while others up to 24 (Shibata
et al., 2016). If a similar study was previously conducted, we
advise to determine the sample size using the effect size previ-
ously reported as well as the previous experimental parameters.
Information regarding the effect sizes of previous projects can
be found here in Table 5: https://bicr.atr.jp/decnefpro/.

Decoder construction session

The general steps included in the decoder construction sessions
are summarized in Figure 3. The fMRI task used during the
decoder construction session has to be carefully designed in
order to maximize the specificity and sensitivity of the target
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Fig. 3. General steps included in decoder construction. In order to conduct decoder construction, a structural scan and functional data from an fMRI task typically need

to be acquired for each participant. A functional localizer session can also be included at this stage in order to functionally select the voxels to be used in the decoding

procedure. The preprocessing steps follow standard fMRI procedure with a specific consideration for conducting steps that will also be possible to conduct online.

Afterwards, the decoding steps will aim to determine the accuracy of the decoder. Once the decoder has been trained, it is important to export all the information that

will be required to conduct the online decoding procedure.

decoder. For this purpose, multiple reviews of the application
of machine learning to fMRI can be consulted. Simulations can
also be carried out in order to determine the optimal decoding
parameters (Oblak et al., 2019). Typically, two categories of stimuli
(e.g. negative and positive valence) are selected in order to isolate
the desired cognitive process. Here, it is important to keep in
mind that the control category is as important as the target
category because it will influence the specificity of the decoder.
For the purpose of creating decoders of the most commonly
feared animals, we previously presented participants with 3600
images of 40 different categories of animals and objects. This
image database is available at https://bicr.atr.jp/decnefpro/ with
psychoPy (Peirce, 2007) code that can be used to conduct the
decoder construction session.

The preprocessing of the decoder construction session fol-
lows relatively standard practices in the field (see Figure 3).
However, special consideration should be given to using process-
ing steps that can be recreated in real time. This is important
because the online decoding must mirror as closely as possible
the preprocessing used for decoder construction. For instance,
functional images can be realigned either to the first or the mean
image during preprocessing as long as the same image is used to
perform real-time realignment during the procedure (see below).

The target decoder is usually trained individually for
each participant. This presents the advantage of conducting
the decoding in the native space of each participant, which
requires minimal transformation in real time. However, a
decoder previously known to perform efficiently in a stan-
dard space (such as the MNI space) across participants
could also be considered. Furthermore, one could also use
functional alignment methods, which might be particularly
useful in situations where too little training data can be
obtained within-subject or when dealing with patients for
whom the decoder construction session may be too aversive
(see Box 1).

Box 1: functional alignment methods for decoded
neurofeedback

Decoded neurofeedback relies heavily on the accuracy of
the target decoder. However, some decoders can prove
to be challenging to train within-subject as we can only
present a limited number of trials to each participant.
Furthermore, it might also be challenging for patients
with specific psychological conditions to sit through the
decoder construction sessions. For instance, patients
presenting arachnophobia will most likely suffer great
discomfort when presented with images of spiders. In
these situations, modern methods of functional alignment
might be useful. One such method, called hyperalignment,
can be used to bring the functional data of a group of
participants in alignment with the native space of a
designated participant (i.e. the participant that will go
through the decoded neurofeedback procedure) (see
Figure) (Haxby et al., 2011). Notably, this would allow for the
training of decoders in the native space of a participant,
using the data of a group of surrogate participants.
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The first step of hyperalignment involves presenting
all participants with a given task in the fMRI scanner
(for instance, a localizer session). Hyperalignment oper-
ates under the assumption that this task should generate
similar brain responses in all participants but that the
voxels may not necessarily be aligned in space. To solve
this problem, hyperalignment will perform an alignment
of the functional responses to the task. This will allow for
the determination of a common space in which the data
of all participants can be represented (Haxby et al., 2011).
Importantly, this process will provide, for each participant,
a transformation matrix that allows for the transformation
of data from the native space to the common space.

After hyperalignment, the transformation matrix can
be used to bring new data (decoder construction data in
the figure) into the common space. Crucially, this transfor-
mation can also be reversed in order to bring data from
the common space into the native space of a specific
participant. This is an important feature of hyperalignment
because it allows researchers to bring the data of surro-
gate participants in the native space of a designated par-
ticipant through a first transformation into the common
space. This process can be achieved with a large num-
ber of surrogate participants, which can greatly increase
the amount of data available for training the decoders.
Furthermore, this functional alignment can allow for the
training of decoders to recognize brain patterns that were
never expressed in the designated participants. Using this
feature of hyperalignment, we previously showed that it
should be possible to train decoders of feared animals
without presenting participants with any aversive stimuli
(Taschereau-Dumouchel et al., 2018b). To avoid introducing
circularity in this analysis (Kriegeskorte et al., 2009), the
accuracy of the decoders should be tested using data that
were not included in the training of the hyperalignment
or in the training of the decoder (Taschereau-Dumouchel
et al., 2018a)

For the purpose of decoded neurofeedback, many differ-
ent implementations of hyperalignment could be explored,
such as searchlight hyperalignment (Haxby et al., 2011) or
functional connectivity hyperalignment (Guntupalli et al.,
2018). Other forms of functional alignment such as the
shared response model (Cohen et al., 2017; Chen et al., 2015)
could also be considered.

The example script provided on the pyMVPA web-
site can be used for the purpose of decoder construc-
tion with some minor adaptations (http://www.pymvpa.o
rg/examples/hyperalignment.html). For instance, once the
data are represented in the common space, it is possible
to bring the data back in the native space of the desig-
nated participant using the reverse() function of the map-
per as well as the transformation matrix of this specific
participant.

Many algorithms can be used to conduct decoded neurofeed-
back. Sparse algorithms (Krishnapuram et al., 2005; Yamashita
et al., 2008) are particularly useful for this purpose because
they are more tolerant to overfitting by selecting only a few
critical voxels for the classification. Some interesting resources
for implementing sparse logistic regression include the SLR tool-
box (https://bicr.atr.jp/~oyamashi/SLR_WEB.html), and the SMLR
classifier included in the pyMVPA environment (Krishnapuram

et al., 2005; see http://www.pymvpa.org/generated/mvpa2.clfs.
smlr.SMLR.html).

Once the decoder is trained, one important consideration is
to make sure that we have everything at hand for the online
decoding. This means exporting the weights determined dur-
ing training as well as their associated voxel indices. In pyM-
PVA, the parameters of most decoders can be found by calling
get_sensitivity_analyzer() (see http://www.pymvpa.org/example
s/sensanas.html) while the voxel indices are stored in a feature
attribute in the dataset format (see http://www.pymvpa.org/tuto
rial_datasets.html). It is important to recreate exactly the same
prediction procedure online. As such, it is recommended to pay
close attention to the code of the prediction procedure as some
particularities might need to be implemented online. Also, for
the purpose of monitoring the alignment of participants’ brain
scans in real time, it can be useful to compute the mean pattern
of activity within the voxels used for decoding (see below).

The real-time decoding procedure

Figure 4 illustrates the processing steps conducted online during
decoded neurofeedback. These processing steps can be achieved
by distinct computer scripts executed in parallel and communi-
cating in real time. For example, the processing and decoding
steps can be independent from the visual presentation. This
strategy will prevent the different components from interfering
with one another and ensure a fast execution.

During the real-time decoding procedure, it is important to
keep the same acquisition parameters as during decoder con-
struction (field of view, number of slices, initial scanner align-
ment to the AC-PC line, etc.). Basic preprocessing first involves
correcting for head movements. It is important to realign the
incoming DICOM images to the functional image used as a
reference during the decoder construction session. If this image
is considered the ‘first acquisition image’ during the online
procedure (sometimes referred to as the DICOM 0), then it is
simple to specify the realignment of incoming images to this
reference image, as registering to the first functional image is
a common option in most preprocessing software. To facilitate
this process, the reference image can be included in the shared
folder where the DICOM images will be written during the real-
time procedure. The next step involves sub-selecting only the
voxels that will be used in the decoding procedure (i.e. voxel
extraction). This will substantially decrease the processing time
for the remaining steps as only the voxels required for decoding
will be processed. This selection process can be achieved using
the voxel indices extracted during decoder construction. Both
of these steps can be achieved within a simple loop that con-
tinuously processes the new DICOM images as they are written
to the shared directory. For this purpose, code implemented in
the Matlab environment can be obtained at https://bicr.atr.jp/de
cnefpro/ (upon the reception of a signed agreement on terms
and conditions for academic use). Functions from the most
common fMRI packages can also be used as well as open-source
software specifically designed for real-time processing such as
OpenNFT (Koush et al., 2017) or BrainIAK (Kumar et al., 2019).
A commercial option is also available (i.e. Turbo-BrainVoyager,
Brain Innovation, the Netherlands).

In order to accommodate for the hemodynamic response
function (Buckner, 1998), we have to incorporate a delay (e.g.
a delay of 3 TRs when using a repetition time of 2 s). This is
achieved by introducing a waiting period between the induction
period and the feedback. During this period, the DICOM images
are preprocessed as they are written on the hard drive, and the
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Fig. 4. General steps conducted during the online procedure of decoded neurofeedback. DICOM images are processed in real time as soon as they are available. The

preprocessing steps conducted are designed to replicate as closely as possible the steps taken during decoder construction. Once all the images of the induction period

are acquired and preprocessed, the real-time decoding can be achieved using the weights and bias previously determined. This step will provide us with the activation

likelihood that will be displayed visually.

decoding is achieved once the last image of the waiting period is
available.

The process of waiting for the DICOM images has to be flexi-
ble to accommodate possible delays in the transfer of images. As
such, in the event that the DICOM images cannot be processed
in time, the program should be designed to prevent providing
feedback. Also, the code should be designed to perform the next
steps of preprocessing and initiate decoding as soon as the last
image of the waiting period is acquired.

When all the DICOM images of an induction trial are avail-
able, some additional preprocessing can be implemented. This
includes the voxelwise removal of polynomial trends and the
standardization of the BOLD signal. The real-time implementa-
tion of both of these processes has recently been explored (Oblak
et al., 2019). The results indicate that real-time processing could
provide very similar results as offline processing. The best stan-
dardization appears to be achieved using all the data previously
acquired during a specific run. Similarly, detrending the signal by
removing the linear trends can be conducted quickly in real-time
using all the images previously acquired during the run.

One important consideration for online decoding is to make
sure that the realignment of the images was successful before
providing the feedback. One innovative way to accomplish this is
by performing, for each induction trial, a correlation between the
current data and the mean activity within the voxels selected
during the decoder construction (Shibata et al., 2011). This
information is useful, as a slight displacement of the participant
will typically be associated with a clear decrease in the value
of this correlation coefficient. This should be considered as a
ground for repositioning the field of view of the acquisition.
This can be used as complementary information to the motion
parameters calculated during the realignment.

When the preprocessing steps have been completed, decod-
ing can then be implemented. Previous studies used an induc-
tion period of 6 seconds and averaged the corresponding images
in order to compute the feedback. Averaging allows for the
removal of noise, thereby providing a relatively stable signal for
online decoding. For decoders such as sparse logistic regres-
sion, the online decoding step is a straightforward process that
involves computing the dot product of the weights and the
processed signal. This information is then submitted to a logistic
function in order to obtain an activation likelihood, constrained
between 0 and 1, that can be communicated visually to the
participant.

Decoded neurofeedback can be achieved using code imple-
mented in the Matlab environment that can be obtained at
https://bicr.atr.jp/decnefpro/ (upon the reception of a signed
agreement on terms and conditions for academic use). Rein-
forcement scripts can also be written de novo using the most
common software for psychological experiments such as the
Psychophysics toolbox (Brainard, 1997) or psychoPy (Peirce, 2007).
Some specific considerations will be needed to accommodate
for potential delays in the transmission of the DICOM images
(see above) and to include the processing steps during the pro-
cedure. The decoding can be achieved using the most commonly
used fMRI packages as well as toolboxes such as the SLR tool-
box (https://bicr.atr.jp/~oyamashi/SLR_WEB.html) and pyMVPA
(Hanke et al., 2009a, 2009b, 2010).

Information transmission analysis

Decoded neurofeedback experiments can be complemented by
an information transmission analysis. This analysis is essen-
tially a procedure whereby the information within a source
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region is trained to predict the activation likelihood (i.e. the
linearized likelihood) of the decoder. Typically, this procedure
is conducted for both decoder construction and induction ses-
sions. This way, it is possible to determine the voxels signif-
icantly associated with the activation likelihood both during
decoder construction and induction. To conduct this analysis,
the activation likelihood first needs to be computed and lin-
earized for each trial (both during decoder construction and
induction). Then, it will be possible to test how each source
region can predict the linearized activation likelihood. An infor-
mation transmission analysis relies on relatively standard ana-
lytical procedure that can be implemented in many different
software and can notably be carried out in a searchlight pro-
cedure (see http://www.pymvpa.org/examples/searchlight.html)
as well as in regions of interest (ROI) analyses (see Shibata et al.,
2011).

Further considerations
Decoded neurofeedback is still a relatively new approach, and
some aspects of its implementation remain incompletely under-
stood. For instance, many experiments are conducted in the
hope of observing an increase in the activation likelihood as a
result of the training. However, experiments documenting the
learning effect of neurofeedback often indicate that at least four
sessions of training might be required to see an increase in
activation likelihood (Shibata et al., 2011; Keynan et al., 2019).
Therefore, it is not typically expected to observe such an increase
in likelihood during the first few days (Koizumi et al., 2016;
Cortese et al., 2016a). However, this does not mean that no behav-
ioral effects are to be expected. As discussed above, associating
a reward with the (neural) occurrence of an activation pattern
might be sufficient to lead to some observable changes (Koizumi
et al., 2016).

A related issue is that the success of the intervention depends
heavily on the accuracy of the targeted decoders. This means
that decoded neurofeedback can most likely be conducted only
if we can build a sensitive and specific decoder of the tar-
geted process. Unfortunately, this currently excludes some pro-
cesses relevant to psychopathologies that cannot be reliably
triggered in the fMRI scanner. Furthermore, while previous inter-
ventions targeted diverse brain functions (Watanabe et al., 2018),
the feedback was typically provided only in the visual domain.
As such, further studies will be needed to determine if feed-
back provided in other sensory modalities (auditory, tactile, etc.)
could also be used as efficiently for the purpose of decoded
neurofeedback.

Another consideration pertains to the power of the interven-
tion. Decoded neurofeedback is typically conducted in small
samples because of the amount of resources necessary to
implement the procedure. Therefore, this typically allows us
to uncover only relatively large effects. One interesting way to
improve the power of the intervention is to use within-subject
designs instead of between-subject designs (Koizumi et al., 2016;
Cortese et al., 2016b, 2017; Taschereau-Dumouchel et al., 2018a).
Within-subject designs are often more powerful because they
intrinsically control confounding factors that otherwise have to
be matched when comparing between individuals. This is also a
cost-effective strategy since we do not need to use a second
group of participants because of the within-subject control
condition.

Future applications
Machine learning is currently a blooming field of research, and
developing more sensitive and specific decoders should greatly
increase the potential for decoded neurofeedback in the coming
years. New technological developments such as hyperalignment
(see Box 1) will also help researchers to build decoders of brain
functions that are currently difficult to train. For instance, some
processes such as the administration of a medication cannot be
repeatedly recreated in the fMRI scanner. Using hyperalignment,
it might be possible to gather the data from multiple participants
and to train a multivoxel decoder of such a specific process.

Furthermore, previous studies used unidimensional feedback
because it can map directly to the reward/penalty dimension
used in reinforcement learning and operant conditioning. How-
ever, future experiments could consider providing multidimen-
sional feedback to participants. For instance, one could imagine
providing feedback using multidimensional scaling (Kriegesko-
rte et al., 2008b) or using multiple brain decoders. This later
possibility was notably explored in a previous experiment
(Knotts et al., 2019). However, in this study, activation likelihoods
of multiple decoders were combined and provided to the
participants through a single value. If this information was
provided through multiple dimensions, it might be possible
to provide more information regarding the state of the brain
and to facilitate learning. Previous studies indeed indicated that
multidimensional feedback can be efficiently leveraged for the
purpose of reinforcement learning (Kormushev and Caldwell,
2013a,b; Niv et al., 2015; Leong et al., 2017) However, it is still
unknown if multidimensional feedback could be successfully
applied in the context of decoded neurofeedback.

Another interesting technological development is the use
of parallel and cloud computing during the online procedure
(Cohen et al., 2017). This could potentially allow researchers to
conduct complex computations in real time that are currently
impossible to achieve. Ultimately, increasing the real-time com-
puting power might even lead to an online adaptation of the
target decoder. This could potentially be achieved as a function
of the state of the brain in real time, which might open new
possibilities for adaptations.

Yet another interesting approach is to conduct decoded EEG
neurofeedback guided with fMRI data. Using this approach, it
might be possible to conduct relatively inexpensive training
outside of the scanner and still target very specific brain pro-
cesses. Some important progress on this front has recently been
made (Keynan et al., 2019). However, we currently do not know if
all the known properties of decoded fMRI neurofeedback could
translate directly to EEG. For instance, it will be necessary to
carefully determine if EEG interventions can also be conducted
without any awareness of the identity of the target decoder.

Conclusion
This paper aimed to provide an overview of the methodological
considerations for the implementation of decoded fMRI neuro-
feedback. We hope that it will help render this approach more
accessible to researchers willing to adopt it. Decoded neurofeed-
back represents a powerful method that can be conducted in
double-blind placebo-controlled settings. As such, we hope that
it will become more routinely used to both study and manipulate
the functioning human brain.
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