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Abstract
Signal detection theory gives a framework for determining how well participants can discriminate between two types of 
stimuli. This article first examines similarities and differences of forced-choice and A–Not A designs (also known as the 
yes-no or one-interval). Then it focuses on the latter, in which participants have to classify stimuli, presented to them one 
at a time, as belonging to one of two possible response categories. The A–Not A task can be, on a first level, replicated or 
non-replicated, and the sub-design for each can be, on a second level, either a monadic, a mixed, or a paired design. These 
combinations are explained, and the present article then focuses on the both the non-replicated and replicated paired A–Not 
A task. Data structure, descriptive statistics, inference statistics, and effect sizes are explained in general and based on exam-
ple data (Düvel et al., 2020). Documents for the data analysis are given in an extensive online supplement. Furthermore, 
the important question of statistical power and required sample size is addressed, and several means for the calculation are 
explained. The authors suggest a standardized procedure for planning, conducting, and evaluating a study employing an 
A–Not A design.
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Many empirical studies in psychology and related disciplines 
try to determine how well participants can discriminate 
between two types of stimuli or how well they can allocate 
a stimulus to the correct stimulus class. Signal detection the-
ory (SDT) was developed as an appropriate methodology to 
answer these questions based on empirical data. In the early 
1950s, electrical engineers developed SDT (Swets, 1996, 
p. vii), and one of the first and central publications of the 
theory relating to the field of psychophysics was published 
by Green and Swets (1966). In a typical experiment from 
that time, the researcher presented auditory stimuli contain-
ing either noise or noise plus a faint tone to participants. 
They, in turn, had to indicate whether they perceived a tone 
embedded in the noise or not. Therefore, even today, the two 
categories of stimuli are generally called “noise” and “sig-
nal”. Since the days of the first experiments, SDT has found 
numerous applications in many fields, such as diagnostics, 
quality control and psychology.

Although every psychology student comes across topics, 
questions and studies which should call for the application of 
SDT, the theory and its applications are not widespread and 
mostly not compulsory content in psychology curriculum. 
Instead, numerous studies can be found in which a research 
question from the field of SDT is examined, but the analysis 
of the data remains on the very basic descriptive level of 
counting and comparing correct and wrong answers (for a 
discussion of this problem, see Stanislaw & Todorov, 1999, 
p. 137). Hence, precious opportunities of a comprehensive 
data analysis are wasted, and conclusions which would be 
possible due to some additional analyses cannot be drawn. 
Furthermore, even if researchers analyse data with SDT, 
they rarely conduct either an a priori analysis to determine 
the necessary sample size or an a posteriori analysis to cal-
culate the statistical power.

As far as we can see, there are only a few non-specialist, 
step-by-step introductions which offer guidelines for the 
application of SDT to empirical research (e.g., Macmil-
lan & Creelman, 2005; Schiffman, 2005; Sorkin, 1999; 
Stanislaw & Todorov, 1999; Treat & Viken, 2012; Wick-
ens, 2002). However, these sources are not comprehen-
sive, as they do not include the A–Not A design, relevant 
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significance tests against chance level, or considerations 
regarding statistical power and sample size. Such informa-
tion can only be found in statistical publications (e.g., Bi, 
2015; Ennis & Jesionka, 2011). However, these publica-
tions are hard to understand for researchers from other 
fields of psychology and contain little guidance for experi-
ment planning and conducting. Surprisingly, guidelines 
such as The Reviewer's Guide to Quantitative Methods in 
the Social Sciences (Hancock et al., 2019) and the Journal 
Article Reporting Standards from the American Psycho-
logical Association (2019) do not present any designs from 
the family of SDT.

Therefore, this paper tries to bridge the gap between theo-
retical knowledge in formal mathematical publications and 
the researcher who—in general—does not have much knowl-
edge about the topic but is interested in the development of 
study designs in line with SDT. We start with the description 
of forced-choice and A–Not A methods and then focus on 
the A–Not A (also designated as yes–no) design, explaining 
descriptive and inference statistical procedures. This design 
is used not only in the domain of music psychology but also 
in other psychological disciplines (e.g., Al et al., 2020; Cam-
eron et al., 2004; Clemens et al., 2015; Sorkin et al., 2001; 
Tsoi et al., 2008; Viswanathan et al., 2017; Wyart et al., 
2012). Study designers using an A–Not A task present only 
one stimulus to participants at a time. They, in turn, clas-
sify the stimulus as belonging to one of two categories. The 
A–Not A design can be divided into several sub-designs, 
and this paper will focus on the non-replicated as well as 
the replicated paired A–Not A task. Paired tasks should be 
used whenever the set of stimuli can be grouped into pairs 
by content-related qualities. For example, the stimulus set 
might consist of different musical pieces presented in two 
conditions each or of different sentences provided in two 
slightly different wordings each.

Sample data files, Excel files and R scripts are given 
for the reader to retrace the analysis procedure. The main 
contribution of this paper is the section of sample size and 
power calculation: To the best of our knowledge, this is the 
first publication to comprehensively explain aspects of sta-
tistical power and sample size, give supplementary material 
for practicing and conducting a study employing the paired 
A–Not A design, and propose a best-practice procedure for 
conducting such a study.

After calculating an effect size, researchers usually apply 
benchmarks to the calculated value to classify the effect as 
small, medium, or large (Ellis, 2010). For the SDT-specific 
effect size d′, benchmarks are hard to find and need to vary 
depending on the specific design employed. This paper 
summarizes the available information on benchmarks and 
points to theoretical inconsistencies. These issues should be 
addressed by future research on the benchmarks for d′ in 
various SDT designs.

Signal detection theory and its different 
designs

Examples of study designs from the signal detection 
family

As mentioned in the introduction, SDT is applicable on 
a wide range of topics and in many scientific disciplines. 
We collected studies employing SDT which are listed in 
Table S1 (see Supplementary Materials available from 
https:// osf. io/ tvsj5/? view_ only= 28c54 b3157 37438 faaea 
3837f 92528 b9, “1 Studies Using SDT Designs.pdf”) along 
with some details about the research designs employed 
in the studies which come from the broad field of audi-
tory and visual perception research, as well as other psy-
chological disciplines. These studies offer a convenience 
sample of research employing SDT methods and were not 
obtained by systematic review. Furthermore, there are sev-
eral publications highlighting the relevance of SDT for 
specific fields of research, such as social psychology (Mar-
tin & Rovira, 1981), sales effectiveness (Knowles et al., 
1994), food sensory science (O’Mahony & Hautus, 2008), 
or advertising recognition (Tashchian et al., 1988).

One very recent study is used throughout this paper as 
an example, and its data are provided as sample data in the 
Supplementary Material. Düvel et al. (2020) conducted 
a study comparing the sound of original hardware guitar 
amplifiers with simulations of this specific sound by the 
Kemper Profiling Amp. The stimuli consisted of pairs with 
the same musical excerpt performed by the same guitar-
ist recorded either from the original amp (OA, Type A 
as defined in the section “The paired A–Not A design: 
Data structure and analysis” of this paper) or the Kemper 
Profiling Amp (KPA, Type Not A as defined in the same 
section). Response data were based on six pairs of stimuli 
(i.e., six musical examples each produced in two different 
ways, one way using the OA and the other the KPA, result-
ing in 12 stimuli) rated by 177 participants. The study by 
Düvel et al. (2020) was chosen as the sample data set as 
it employed the exact kind of research design which is 
the focus of the present paper. Furthermore, the research 
question is relevant for current discourse in popular music 
research and easy to understand for non-experts.

Forced‑choice and A–Not A designs

Although those who use SDT as a framework always aim 
to quantify a discrimination performance, they can choose 
from a variety of designs and methods. These designs 
can be classified in different ways: one is proposed by Bi 
(2015, S. 5–7), although this may not be the most common 
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classification in the field psychology. In the category of 
forced-choice tasks, two or more stimuli are always pre-
sented at the same time. The two-alternative forced-choice 
design (2-AFC design) is probably the most common one 
from this category. Here, two stimuli, one of stimulus type 
A and one of B, are presented in one trial, and participants 
have to indicate which of the two belongs to which cat-
egory (A or B). In contrast, in an A–Not A method, only 
one stimulus (of type A or Not A) is presented at a time 
and is classified as belonging to one of the two catego-
ries (A and Not A). These two methods show different 
kinds of response bias. Forced-choice methods can show 
position bias (by García-Pérez & Alcalá-Quintana, 2011, 
labelled as interval bias), whereas A–Not A methods show 
criterion bias (Kroll et al., 2002, p. 243). In an A–Not A 
design, participants might answer A more often than B or 
vice versa. This is especially prevalent in difficult tasks in 
which participants make uncertain judgements (Bi, 2015, 
p. 6). The quantification of this response bias, called cri-
terion bias, is achieved by calculating the measure c (see 
section “Effect sizes for the discrimination ability” in this 
paper). In forced-choice methods, both types of stimuli 
always have to be presented during one trial. Moreover, 
participants have to be informed that both sides are always 
presented. The occurrence of the other type of response 
bias, called position bias, can be illustrated with a two-
alternative forced-choice (2-AFC) task. Participants are 
presented with two stimuli at the same time (one of Type 
A, one of Type B) and have to indicate which one of them 
is A and which one B. As explained by Jou et al. (2016, 
p. 33), by design, participants cannot choose Option A 
more often than Option B. Therefore, if the measure c is 
calculated based on all items, it would result in no bias 
(and be 0). Only when calculating c with either the left or 
the right response options, does it differ from 0 (Jou et al., 
2016, p. 33). Of course, we can also consider the pair of 
stimuli as a unit: Participants can classify the two stimuli 
more often as A and B and not B and A, for example. This 
would result in a response bias called position bias.

Distinction of different A–Not A designs

A–Not A designs include designs in which participants are 
presented with one stimulus at a time and have to allocate 
it to one of two different answer categories (A or Not A 
which is equal to Signal or Noise). These designs are also 
called one-interval designs (Macmillan & Creelman, 2005, 
p. 1) or yes–no tasks (Green & Swets, 1966, pp. 32–35; 
Wickens, 2002, pp. 4–5). In terms of the number of par-
ticipants and stimuli, several sub-designs are possible and 
classified in Table 1.

For the distinction between monadic, mixed, and paired 
designs, see Bi (2015, pp. 70–77). If participants are pre-
sented with just one stimulus or one pair of stimuli, the 
designs are non-replicated. If this procedure is repeated, 
the design is called replicated. The number of replications 
indicates the number of successively presented pairs of 
stimuli (though mostly in randomized order). For non-
replicated designs, considerations concerning statisti-
cal testing and the relation between sample size and test 
power are given in Bi (2015, pp. 70–87). For replicated 
designs, additional information is given in Bi (2015, pp. 
301–328). Due to its application in the field of music per-
ception research, the paired design is our focus in this 
paper. Subsequently, two stimuli, one of stimulus type A 
and one of type Not A, always form a pair due to their 
content. For example, it can be the same musical piece 
performed in two conditions (A and Not A; as in Düvel 
et al., 2020), the same statement varying in its wording 
(where wording A is compared to wording Not A), or the 
same motive in two pictures varying in a particular way 
(which manifests in stimulus type A and type not A). In 
a replicated task, several pairs of, for example, musical 
performances, statements, or pictures would be presented 
in one study in randomized order.

In the following sections, the paired design is explained 
in more detail, and considerations concerning statistical 
power and required sample size are made for non-repli-
cated as well as replicated paired designs.

Table 1  Classification of A–Not A sub-designs (Bi & Ennis, 2001a, p. 216; 2001b, p. 344)

Monadic Mixed Paired

Non-replicated Each participant evaluates only one 
stimulus (A or Not A).

Each participant draws a random 
stimulus set from the stimulus pool. 
The number of possible stimuli should 
be much larger than the number of 
participants.

Each participant evaluates only one pair 
of stimuli (a pair consisting of one A 
and one Not A).

Replicated Each participant evaluates more than one 
stimulus of either A or Not A but not 
both.

Each participant evaluates more than one 
stimulus of A and Not A.

Each participant evaluates more than 
one pair of A and Not A stimuli (same 
number of A and Not A stimuli).
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Comparing the replicated paired A–Not 
A and the 2‑AFC design, their applications 
and ecological validity

The A–Not A and the 2-AFC designs are sometimes con-
fused (see, for example, Kopiez et al., 2016). In the A–Not A 
design, two alternative response options are also given (“The 
stimulus belongs to stimulus class A” and “… to stimulus 
class Not A”), and the participant is forced to select one 
of these options. Therefore, it seems obvious to name this 
a two-alternative forced-choice (2-AFC) design—but this 
decision is incorrect. The correct label of this procedure 
would be A–Not A design (or yes–no, sometimes also called 
one-interval design). As described in the previous section, in 
a 2-AFC experiment, two stimuli are presented at the same 
time, one belonging to Stimulus Class A and one to Not–A; 
the participant has to decide the correct classification.

The A–Not A design and the 2-AFC design measure 
different kinds of response bias. In the 2-AFC design, the 
participant is aware that the two stimuli always belong to 
the two different categories. Therefore, they either allocate 
both correctly or both incorrectly and cannot tend (i.e., in 
the sense of a criterion bias) toward one response category 
more often than to the other. However, in some contexts, it 
might be of interest to measure participants’ criterion bias. 
In these cases, researchers must take care when selecting a 
research design for their study and select one which is able 
to measure the desired kind of bias.

Additionally, researchers should consider the ecological 
validities of different designs regarding their research ques-
tion: the degree to which the situation under study resembles 
the real-world situation. Whereas classifying a stimulus in 
practice normally does not involve comparing the two possi-
ble conditions, the A–Not A has a higher ecological validity 
compared to the 2-AFC design. For example, people nor-
mally listen to just one performance of music when trying to 
decide about the presence or absence of a particular feature. 
In different perceptual modalities (taste, vision, hearing, 
tactile sense, …), the comparison of several stimuli (as in 
2-AFC) might be more prevalent than the classification of 
a singular stimulus (as in A–Not A). Therefore, the former 
might yield higher ecological validity in these cases.

In the following sections, these considerations will be 
illustrated by a study by Düvel et al. (2020) on the identifica-
tion of sounds recorded from original amplifiers and simula-
tions made with the Kemper Profiling Amp. In practice, a 
person might listen to some music and wonder whether the 
guitar sound was produced by an original amplifier or by a 
digital simulation. In this case, the listener does not have the 
possibility of direct comparison, hearing the same piece of 
music under both recording conditions. Therefore, it seems 
reasonable to decide for a similar design in the empirical 
study and to present only one stimulus at a time (using the 
A–Not A design).

On the other hand, the 2-AFC design yields minor advan-
tages over the A–Not A design concerning statistical power 
(Bi, 2015, p. 6; Bi & Ennis, 2001b, pp. 354–357). Slightly 
more participants are needed for an A–Not A study than 
for a 2-AFC study to detect the same effect size under the 
condition of same α- and β-error thresholds (α- and β-errors 
[also called type I and type II errors] are explained in the 
section “Mathematics for the calculation of test power and 
sample size” in this article).

The paired A–Not A design: Data structure 
and analysis

Descriptive statistics of responses

In a paired A–Not A design, participants evaluate one at a 
time two stimuli which represent a matched pair due to their 
content-related qualities of interest. The two stimulus classes 
are called A and Not A, and participants have to allocate 
each of the given stimuli to one of the two possible response 
categories. Therefore, it is possible to allocate both stimuli 
of one pair to the correct categories (called pattern c), both 
to the incorrect categories (the A stimulus to stimulus class 
Not A and vice versa, called pattern b), or to allocate one 
correctly and one incorrectly. The latter results in two pos-
sibilities: Participants either allocate the A stimulus to the 
correct stimulus class and the Not A stimulus to the incor-
rect stimulus (therefore, answer A two times, pattern a), or 
they allocate the A stimulus to the Not A stimulus class and 

Table 2  Classification of response patterns in a paired A–Not A design

The table displays frequencies of response pattern to stimuli pairs. FAs = false alarms, CRs = correct rejections, and N = effective sample size

Stimulus is A  Sums of columns

Participant says … “A” “Not A”

Stimulus is Not A “A” a b a+b = number of FAs
“Not A” c d c+d = number of CRs

Sums of rows a+c = number of Hits b+d = number of Misses a+b+c+d = N
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the Not A stimulus to the same (here correct) stimulus class 
(answer Not A two times, pattern d). These possible answer 
patterns are shown in Table 2. This statistical information 
can also be displayed as a tree diagram (see Figure S1 in the 
Supplementary Material, file “1 Studies Using SDT Designs.
pdf”). The tree diagram contains the same information as 
Table 2 and may serve as complementary information for 
understanding the table.

The classification of the participants’ responses in 
response patterns might be new for most readers. The more 
prevalent way of classifying responses from SDT tasks is 
the calculation of hit, miss, false alarm, and correct response 
rates based on the responses to each stimulus individually. 
This classification is used for the calculation of the sensitiv-
ity d′, as explained in the section “Effect sizes for the dis-
crimination ability”. However, for the corresponding signifi-
cance test as well as considerations concerning test power 
and sample size (see the following sections), it is necessary 
to consider the structure of pairs in the data and instead use 
pairs of responses for the calculations.

Table 2 records the frequency of the response patterns 
to a pair of stimuli. If a non-replicated design is applied, 
each participant evaluates just one pair of stimuli, and the 
response is classified as either a, b, c, or d. In the case of a 
replicated design, each participant evaluates k pairs of stim-
uli and, therefore, creates k response patterns for each of the 
k stimulus pairs. In this case, the number of participants n 
does not equal the effective sample size N in Table 2, but 
the effective sample size N is k times the number of par-
ticipants n, N = k*n. In the rest of this article, we always 
discriminate between the number of participants n and the 
effective sample size N, which is the number of responses 
to stimulus pairs.

For the analysis of data, it is crucial to count the answer 
patterns to the pairs of stimuli. Two ways of conducting 
these calculations in Excel and R are explained in the sec-
tion “In practice: Calculating the descriptive statistics and 
effect sizes”.

Significance test for the response behaviour

The next question is, does the behaviour of the participants 
differ between A and Not A stimuli? If the response behav-
iour is the same, participants decide on chance level and 
have no ability to discriminate between the two types of 
stimuli. Our null hypothesis would, therefore, be that they 
answer A equally often for A and for Not A stimuli. The 
probability of giving response A to stimulus A ( = pA =

a+c

N
 ) 

would be the same as the probability of giving response A 
to stimulus Not A ( = pN =

a+b

N
 , H0 : pA = pN ). The alterna-

tive hypothesis would be that the probability of giving the 

correct answer A to a stimulus A differs from the allocation 
of stimulus Not A to A (H1 : pA ≠ pN).

These hypotheses can be tested using McNemar’s 
test, as both the dependent and the independent vari-
able have two categories (A and Not A), and the data are 
matched (one participant creates two answers; thus, the 
answers are not independent; McNemar, 1947). To com-
pare pA and pN, we just have to consider b and c, as the 
other variables a and N are included in both pA and pN 
( pA

?

= pN ⟺
a+c

N

?

=
a+b

N
⟺ a + c

?

= a + b ⟺ c
?

= b ). 
The test statistic for McNemar’s test without a continuity 
correction is given in Eq. 1 and follows an asymptotic chi-
square distribution (df = 1).

For the calculation of McNemar’s test, the frequencies 
b and c from Table 2 are required (for information on the 
calculation, see the section “In practice: Calculating the 
descriptive statistics and effect sizes”).

There are several possibilities for continuity corrections 
(Bi, 2015, pp. 76–77; Bi & Ennis, 2001a, p. 222; Fay, 2010, 
p. 55). Nowadays, it is also possible to calculate the exact 
test using a binomial distribution, and this method should 
be preferred to the approximate McNemar’s test (with or 
without continuity correction). If the X2

McNemar
 value exceeds 

the critical value for the given significance level (always one 
degree of freedom; the critical value for p ≤ .05 is 3.84), 
we can reject the null hypothesis and accept the alterna-
tive hypothesis that participants allocate stimuli A with a 
different probability to stimulus class A than stimuli Not 
A to stimulus class A. Actually, we are not only interested 
in this two-tailed hypothesis but also want to rule out that 
participants show reversed allocation behaviour by allocat-
ing stimuli A to stimulus class Not A and vice versa above 
chance level. This could be due to the participants either 
deliberately giving wrong answers or their having under-
stood the properties of the stimulus classes or the task in 
an interchanged way. Therefore, the one-tailed alternative 
hypothesis would be preferred to the two-tailed and would 
be that participants allocate stimuli of stimulus class A more 
often to response category A than to response category Not 
A. The null hypothesis then is that participants allocate 
stimulus A more often to stimulus class Not A or to both 
categories equally often.

If we want to test a one-tailed hypothesis, we can use half 
of the usual significance level provided that the frequency of 
response pattern c indeed exceeds the frequency of response 
pattern b. For p ≤ .025, the critical value of the X2

McNemar
 dis-

tribution is 5.02. If the test value exceeds this threshold, we 
can assume that participants allocate stimuli A more often 
to stimulus class A than stimuli Not A to stimulus class A.

(1)X2

McNemar
=

(b − c)2

b + c
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To avoid a manual calculation of the test statistic using 
Eq. 1, the R script “3 Calculating McNemar's Test.R” from 
the Supplementary Material can be used. We recommend 
opening the R scripts from this paper in RStudio. The first 
section in the script works exactly as it does in Eq. 1. The 
second section gives the code for the calculation of an 
exact McNemar’s test using the binomial distribution. This 
function gives not only the p-value for the calculation but 
also a 95% confidence interval and a sample estimate for 
the effect size odds ratio (see next section).

Further information on McNemar’s test, its continuity 
corrections, and the exact version of the test was summed 
up by the author of the R package “exact2x2” (Fay, 2016).

Effect sizes for the discrimination ability

The effect size w (also called phi) for this discrimination 
ability can be easily determined after calculating McNemar’s 
test using Eq. 2 (Bi, 2015, p. 76).

The benchmarks for the effect size w are: small if .1 ≤ w 
< .3, medium if .3 ≤ w < .5, and large if w ≥ .5 (Ellis, 2010, 
p. 41). This effect size w can also be calculated by the R 
script “3 Calculating McNemar's Test.R” from the Supple-
mentary Material (see its Section 3). However, w was shown 
to have poor statistical qualities and depends heavily on the 
marginal frequencies (a+b, c+d, a+c, and b+d in Table 2) of 
the contingency table (see Olivier & Bell, 2013, for details).

Another effect size for McNemar’s test is the odds ratio 
OR, which is calculated as

(Bi, 2015, p. 78; Faul et al., 2007, p. 187) with frequen-
cies b and c from Table 2. By Olivier et al. (2016), this OR 
is referred to as Mantel–Haenszel odds ratio, and the follow-
ing are benchmarks for the effect size: small if 1.22 ≤ OR 
< 1.86, medium if 1.86 ≤ OR < 3.0, and large if OR ≥ 3.0.

Within the framework of SDT, effect sizes for the quanti-
fication of the discrimination or allocation ability and bias of 
participants were developed. After calculating McNemar’s 
test, these SDT-specific effect size d′ (“d prime”) and c for 
the answering bias can be calculated. However, in the case 
of a non-significant McNemar’s test (meaning that the par-
ticipants’ allocation ability was no better than chance level), 
the user should be cautious with the interpretation of these 
measurements. For d′, the quantiles for the standard normal 

(2)w =

√

X2

McNemar

N

(3)OR =
b

c

distribution of the proportions of hits and false alarms are 
determined (z[pHits], and z[pFAs]), and their difference is cal-
culated (Bi, 2015, p. 12; Wickens, 2002, p. 24):

For the calculation of d′, homoscedasticity is assumed, 
that is, both distributions of responses to stimulus classes A 
as well as Not A along the participants’ decision space are 
expected to show equal variances (Bi, 2015, p. 46; Hautus, 
2015, p. 947; see Macmillan & Creelman, 2005, p. 17 for 
a sample figure of these distributions). For analysing data 
which show unequal variances, see Hautus (2015, p. 948) 
and Macmillan and Creelman (2005).

As p = 0 or 1 for pHits and pFAs would lead to z(p) = −∞ 
or ∞, these proportions have to be corrected before the cal-
culation of the quantiles. Several ways of correcting values 
of p = 0 or 1 are discussed by Miller (1996, pp. 66–67) and 
(Sorkin, 1999, pp. 51–52). Another method is suggested by 
Macmillan and Creelman (2005, p. 8), who substitute 0 by 1/
(2*k) and 1 by 1−1/(2*k), with k being the number of stimu-
lus pairs. This correction has proven practical in previous 
studies as the absolute values of the resulting z values are 
still large but do not deviate strongly from the distribution of 
the other z values. We have used this approach in this paper.

This effect size can be calculated for most designs within 
SDT but should not be compared between studies based 
on different designs. Benchmarks for d′ for the A–Not A 
design can be found in Bi (2015, p. 44): A rather small 
effect is 0.0 < d′ < 0.74, a meaningful effect is 0.74 < d′ 
< 1.81, and a rather large effect is d′ > 1.81. The magni-
tude of d′ in a 2-AFC task differs and can be expected to be 
about 41% larger (factor 

√

2 ) than in an A–Not A design 
( d�

2−AFC
=
√

2 ∗ d�
A−NotA

 ; Green & Swets, 1966, p. 68; Wick-
ens, 2002, p. 104). Benchmarks for d′ in a 2-AFC design 
can be found in Ennis and Jesionka (2011, p. 380): A small 
effect is 0.5 ≤ d′ < 1.0, a medium effect is 1.0 ≤ d′ < 1.5, 
and a large effect is d′ ≥ 1.5. These two sets of thresholds 
for the classification of effect sizes and the information on 
factor 

√

2 do not seem to stand in a relationship of linear 
transformation (with factor 

√

2 ) to each other. The summary 
and comparison of benchmarks of d′ for different designs 
within the SDT family remain a subject of future research.

The section “Overview of designs” explains the difference 
between A–Not A designs, which can reveal a criterion bias, 
and forced-choice designs, which can show the second form 
of response bias, the so-called position bias. For designs with 
criterion bias, it is recommended to calculate one of several 
measures of this bias to quantify a participant’s answering 
tendency (Macmillan & Creelman, 2005, pp. 28–41). The 
most common measure for criterion bias is c:

(4)d� = z
(

pHits
)

− z
(

pFAs
)

2339Behavior Research Methods  (2022) 54:2334–2350

1 3



Here, c = 0 indicates a balanced selection of both 
response pattern, and c > 0 indicates a tendency to say 
“No” (i.e., the miss rate is larger than the false alarm rate), 
whereas c > 0 indicates a tendency to say “Yes” (i.e., the 
false alarm rate is larger than the miss rate; Macmillan & 
Creelman, 2005, p. 29). This response bias index c is not the 
same as the frequency c in Table 2; the two measures just 
accidently bear the same name.

In practice: Calculating the descriptive statistics 
and effect sizes

In the following scenario, data have been acquired in a 
paired A–Not A study. Each row contains the data of one 
participant, and each column displays the results for a cer-
tain stimulus. In the case of a non-replicated paired design, 
there will be just two data columns with one column for 
each of the two stimuli. In the case of k replications (= num-
ber of stimuli pairs), the data set consists of 2*k columns. 
The stimuli are numbered so that Stimuli 1 and 2, 3 and 4, 
etc. represent a pair; the odd-numbered stimuli (1, 3, 5, …) 
belong to Type A, and the even-numbered (2, 4, 6, …) to 
Type Not A. For the analysis in Excel, it is easiest to sort 
the variables according to the types A and Not A. The cells 
contain the responses from the participants to the respective 
stimulus. The coding of the response A is 1 and Not A is 0. 
See Table 3 for an example. Here we can see that Participant 
1 made two mistakes for the A stimuli by estimating Stimuli 
1 and 2 as being Not A and by allocating the Not A stimuli 
altogether incorrectly.

For the calculation of the frequencies a, b, c, and d, and 
the effect sizes sensitivity d′ and bias c, there are two pos-
sibilities offered in the Supplementary Material: Either the 
Excel sheet or the R script can be used. Both yield the same 
results. For this example, both files use data from the study 
by Düvel et al. (2020) described earlier.

(5)c = −
1

2
∗
[

z
(

pHits
)

+ z
(

pFAs
)] Calculating in Excel

The first spreadsheet “n and k” within the Excel docu-
ment from the Supplementary Material (“4 Calculating the 
Descriptive Statistics and Effect Sizes.xlsx”) contains two 
pieces of information: the number of participants n and the 
number of replications k. Users should change the two val-
ues here (grey cells) according to their own data. Column 
A from the second spreadsheet “Data and Calculations” 
contains the number of each participant and columns B to 
M contain their responses to the (in this case) 12 stimuli. 
If more or fewer than six replications are used, the number 
and names of the columns have to be adjusted accordingly. 
Also, the number of rows has to be adjusted to the number of 
participants and the formulas copied by dragging down the 
fill handles in the columns N to AE if participants have been 
added. When entering data in columns B to M (grey cells), 
the following columns (N and higher) are calculated by the 
internal formulas. These columns calculate the frequencies 
a, b, c, and d, the number of hits, false alarms, misses, cor-
rect rejections (all as from Table 2), answers A, and answers 
Not A, the proportions of hits and false alarms, their correc-
tions for the following z-transformation (as described in the 
section “Effect sizes for the discrimination ability”), and the 
calculated sensitivity d′ (as in Eq. 4) as well as the response 
bias c (as in Eq. 5) for each participant from the data. The 
third spreadsheet, “Outcomes”, is filled in automatically, 
but it should be checked whether the formulas correspond 
to the correct cells in the second spreadsheet (e.g., if rows 
have been added, the numbers have to be adjusted). The 
“Outcomes” spreadsheet contains a summary of the data: the 
number and proportion of correct answers for each stimulus; 
the frequency and proportion of the response patterns a, b, 
c, and d; frequencies and proportions of hits, false alarms, 
misses, and correct rejections; and mean, standard deviation, 
minimum, and maximum of the proportions of hits and false 
alarms, their corrected variables, their z-transformations and 
the resulting sensitivity d′ and bias c.

Calculating in R

For the calculation of the same descriptive measures and 
effect sizes in R, the data have to be provided in a CSV file 

Table 3  Example data from a replicated paired A–Not A study with n participants and k = 3 replications. Response “A” is coded as 1 and 
response “Not A” as 0

Participant Stim01_A Stim03_A Stim05_A Stim02_NotA Stim04_NotA Stim06_NotA

1 0 0 1 1 1 1
2 0 1 0 0 0 1
… … … … … … …
n 1 0 1 0 0 0
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to be loaded into R. The corresponding file from the Sup-
plementary Material is labelled “5 Data for the Calculation 
of the Descriptive Statistics and Effect Sizes in R.csv” (see 
Supplementary Material) and contains the data from Düvel 
et al. (2020) exactly as the Excel file from the section Cal-
culating in Excel. If you have collected your own data, enter 
them into the document and adjust the column names and 
numbers of rows if necessary. Then open the R script “6 Cal-
culating the Descriptive Statistics and Effect Sizes.R”. First, 
the working directory has to be defined by changing the path 
in the first line. Then, the CSV data file from your working 
directory can be loaded (the file has to be in that folder).

In the following Section 1 of the R script, first, enter the 
number of replications k and the number of participants n 
(replace 6 and 177 with the numbers from your study). In 
a next step, the variables are calculated analogous to the 
calculation in columns N to AE in the Excel document. The 
code for the calculation of a, b, c, d, hits, and false alarms 
has to be adjusted if you used more or less than six rep-
lications. The patterns should be easily recognizable, and 
comments after the number sign (#) at the end of some lines 
lead to the points where the code might need adjustment. 
Afterwards, all the lines in Section 1 have to be executed by 
using Command and Enter (Mac) or Ctrl and Enter (Win-
dows & Linux). You can either place the curser in the first 
line, execute it and proceed with all the next lines, or you 
select the whole section and execute it using the keyboard 
shortcut. The last line in Section 1 creates a new CSV docu-
ment in your working directory with the name “7 Calculat-
ing the Descriptive Statistics and Effect Sizes_Results from 
R.csv”. This output file contains all the newly calculated 
variables. The second section of the R script calculates the 
descriptive analysis of the data and produces histograms of 
the sensitivity indicator d′ and bias c.

The questionable use of a one‑sample t‑test 
for testing against chance level

Many researchers regard the calculated sensitivity d′ as a 
dependent variable and treat it accordingly. We came across 
some studies in which researchers calculated the sensitiv-
ity for each participant followed by a test against chance 
level (d′ = 0) to determine whether the participants’ dis-
crimination abilities differed significantly from chance level. 
In other studies, researchers used an ANOVA to test dif-
ferent groups for significantly different detection abilities 
(for examples of these procedures, see Bartlett et al., 1995; 
Bergeson & Trehub, 2006; Kopiez et al., 2016; Schellen-
berg & Trehub, 1996; Trainor & Trehub, 1993; Trehub et al., 
1990; Trehub & Hannon, 2009).

However, as revealed by Bi (2015), the adequate proce-
dure to determine whether participants’ response behaviour 
differs significantly from chance level is the McNemar’s 

test (see the section “Significance test for the response 
behaviour”). It is applied to the most basic level of the data, 
namely, the frequencies and proportions of the response 
patterns. Therefore, the widely distributed procedure of 
first calculating the effect size d′, treating it as a dependent 
variable and then using a t-test to test for significance seems 
more like a detour and an imprecise procedure.

Therefore, we suggest using McNemar’s test to test for 
significant response behaviour instead of using a one-sample 
t-test on the d′ values.

The statistical power of the (non‑replicated) 
paired A–Not A design

Whereas some publications present considerations concern-
ing the test power for the 2-AFC and some other forced-
choice designs (Ennis & Jesionka, 2011), the publications 
by Bi (2006, 2015) provide considerations about test power 
and sample size for forced-choice designs (Bi, 2015, pp. 
65–70) as well as A–Not A designs. In this section, we will 
focus on the test power of the non-replicated and replicated 
paired A–Not A design.

Approximations for the calculation of statistical power 
and the required sample size for a paired A–Not A design 
are presented in Bi (2015, pp. 84–87). The corresponding 
R scripts are explained in the section “Practical procedure 
for the calculation of power and sample size using R”. Fur-
thermore, the software G*Power provides approximated and 
exact calculations of the power for the McNemar’s test (Faul 
et al., 2009). This procedure will be described in the sec-
tion “Practical procedures for the calculations of power and 
sample size using G*Power”.

Mathematics for the calculation of test power 
and sample size

Let us assume that each participant evaluates only one pair 
of stimuli (which equals a non-replicated design) and, there-
fore, the sample size (being the number of response pairs) 
equals the number of participants. The section “Adjust-
ment from a non-replicated to a replicated paired A–Not A 
design” of this article will differentiate between replicated 
and non-replicated designs.

Several approaches to the question of the required sam-
ple size in this design can be found in the literature. They 
result in slightly different numbers, and one cannot eas-
ily declare one as right and the others as wrong. There-
fore, several approaches will be presented in this paper, 
and results will be compared. We leave it up to the reader 
and researcher to choose the appropriate procedure. Basi-
cally, the thresholds for α-error (also called type I error), 
β-error (also called type II error; with the resulting test 
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power 1−β), and the expected effect size for a specific 
statistical test determine the required sample size. As an 
implicit convention, the following standards have been 
widely accepted: The α-error (i.e., the probability of the 
test finding a difference between groups when there actu-
ally is no difference) is set to 5%, which results in the usual 
significance level of p < .05. Furthermore, the β-error (i.e. 
the probability of overlooking a difference between groups 
when it is actually there) is set at 20%. This results in a 
statistical power of at least 80% (since power = 1− β). 
According to Cohen (1988, p. 56), this adjustment is called 
the “.20/.05” convention.

As described in the previous sections, our aim is to calcu-
late McNemar’s test to determine whether participants can 
allocate stimuli above chance level. To calculate the required 
sample size for the power analysis, a priori information on 
the size of the difference between groups is required, which 
comes down to the frequencies b and c (see Table 2) and 
their proportions of the effective sample size N, pb (= b/N) 
and pc (= c/N).

Two different approaches for the approximate calculation 
of test power are presented: the first by Miettinen (1968), 
the second by Bennett and Underwood (1970). According 
to Miettinen (1968), the statistical power is calculated as 
follows:

where Φ is the distribution function of the standard normal 
distribution, α is the significance level (i.e., the acceptable 
proportion of an α-error), z1−α is the 100(1−α)-percentile 
of the standard normal distribution, 2Δ = pc − pb (therefore, 
� =

pc−pb

2
 ), ψ = pc + pb and N is the sample size. Accordingly, 

the required sample size N for a one-tailed McNemar’s test 
can be calculated by

The same approach is described by Machin et al. (2009, 
p. 70) although slight differences in variable naming might 
confuse the reader at first sight. This approach is also 
employed in the software PASS (power analysis and sample 
size software, described by NCSS, n.d.).

For the Bennett and Underwood approach (1970), p = 
pb + Δ = pc − Δ, g = �

√

N  and � =
2g2

p
 are additionally 

needed. The statistical power for the one-tailed test can be 
calculated as

(6)PowerM = �

�

−z
1−�� +

√

N�(2�)
√

�2 − 4�2

�

(7)N =

�

z
1−�� + z

1−�

√

�2 − (2�)
2

�2

�(2�)
2

(8)PowerBU = Pr
(

X2

1
(𝜆) > k

1−𝛼

)

which is the probability of X2

1
(�) (= a noncentral chi-square 

distribution with one degree of freedom and noncentral 
parameter 𝜆) being larger than k1−α (= critical value of a 
chi-square distribution with one degree of freedom and sig-
nificance level 𝛼 in a one-tailed test). This equation can-
not be disintegrated for the sample size, but solutions have 
to be calculated numerically. Some solutions are given in 
Tables 4.10 and 4.11 in Bi (2015, p. 86), and more combina-
tions can easily be calculated by the R script explained in the 
following section Table 5.

Practical procedure for the calculation of power 
and sample size using R

The R-script “8 Calculations of Power and Sample Size.R” 
in the Supplementary Material calculates the power and 
sample size according to the previous section. Four func-
tions are defined in the script: “mcn_m_p”, “mcn_m_N”, 
“mcn_bu_p”, and “mcn_bu_N” with “mcn” standing for 
McNemar’s test, “m” for Miettinen’s approach, “bu” for 
Bennett and Underwood’s approach, “p” for power, and “N” 
for sample size. Therefore, these functions relate to Eqs. 6, 
7, 8, and the numerical reversal of Eq. 8. After opening the 
document in R (or preferably in RStudio), the code of the 
desired function has to be executed using Command and 
Enter (Mac) or Ctrl and Enter (Windows & Linux). In a 
next step (similar to the examples in the section “The paired 
A–Not A design: Data structure and analysis”), the functions 
can be used. Entering the given parameters in the brackets 
and executing the function produces the result in the console 
(lower part of the window).

The two approaches by Miettinen and Bennet and Under-
wood reveal similar but not identical results. None of the 
procedures is more correct than the other since they are 
based on two different theoretical approaches. In practice, 
researchers should aim to fulfil the slightly higher values to 
be on the safe side.

Practical procedures for the calculations of power 
and sample size using G*Power

The free software G*Power offers calculations of power and 
sample size depending on the chosen α-error threshold and 
the effect size for all common statistical tests. Within the 
test family Exact, it offers the statistical test Proportions: 
Inequality, Two Dependent Groups (McNemar) which is the 
appropriate choice in our case. The function is explained in 
a paper by Faul et al. (2007, pp. 186–188) and the G*Power 
manual ("G* Power 3.1 manual", 2017, pp. 14–15). See 
Fig. 1 for the interface of the software.

The following parameters have to be entered: either a 
one- or two-tailed test. As the verification of the directed 
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hypothesis is plausible, and the methods described in the 
sections “Mathematics for the calculation of test power and 
sample size” and “Practical procedure for the calculation of 
power and sample size using R” are also one-tailed tests, 
this option is a reasonable choice. The odds ratio OR is 

calculated according to Eq. 3 in the section “Significance 
test for the response behaviour”.

Thresholds for the α-error probability and the statistical 
power (1−β-error probability) must be selected. In this arti-
cle, the conventional threshold of α-error probability of .05 
is used. The threshold for power (1−β-error probability) is 
set to .8 according to the convention of Cohen (1988, p. 56). 
The proportion of discordant pairs is also determined by the 
frequencies b and c and can be calculated as

The button Options reveals possibilities to adjust the 
alpha balancing in two-tailed tests (described in the "G* 
Power 3.1 manual", 2017, p. 14) as well as the method 
of computation. The faster approximation should be used 
first to get an idea of the magnitude of the required sample 
size. The exact computation method can be used as a sec-
ond step but takes considerably more time if the required 
sample size exceeds approximately N = 300. Nevertheless, 

(9)pD =
b + c

N

Table 4  Comparison of calculated required sample sizes by differ-
ent calculation methods with α-error probability = .05 and power 
= .8. Methods are 1. G*Power, Option Faster Approximation; 2. 
G*Power, Option Exact; 3. R Script: mcn_bu_N(pb, pc), 4. R script: 

mcn_m_N(pb, pc). Each cell contains the corresponding pb = b/N and 
pc = c/N for the given odds ratio (OR) and proportion of discordant 
pairs (pD) as well as the required sample sizes according to methods 
1 to 4

Odds ratio:
OR = 5

Odds ratio:
OR = 4

Odds ratio:
OR = 3

Odds ratio:
OR = 2

Odds ratio:
OR = 1.5

Proportion of discordant pairs: pD = .2 pb = .1667
pc = .0333
1. 65
2. 75
3. 70
4. 59

pb = .16
pc = .04
1. 90
2. 92
3. 86
4. 75

pb = .15
pc = .05
1. 115
2. 134
3. 124
4. 113

pb = .1333
pc = .0667
1. 290
2. 299
3. 279
4. 269

pb = .12
pc = .08
1. 790
2. 814
3. 773
4. 763

Proportion of discordant pairs: pD = .3 pb = .25
pc = .05
1. 44
2. 50
3. 47
4. 39

pb = .24
pc = .06
1. 60
2. 61
3. 58
4. 50

pb = .225
pc = .075
1. 77
2. 89
3. 83
4. 76

pb = .2
pc = .1
1. 194
2. 199
3. 186
4. 179

pb = .18
pc = .12
1. 527
2. 543
3. 516
4. 509

Proportion of discordant pairs: pD = .4 pb = .3333
pc = .0667
1. 33
2. 37
3. 35
4. 30

pb = .32
pc = .08
1. 45
2. 46
3. 43
4. 38

pb = .3
pc = .1
1. 58
2. 67
3. 62
4. 57

pb = .2667
pc = .1333
1. 145
2. 149
3. 139
4. 134

pb = .24
pc = .16
1. 395
2. 407
3. 387
4. 382

Proportion of discordant pairs: pD = .5 pb = .4167
pc = .0833
1. 26
2. 30
3. 28
4. 24

pb = .4
pc = .1
1. 36
2. 37
3. 35
4. 30

pb = .375
pc = .125
1. 46
2. 53
3. 50
4. 46

pb = .3333
pc = .1667
1. 116
2. 119
3. 112
4. 108

pb = .3
pc = .2
1. 316
2. 326
3. 310
4. 305

Proportion of discordant pairs: pD = .6 pb = .5
pc = .1
1. 22
2. 25
3. 24
4. 20

pb = .48
pc = .12
1. 30
2. 30
3. 29
4. 25

pb = .45
pc = .15
1. 39
2. 44
3. 42
4. 38

pb = .4
pc = .2
1. 97
2. 99
3. 93
4. 90

pb = .36
pc = .24
1. 264
2. 271
3. 258
4. 255

Table 5  Data structure for the calculation of the adjustment factor C. 

The first column is displayed here only for explanation. In this exam-
ple, the number of replications k is 6; therefore, the sum of each row 
is always 12 (responses to 6 pairs of stimuli)

Answers “A” Answers 
“Not A”

Participant 1 5 7
Participant 2 6 6
Participant 3 6 6
… … …
Participant n 5 7
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Fig. 1  Calculating the required sample size using G*Power
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this exact procedure is of great value for us as it presents 
an important improvement compared to the approxima-
tions from the sections “Mathematics for the calculation of 
test power and sample size” and “Practical procedure for 
the calculation of power and sample size using R”. After 
entering these parameters, a click on Calculate starts the 
operation, and results are shown in the section “Output 
parameters”. In our case, the minimum total sample size 
required is N = 194.

Table of required sample size comparing calculation 
methods

Table 4 displays required sample sizes for different propor-
tions of pb and pc. The proportions are classified according 
to their sum, the proportion of discordant pairs pD and their 
odds ratio OR. The two approximations from the section 
“Practical procedure for the calculation of power and sam-
ple size using R” (by Bennett and Underwood and by Miet-
tinen) as well as the approximated and the exact method 
from G*Power (see the section “Practical procedures for 
the calculations of power and sample size using G*Power”) 
were used to calculate the required sample sizes for the dif-
ferent pb and pc. All four methods are always listed in one 
cell of the table and are therefore easily compared. Viewing 
the sample sizes in the table reveals the basic connections: 
The smaller the odds ratio OR and the smaller the proportion 
of discordant pairs pD, the more participants are required 
for a study.

Adjustment from a non‑replicated 
to a replicated paired A–Not A design

Theoretical considerations and maths

In a non-replicated paired A–Not A design, each participant 
responds to one (and the same) pair of stimuli in two trials, 
one per stimulus. In studies in the field of music perception, 
these stimuli might be two similar musical recordings which 
participants listen to one at a time and classify in one of the 
two response categories. The number of response pairs N 
(pairs of data points), therefore, equals the number of par-
ticipants n. If we employ a replicated paired design, each of 
the n participants responds to k pairs of stimuli in k*2 trials 
(k = number of replications). The number of response pairs 
N, therefore, results from multiplying the number of stimuli 
pairs with the number of participants, N = n ∗ k. In practice, 
the k*2 stimuli are presented in a randomized order to pre-
vent participants from discovering that always to subsequent 
stimuli are similar and that they likely represent the two 
stimulus classes. Additionally, we recommend not only rely-
ing on randomization but also actively preventing a stimulus 

from being followed directly by its counterpart. Thereby, 
one can ensure that participants cannot directly compare the 
second stimulus to the first from memory. The order of the 
presentation of the two stimuli of one pair—A first and later 
Not A or vice versa—makes no difference.

However, this dataset is probably not equivalent regard-
ing statistical power to a setting in which N participants 
evaluated just one pair of stimuli each because the variance 
between the responses of one participant may be different 
from the variance in the response patterns between the other 
participants. If the variances between and within participants 
differ from each other, the test power is gradually dimin-
ished. To obtain the same test power in a replicated design 
(with sample size N = n ∗ k) as in a non-replicated design 
(with sample size N = number of participants n), the number 
of participants should be corrected upwards in a replicated 
design. The connection between effective sample size N, 
number of participants n and number of replications k can 
be expressed using the adjustment factor C:

C can be calculated according to equation 11.2.3 in Bi 
(2015, p. 305) or with an R script (see the next section, 
“Practical calculations using R”, in this article). It can show 
values in a range between 1 and k (1 ≤ C ≤ k). If the calcu-
lated value C is smaller than 1, C = 1 should be assumed (Bi, 
2015, p. 316). If C = 1 and, therefore, the variance between 
the answers of participants is the same as within partici-
pants, it does not matter whether, for example, 10 partici-
pants evaluate 10 pairs of stimuli (resulting in 100 response 
pairs) or 100 participants evaluate one pair of stimuli each 
(likewise resulting in 100 response pairs). In this case, C can 
be left out of the equation, and we come back to N = n ∗ k. 
If C > 1, the effective sample size N is reduced because of 
unequal variances. In this case, we would reach less power 
if we tested 10 participants on 10 stimuli pairs compared to 
a testing of 100 participants on 1 stimulus pair.

Practical calculations using R

The adjustment factor C as well as the relation between 
effective sample size N, number of participants n and num-
ber of replications k can be calculated using the R script 
“10 Adjustment from a non-replicated to a replicated paired 
A–Not A Design.R” from the Supplementary Material. As 
explained in the previous section, the adjustment factor 
depends on the variances within and between participants. 
Therefore, data from a replicated paired A–Not A study 
should be entered if the researcher wants to calculate the 
adjustment factor for the specific sample and the given task. 
The data has to be provided in the structure displayed in 
Table 3 and saved as a CSV file to be then loaded into the 

(10)N =
n ∗ k

C
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R script. You already calculated the two necessary columns 
in the Excel file (“4 Calculating the Descriptive Statistics 
and Effect Sizes.xlsx”) or R script (output is named “7 Cal-
culating the Descriptive Statistics and Effect Sizes_Results 
from R.csv”) from the section “In practice: Calculating the 
descriptive statistics and effect sizes”. Now, copy the two 
columns “Answers ‘A’” and “Answers ‘Not A’” from Excel 
(second spreadsheet “Data and Calculations”, columns V 
and W) or columns “Answers_A” and “Answers_Not A” 
from the CSV-output from R (also columns V and W) into 
a new table and save as a CSV file. This has already been 
done for the example data from Düvel et al. (2020) and can 
be found under the name “9 Sample Data for the Calculation 
of Adjustment Factor C.csv” in the Supplementary Material. 
Note that the number of answers “A” is calculated as the sum 
of Hits and False Alarms and the numbers of answers “Not 
A” as the sum of Misses and Correct Rejections.

Section 1 in the R script “10 Adjustment from a non-
replicated to a replicated paired A–Not A Design.R” defines 
the function “cbval” which calculates the adjustment factor 
C. First, the code in Section 1 (lines 10 to 48) has to be exe-
cuted (using Command and Enter [Mac] or Ctrl and Enter 
[Windows & Linux]). Section 2a provides the framework 
for setting your working directory, uploading your data file 
(e.g., the sample data “9 Sample Data for the Calculation of 
Adjustment Factor C.csv”), and calculating C. Sections 2b 
and 2c connect the effective sample size N with the number 
of participants n using the calculated adjustment factor C 
and the number of replications k. You should always first 
select the code that defines the function you want to use and 
execute it. Then, use the function to calculate the parameters 
for your data.

Practical implications for the procedure 
of planning, conducting and evaluating such 
a study

As presented in the introduction, designs of SDT are fre-
quently employed in studies of psychology, particularly in 
music psychology. To gain all possible conclusions from the 
conducted studies and the collected data, you should do a 
full analysis and not just rely on the report of percentages of 
correct and wrong answers.

This article gives an overview of the different designs 
within SDT and explains the non-replicated and replicated 
paired A–Not A designs in detail. The calculation of statis-
tical power is mandatory for a meaningful and conclusive 
study based on SDT methods, but in contrast to procedures 
of null hypothesis significance testing (e.g., t-test), test 
power cannot always be conducted before starting the data 
collection, because information on the proportions pb and pc 
as well as on the adjustment factor C is required to conduct 

a replicated study design. Only if we have a previous study 
(based on the same methodology and the same topic) that 
provides us with the required coefficients can we conduct a 
neat a priori power analysis. In all other cases, the develop-
ment of a sensible procedure considering the steps of plan-
ning a study, collecting data and data analysis is not trivial. 
Thus, in the final section, we would like to suggest a pro-
cedure which has to be reviewed for practicability in future 
research. Figure 2 sums up all steps of the procedure in a 
flow chart and will be explained in the following sections.

Planning the study (before data collection)

When planning a study using the paired A–Not A design, 
one very important question is: How many pairs of stimuli 
will be presented to the participants? Several aspects should 
be considered:

1. The more stimuli you have, the better (see Eq. 10 in 
the section “Theoretical considerations and maths”). If 
the adjustment factor C of your data is close to 1, it is 
preferable to have only a few participants who evaluate 
several pairs of stimuli instead of many participants who 
are presented with only one or very few pairs of stimuli. 
However, the validity of this strategy can only be evalu-
ated after calculation of the adjustment factor C from the 
data.

2. How long does it take to evaluate one stimulus? How 
long is the duration of one stimulus in a design with 
audio or video examples? In an online study, the total 
duration of evaluations should not be too long consid-
ering that at least some demographic data and/or addi-
tional inventories might be of relevance (Reips, 2002). 
In a lab study, the testing sessions can be longer, but the 
participants’ concentration should not be overstrained.

3. How many suitable stimuli are available? Depending 
on the topic and the research question, it might be dif-
ficult to organize a large number of adequate stimuli. 
For example, in the study by Pausch et al. (2021), par-
ticipants classified musical stimuli based on whether 
they were performed by a professional musician or by 
a musical child prodigy. One pair of stimuli consisted 
of recordings from a professional musician as well as 
a musical prodigy of the same piece and section of 
music. One difficulty in designing the study was to find 
high quality recordings (e.g., studio productions) per-
formed by musical child prodigies, so the possible num-
ber of controlled stimuli was very limited. One should 
always bear in mind that the quality of a study relies on 
the quality of the stimuli used.

Consideration of these three recommendations will make 
it more likely to find the appropriate number of stimulus 
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Fig. 2  Flowchart for planning, conducting and analysing a study in the replicated paired A–Not A design
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pairs (= k = number of replications) for a study. Previous 
online studies in the domain of music psychology were 
based on six, 10, and five pairs of carefully selected and 
constructed stimuli (Düvel et al., 2020; Kopiez et al., 2016; 
Pausch et al., 2021, respectively).

Conducting the study (during data collection)

After the start of data collection, data should be analysed, 
and the preliminary proportions pb and pc as well as the 
adjustment factor C should be calculated. This should not 
result in the practice of collecting data until the results fulfil 
the hypothesis or the researchers’ wishes (Simmons et al., 
2011). Rather, it is advisable to refrain from calculating fur-
ther statistics as the McNemar’s test and sensitivity d′ at this 
point so as not to be (even subconsciously) influenced by 
the preliminary results. Using pb and pc, the required effec-
tive sample size as outlined in the section “The statistical 
power of the (non-replicated) paired A–Not A design” can 
be determined, and after calculating the adjustment factor 
C, the required number of participants n can be decided, 
taking into account the number of replications k (which had 
been decided before starting the data collection). As a rule of 
thumb, this first analysis could be conducted after collecting 
data from approximately 30 participants.

Most likely, the calculation of statistical power and 
required sample size will reveal an insufficient number of 
data points. Therefore, data collection should be contin-
ued until about 80% of the required sample size has been 
reached. Again, calculations of the proportions pb and pc as 
well as the resulting required effective sample size N, the 
adjustment factor C, and the resulting number of participants 
n are repeated. Naturally, the results might have slightly 
changed because the initial small sample was not representa-
tive for the entire sample from the target population.

This circular procedure should be repeated at least one 
more time to make sure that the collected sample size 
exceeds the calculated required minimum sample size when 
all data are considered. After reaching the calculated thresh-
old, data collection can be terminated. The reporting of all 
descriptive results from calculations related to sample size 
and statistical power is required.

Analysing the study (after completing the data 
collection)

You should calculate McNemar’s test for significant alloca-
tion ability (see section “Significance test for the response 
behaviour”) only after collecting enough data sets. This is 
followed by the determination of the effect sizes w, d′ and 
c (see section “Effect sizes for the discrimination ability”).

Summary

The present paper sums up considerations on signal detec-
tion theory in general and the non-replicated as well as rep-
licated paired A–Not A design in particular. It not only pre-
sents thoughts on the practical application of the design and 
the subsequent calculation of the sensitivity, for example, 
but it also addresses the desirable test power and the required 
minimum sample size. As a suggestion, we describe a step-
by-step procedure to guide researchers through the process 
of planning, conducting, and analysing a study using the 
paired A–Not A design from the SDT family.

The authors hope that this practically oriented approach 
might be a significant contribution to the step-by-step devel-
opment of powerful research designs in future studies and 
the promotion of methodologically correct and thorough 
data analysis in empirical research.
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