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Hypoxia inducible factors in hepatocellular carcinoma
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ABSTRACT
Hepatocellular carcinoma is one of the most prevalent and lethal cancers with 

limited therapeutic options. Pathogenesis of this disease involves tumor hypoxia 
and the activation of hypoxia inducible factors. In this review, we describe the 
current understanding of hypoxia signaling pathway and summarize the expression, 
function and target genes of hypoxia inducible factors in hepatocellular carcinoma. 
We also highlight the recent progress in hypoxia-targeted therapeutic strategies 
in hepatocellular carcinoma and discuss further the future efforts for the study of 
hypoxia and/or hypoxia inducible factors in this deadly disease.

INTRODUCTION

Hepatocellular carcinoma (HCC) is the most 
common form of liver cancer (70%–90%). As the 2nd 
leading cause of global cancer mortality, HCC endangers 
over 780,000 new patients per year [1]. The etiological 
factors of HCC consist of, but not limited to, viral 
infections (hepatitis B and C viruses), alcohol intake, 
smoking, and many host factors such like cirrhosis, 
hemochromatosis, non-alcoholic steatohepatitis as well as 
diabetes [1–4]. Current options for HCC treatment include 
hepatectomy, transarterial chemoembolization, thermal 
or chemical ablation, liver transplantation, radiation and 
chemotherapy [4–6]. However, HCC behaves highly 
refractory to most anti-cancer therapies. Five year survival 
rate of HCC patients remains dismal [7].

HCC appears frequently as multiple nodules 
which are resulted from either intrahepatic metastasis or 
independent multicentric development [8]. Albeit both 
normal liver and HCC are highly vascularized, rapid 
growth of tumor cells within these nodules scavenges a 
substantial amount of oxygen, therefore often producing 
a hypoxic microenvironment. Indeed, HCC is one of the 
most hypoxic tumors with median oxygen level as low 
as 0.8% [9]. Inadequate intratumoral oxygen level is 
known to trigger a vast array of molecular and cellular 
responses which will influence tumor aggressiveness and 
therapeutic response. Hypoxia inducible factors (HIFs) are 
critical to sense intratumoral oxygen tension and mediate 
subsequently the activation of hypoxia response, thus 
representing as potential anti-cancer targets [10].

In this review, we are going to discuss the functional 
relevance of hypoxia and HIFs in HCC, and summarize 
recent progresses in therapeutic targeting of hypoxia 
pathway in this deadly disease.

Hypoxia signaling pathway

HIF system is implemented in hypoxia-responsive 
pathway. This system is composed of α-subunits (HIFα, 
including HIF1α, HIF2α/EPAS1 and HIF3α) and β-subunits 
(HIFβ, including HIF1β/ARNT1, ARNT2 and ARNT3). 
Among these proteins, the function and activity of HIF1α, 
HIF2α and HIF1β are relatively well-studied. Under 
normoxia (normal oxygen supply), HIFα is constitutively 
degraded and maintained at very low basal activities. Prolyl 
hydroxylation of HIFα (e.g. Pro 402 and 564 in human 
HIF1α) by prolyl hydroxylase domain-containing proteins 
(PHD1, PHD2 and PHD3) potentiates its subsequent 
recognition, ubiquitination and proteasomal degradation 
by an E3 ligase, von Hippel-Lindau tumor suppressor 
protein (pVHL). Moreover, asparaginyl hydroxylation of 
HIFα (e.g. Asn 803 in human HIF1α) by factor inhibiting 
HIF (FIH) blocks its interaction with transcriptional co-
activators, CREB-binding protein (CBP) and p300 [11, 12]. 
Under hypoxia, hydroxylation and proteasomal degradation 
of HIFα are impaired due to lack of sufficient oxygen. 
Stabilized HIFα is then translocates into nucleus, hetero-
dimerizes with HIFβ and binds core hypoxia-response 
element (HRE, 5′-(A/G)CGTG-3′) [13] (Figure 1). HIF1α 
binds preferentially to permissive chromatins where are 
positive for histone acetylation, H3K4me3, BRD4 and RNA-
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Pol2 signals [14, 15]. HIF1α utilizes CDK8-Mediator for its 
interaction with super-elongation-complex, thus activating 
the paused RNA-Pol2 and elevating the expression of HIF 
target genes [14]. Recently, Perez-Perri JI, et al. identified 
TIP60 complex as an additional co-activator to facilitate 
HIF1α-dependent chromatin modification and RNA-
Pol2 activation [16]. Moreover, the activation of HIF1α 
transcriptional potency is associated with its interaction with 
CH1 domains of CBP and p300 [17, 18]. Loss of these CH1 
domains in mouse embryonic fibroblasts showed deficiency 
of CBP or p300 loading on HIF targeted genes and affected 
the expression of 35%–50% HIF responsive genes [19]. 
Interestingly, while PHD proteins-dependent hydroxylation 
primes HIFα for pVHL-mediated destruction, HIF1α 
induces pVHL, PHD2, and PHD3, suggesting a feedback 
regulatory mechanism [20–26].

HIF activation has been associated with 
transcriptional induction of its target genes in most studies. 
However, using mouse hepatoma cells, Johnson AB. et al. 
reported that hypoxia may induce a general transcriptional 
repression via altering histone modifications [27]. To 
date, although transcriptome analysis of hypoxia response 
in HCC tissues/cells is limited, accumulating evidences 
support that hypoxia regulates cancer epigenetics. In 
HepG2, a human HCC cell line, hypoxia increased overall 
methylation of H3K4, H3K9 and H3K27. Meanwhile, 

several jumonji-domain histone demethylases, such as 
JMJD1A, JMJD2B and JMJD2C, were identified as 
HIF1α targets and were highly induced under hypoxia. 
The upregulation of histone demethylases may serve 
as an adaptive strategy to compensate the hypoxic 
stress and maintain the methylation homeostasis in 
HCC cells [28]. In parallel to histone modification, 
hypoxia also downregulated the overall level of 
5-hydroxymethylcytosine (5-hmC) in HepG2 and Hep3B 
cells [29]. Since the Tet methylcytosine dioxygenase 
(TET) proteins convert 5-methylcytosine (5-mC) to 
5-hmC, it would be interesting to study the connections 
among hypoxia, TET proteins and 5-hmC in HCC. 

Expression of HIFs in normal liver and HCC

In murine liver and hepatoma cells, Hif1a transcript 
containing exon 1.2 but not exon 1.1 was selectively 
expressed [30]. Diethyl nitrosamine (DEN) and palmitic 
acid elevate the transcription of HIF1α in primary 
hepatocytes [31]. In murine liver, nuclear HIF1α can 
be detected in normal hepatocytes under normoxic 
condition, and protein levels of HIF1α, HIF2α and HIF1β 
are hypoxia-inducible [32, 33]. The induction of HIF1α 
protein was also seen in the liver of Hepatitis B virus X 
(HBx) transgenic mice [34].

Figure 1: Regulation of hypoxia pathway. HIF1α and HIF1β are used as examples. At post-transcriptional level, HIF1α mRNA is 
repressed by miR-199a-5p, miR-338-3p, miR-93 and miR-122. Under normoxia, HIF1α protein is hydroxylated at P402 and P564 by PHDs 
and subsequently degraded by pVHL through the Ubiquitin–Proteasome Pathway. Additionally, asparaginyl hydroxylation of HIF1α by 
FIH-1 at N806 impairs its interaction with CBP/P300. Hypoxia blocks the hydroxylation and proteasomal degradation of HIF1α, leading 
to its stabilization and nuclear translocation. Within nucleus, HIF1α forms heterodimer with HIF1β, and activate the expression of hypoxia 
responsive genes with the help from additional transcriptional co-factors, such as CBP/P300, Pol2, CDK8, and TIP60.
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In human HCC samples, the protein level of HIF1α 
is significantly elevated and associated with worse 
prognosis [35–37]. Moreover, HIF1α expression in primary 
HCC tumors is an independent prognosis factor for overall 
survival of patients after receiving abdominal metastatic 
lymph node external beam radiotherapy [38]. However, 
the expression of HIF1α mRNA, HIF2α protein and HIF3α 
protein shows some variation [37, 39, 40] (Table 1). 

The expression of HIFs is governed by both 
transcriptional and post-transcriptional mechanisms. 
In HCC cells, NF-κB subunits p50 and p65, but not 
c-Rel, bound the HIF1α promoter and elevated HIF1α 
transcription [46]. In addition to well-established 
oxygen-sensitive regulation of HIFs, HBx stabilized 
HIF1α through inhibiting its binding with pVHL [47]. 
According to recent studies, HBx protein also bridged the 
interaction between HIF1α and MTA1/HDAC complex, 
leading to deacetylation of HIF1α. The deacetylation of 
HIF1α interfered with its binding to PHDs and VHL, and 
subsequently stabilized/activated HIF1α protein in HBV-
associated HCC cells [34, 41]. Furthermore, microRNA 
network appears as a new regulatory layer of HIF turnover 
(see review [48]). For example, miR-199a-5p, miR-338-
3p, miR-93 and miR-122 have been shown to repress the 
expression of HIF1α in HCC cells [46, 49–51] (Figure 1).

Functional relevance of HIFs in HCC 

Cell line models of both human HCC and murine 
hepatoma origins have been applied directly to evaluate 
the function of HIFs in HCC. In human HepG2 and SK-
Hep-1 HCC cells, HIF1α silencing strongly inhibited their 
anchorage independent growth, but did not affect their 
basal proliferation [52]. siRNA-mediated knockdown of 
HIF2α in HepG2 cells impaired cell cycle progression in 
the presence of CoCl2 and reduced cell proliferation both 
in vitro and in vivo [53]. In spheroid culture condition, 
dual-silencing of HIF1α and HIF2α diminished the growth 
of HepG2 cells, whereas knockdown of either HIF1α or 
HIF2α increased spheroid size and decreased caspase-3 
activity [54]. Rat hepatoma cells with deficiency in 
HIF1β subunit showed much reduced tumorigenic ability 
in athymic mice, when compared with their wildtype 
counterparts [55]. 

Genetic data from mouse models also support 
the functional importance of of HIFs in HCC (Table 
2). By using liver-specific transposon-based insertional 
mutagenesis method, Hif1a genomic region was identified 
with recurrent insertions in murine HCC models [56], 
indicating the potential involvement of aberrant HIF1α 
expression in HCC development. Knockout of Hif1a 
sensitized hepatoma cells to etoposide treatment in 
a transgenic murine model with hepatocyte-specific 
expression of SV40 large T oncogene, but did not 
affect the initiation and progression of murine HCCs 
[52]. Interestingly, liver-specific HIF1α overexpressing 

potentiated the development of HCC-promoting M2 
macrophages [31]. Besides, myeloid HIF2α appeared 
to be required for liver tumor progression. Mice lacking 
HIF2α in myeloid cells showed decreased infiltration of 
tumor-associated macrophages in HCC and delayed tumor 
progression [57]. 

HIF1α has been shown to promote HCV replication 
in hepatocytes and to potentiate the migration of hepatoma 
cells [58]. HIF-induced VEGF expression promoted HCV 
entry by causing depolarization and reducing tight junction 
in hepatocytes [59, 60]. 

HIF target genes in HCC and their functional 
contributions 

To date, albeit the direct genetic evidences 
supporting the involvement of HIFs await further 
characterization, a growing body of literatures has reported 
the identification and function of HIF target genes in HCC. 
The functional relevance of hypoxia/HIF target genes have 
been implicated in most cancer hallmarks (Figure 2). 

Angiogenesis

HCC is highly vascularized as a result of up-
regulation of angiogenic factors, such as VEGF, bone 
morphogenetic protein 4 (BMP4), plasminogen activator 
inhibitor-1 (PAI-1), and stem cell factor (SCF) [61–65]. 
As a well-characterized direct target of HIFs, VEGF 
stimulated the growth and migration of endothelial cells 
and was required for blood vessel formation [66–69]. In 
line with the observation that both mRNA and protein 
levels of VEGF were significantly induced by hypoxia 
in HCC cells, high VEGF expression was evident near 
necrotic/hypoxic regions in primary HCC samples [70]. 
Elevated expression of VEGF in HCC samples was 
correlated with early relapse and shorter survival [71, 
72]. Interestingly, HIF1β only contributed partially to the 
hypoxic induction of VEGF in murine hepatoma cells 
[73], suggesting that hypoxia may employ additionally 
a HIF1β-independent mechanism to promote VEGF 
expression. Xiao H, et al. recently reported that H2AX 
phosphorylation (γ-H2AX) was required for EGFR- 
and HIF1α-mediated VEGF induction under hypoxia 
[74]. Combined evaluation of γ-H2AX, HIF1α and 
EGFR showed a powerful prognostic value for HCC 
after liver transplantation. In addition, hypoxia has 
been shown to induce HIF1α-dependent expression of 
BMP4 and HIF2α-dependent expression of PAI-1 and 
SCF to enhance HCC angiogenesis. Of note, despite 
lack of direct experimental evidence, hypoxia/HIFs-
stimulated expression of erythropoietin (EPO) and 
platelet-derived growth factor (PDGF) may also promote 
HCC angiogenesis [75–78]. Therefore, HIF-mediated 
proangiogenic phenotypes greatly contribute to HCC 
angiogenesis.
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Metabolism

HIFs actively regulate a series of glycolytic genes 
to promote glycolysis and to favor tumor cell adaption 
to hypoxic stress. Many critical enzymes involved in 
glycolysis have been shown to be direct HIF1α targets 
in HCC cells, including ALDOA, GPI, GAPDH, HK2, 
LDHA, PGK1, PGAM1, PFKFB4, ENO1 and PKM2 [28, 
79]. Moreover, glucose transporter 1 (GLUT1), responsible 
for cellular glucose uptake, was directly upregulated by 
HIF1α [80] and highly expressed in HCC cells and patient 
samples when compared with primary hepatocytes. High 
expression of GLUT1 was also associated with enhanced 
proliferation, poor differentiation and advanced histological 
stages [81]. Hexokinase 2 (HK2) and lactate dehydrogenase 
A (LDHA), both of which enhance glycolytic switch from 
glucose to pyruvate, are also direct targets of HIFs [82–
84]. Moreover, HIF1α was required for the expression of 
pyruvate dehydrogenase kinase 1 (PDK1) which suppresses 
the tricarboxylic acid cycle. Ectopic PDK1 expression not 
only rescued the hypoxia-induced cell apoptosis, but also 
reduced hypoxic ROS production and restored the ATP 
production in HIF1α-deficient cells [85]. NDUFA4L2 
was also induced by hypoxia and HIF1α. Overexpression 
of NDUFA4L2 was strongly associated with tumor 
microsatellite formation, absence of tumor encapsulation, 
and poor overall survival in HCC patients. Inhibition of 
HIF1α/NDUFA4L2 enhanced oxygen consumption and 

mitochondrial activity, resulting in ROS accumulation and 
apoptotic cell death. Depletion of NDUFA4L2 suppressed 
HCC xenograft growth and metastasis [86]. Interestingly, 
in addition to oxygen, 2-oxoglutarate, Fe (II) and 
ascorbate are required for proper hydroxylation of HIFα 
by hydroxylase, linking HIF activation to metabolic stress 
responses (see review [87]).

Migration, invasion and metastasis

In HCC cells, epithelial mesenchymal transition 
(EMT) can be induced under hypoxia condition through the 
activation of Wnt/β-catenin pathway or PI3K/AKT pathway 
[88–90]. SNAIL1, which harbors two HREs in its promoter, 
can be greatly induced by HIF1α under hypoxia [91]. 
Hypoxia-induced miR-210 was associated with HCC cell 
invasion and migration through downregulating vacuole 
membrane protein 1 (VMP1) [92]. Hypoxia also led to 
the downregulation of IFT88/TG737 and promoted cell 
migration and invasion, partially through IFT88-mediated 
effects on the expression of polycystin-1, IL-8, and TGF-β1 
[93]. Additional factors such as CXCL6 (HIF1α target) and 
SERPINB3 (HIF2α target) can promote the migratory and 
metastatic potentials of HCC cells [40, 94]. Moreover, 
Rab11-FIP4 (HIF1α target) and SCF(HIF2α target), both 
of which were positively associated with worse survival 
of HCC patients, can promote HCC cell migration and 
invasion in vitro and metastasis in vivo [63, 95, 96]. 

Table 1: Expression of HIFs in HCC and their association with clinical outcomes 
Gene Expression Prognostic potential Reference

HIF1α

Predominantly expressed in tumor tissues (72/126) 
while less stained in peritumoral tissues (7/126)

Positively associated with worse disease-free 
survival and overall survival [35]

Highly expressed at both mRNA (42/110) and 
protein (39/110) levels

Positively associated with worse disease-free 
survival and overall survival after surgery [37]

Positively associated with HBx protein in HCC 
samples

Positively associated with worse disease-free 
survival and overall survival after surgery [41]

Positive in  HCC samples (32/60) Positively associated with shorter disease-free 
survival [42]

Positive in  HCC samples (212/406) Positively associated with higher probability of 
disease recurrence and worse overall survival 
after surgery. 

[43]

Highly expressed in 30/69 HCC samples (11/30 
samples show nuclear staining)

Positively associated with the responses of 
abdominal metastatic lymph nodes to external 
beam radiotherapy, local recurrence and cancer-
specific deaths

[38]

HIF2α

Expressed in peritumoral regions (60/126) while 
less expressed in tumor tissues (17/126)

No correlation [35]

Positive in HCC and adjacent noncancerous tissues
Negative in normal liver tissues

Positively associated with shorter overall 
survival [36]

Lower in HCC on average Negatively associated with worse survival [44]

HIF3α Inconsistently expressed between HCC and 
adjacent tissues 

No correlation [45]
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Tumor microenvironment and tumor stromal 
cells

Hypoxic microenvironment remodels the tumor-
stromal interactions in HCC. Monocytes/macrophages 
were recruited to the hypoxic regions of tumor tissues and 
subsequently up-regulated TIE2 expression [97]. These 
TIE2-positive monocytes/macrophages (CD14+CD16+) 
were proangiogenic, and their frequency in either blood or 
tumors correlated significantly with microvessel density 

in HCC [98, 99]. Moreover, hypoxia has been shown to 
accelerate murine HCC development by HIF1α-induced 
expression of IL-10 which favored the intratumoral 
macrophage converting from M1 to M2 type [31]. Cross-
talk between hepatocyte-hepatic satellite cells also generated 
a proangiogenic and proinflammatory microenvironment 
[100]. Hypoxia-induced up-regulation of PDGF-BB in 
hepatic satellite cells activated the PI3K/Akt pathway in 
HCC cells and enhanced cell proliferation, migration, and 
resistance to bile acid-induced apoptosis [101].

Figure 2: Involvement of HIFs and their targets in cancer hallmarks (modified from the original figure from Hanahan 
and Weinberg [113]). The function of HIFs has been implicated in promoting angiogenesis, invasion/metastasis, proliferation, glycolysis, 
therapeutic resistance, inflammation, and immune evasion.

Table 2: Functional study of HIFs in mouse HCC models 
Approach Genetic 

background
Cells Results Reference

Transposon-based 
insertional mutagenesis

Mixed Hepatocyte Recurrent insertions in Hif1a genomic 
region

[56]

Hif1α knockout  C57Bl/6J Hepatoma cells with SV40 
large T antigen expression 

Sensitized the cells to etoposide 
treatment 

[52]

HIF1α overexpression C57BL/6 Hepatocyte Increased percentage of M2 
macrophages 

[31]

HIF2α deficiency Mixed Myeloid cell Decreased infiltration of TAM in 
diethylnitrosamine (DEN) induced 
hepatocellular carcinoma

[57]
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Cell proliferation, survival and drug/therapy 
response

HIF1α can directly enhance the expression of crucial 
oncogenes involved in cell replication in HCC, such as 
FoxM1 and AURKA [43, 102]. Moreover, hypoxia 
confers resistance to various anticancer drugs in HCC 
cells, including etoposide, sorafenib, SN38, cisplatin 
and doxorubicin [52, 78, 103–107]. Sorafenib resistant 
HCC patients showed higher intratumoral hypoxia [108]. 
Hypoxia-activated YAP and TGF-α/EGFR pathways 
blunted the response of HCC cells to sorafenib. Sorafenib 
inhibited HIF1α synthesis whereas up-regulated the 
expression of HIF2α, shifting hypoxic responses from 
HIF1α- to HIF2α-dependent pathways. Silencing of HIF2α 
synergized with the sorafenib to block the proliferation 
of HCC cells under hypoxia and the growth of xenograft 
tumors [109]. In addition, hypoxia-induced NDRG-1 and 
CBR1 can render HCC cells resistance to doxorubicin 
[106, 107]. Silencing of either HIF1α or HIF2α has been 
shown to improve the efficacy of doxorubicin in HCC 
models by inhibiting cell proliferation, tumor angiogenesis 
and enhancing cell apoptosis [53, 110]. Besides, HIF1β-
deficient murine hepatoma cells were more sensitive to 
radiotherapy [111], suggesting that hypoxia activation 
may protect tumor cells from radiation. Furthermore, 
intratumoral gene transfer of antisense HIF1α triggered a 
NK cell-dependent rejection of small (0.1 cm in diameter) 
EL-4 tumors in mice. Combination of antisense HIF1α and 
B7-1-mediated immunotherapy led to a strong synergistic 
effect in inducing NK cell- and CD8 T cell-dependent 
rejection of larger EL-4 tumors (0.4 cm in diameter) [112], 
highlighting the promise of targeting hypoxia pathway 
together with cancer immunotherapy in HCC treatment.

Therapeutic targeting of hypoxia pathway in 
HCC

Tremendous efforts have been made to develop 
effective inhibitors for HCC treatment. However, to date, 
sorafenib is the only FDA-approved first-line drug for 
advanced HCC treatment [114]. Targeted therapy for HCC 
is still very limited.

Given the functional importance of hypoxia 
pathway in HCC, targeting hypoxia related molecules 
may be beneficial (Table 3). Recently, several inhibitors 
targeting hypoxia downstream signaling (e.g. VEGF-
VEGFR system) have entered phase 3 clinical trials for 
HCC treatment. Alternatively, the strategy of targeting 
HIF expression or activation is actively tested in either 
preclinical studies or in trials. RO7070179 and EZN-2968 
are oligonucleotide inhibitors which inhibit the synthesis 
of HIF1α [115]. Since HIF1α translation is dependent 
on PI3K-AKT-mTOR pathway [116], targeted inhibition 
of PI3K-AKT-mTOR activity (e.g. Bufalin) effectively 
suppressed HIF1α expression in HCC cells [117]. ENMD-

1198 (a microtubule destabilizing agent) and Metformin 
(an established antidiabetic drug) have also been shown 
to downregulate the expression of HIF1α in HCC models 
[118, 119]. Besides, Acriflavine which inhibits HIF1 
dimerization showed anti-tumor activity in HCC models 
[120, 121]. Two novel small-molecule inhibitors targeting 
HIF2α (PT2385 and PT2977) have been evaluated in 
phase 1 trials in advanced clear cell renal cell carcinoma 
and other solid tumors [122, 123]; however, their activities 
against HCC cells need to be examined. 

Another strategy is to target hypoxia itself. 
OXY111A, a synthetic allosteric effector of hemoglobin 
to promote normoxia in hypoxic tumors, has been shown 
to prevent HIF1α stabilization as well as VEGF production 
in tumor masses [124]. OXY111A is currently under phase 
1 and 2 clinical trials in patients with malignancies of the 
liver, pancreas and biliary tract. Moreover, hypoxia can 
be harnessed to selectively activate cytotoxic pro-drugs 
such as tirapazamine (TPZ) and TH-302 [125, 126]. By 
using a HBx-transgenic murine model, TPZ co-operated 
with arterial embolization to induce tumor necrosis without 
affecting normal liver cells [125]. Of note, Q6, a novel pro-
drug activated under hypoxia condition, showed a more 
potent anti-proliferative effect than TPZ, and induced 
apoptosis of HCC cells. Interestingly, Q6 can also promote 
HIF1α degradation through autophagy pathway [127]. 

Conclusions and future perspectives

As summarized above, hypoxia pathway and HIFs 
are involved extensively in HCC development. Although 
many aspects await further exploration, hypoxia pathway 
appears to be functionally relevant and therapeutically 
targetable in HCC. Further efforts can be made to 
characterize the mechanism of HIFs activation and 
putative roles of HIFs in HCC as outlined below. 

As transcription factors, transactivation of HIFs 
in response to oxygen tension modulates a vast array of 
hypoxia responsive genes. However, to date, hypoxia-
responsive transcriptome and the contribution of individual 
HIF to hypoxia response remain largely unknown in HCC. 
Moreover, genome-wide comparative study of various 
HIFs, the connections between HIFs binding and gene 
expression, and the contribution of epigenetic alternations 
in hypoxia response in HCC need to be addressed further. 

Additional functional studies, including genetic 
models, are essential to dissect further the roles of 
HIFs in HCC development. Upon HIF1α inactivation, 
alternative pathways such as HIF2α may compensate 
for the HIF1α loss. HIF2α-dependent network seems to 
be associated more with therapy-resistance and tumor 
aggressiveness [108]. When compared to HIF1α, HIF2α 
and HIF3α remain less-well characterized in HCC. 
Whether HCC cells activate preferentially certain HIFs 
during progression is not clear, thus a more thorough 
investigation of the unique roles of each HIF in HCC is 
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warranted. For example, liver-specific inactivation of HIFs 
using transgenic animal models with various oncogenic 
backgrounds may provide more insights into the function 
of HIFs and their interplays with different oncogenic 
pathways. In addition, as exemplified from HBx studies, 
potential impacts of hepatitis virus infection and other 
carcinogens on HIFs may be a fertile ground of study.

Targeting hypoxia holds a promise for HCC 
treatment. However, more inhibitors of HIFs and/or their 
co-factors need to be developed. The potential combination 
of hypoxia/HIF inhibitors and immunotherapy will be 
an exciting and active area of investigation. Further, 
identification of biomarkers associated with hypoxia-
targeted therapy will be very valuable and helpful. 
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