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Allogeneic hematopoietic stem cell transplantation (Allo-HSCT) is the only curative

treatment for multiple hematologic malignancies and non-malignant hematological

diseases. However, graft-vs.-host disease (GVHD), one of the main complications after

allo-HSCT, remains the major reason for morbidity and non-relapse mortality. Emerging

evidence has demonstrated that innate lymphoid cells (ILCs) play a non-redundant role

in the pathophysiology of GVHD. In this review, we will summarize previously published

data regarding the role of ILCs in the pathogenesis of GVHD.
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INTRODUCTION

Definition of ILCs
Innate lymphoid cells (ILCs) encompass natural killer cells (NK) and ILC1, ILC2, and ILC3 cells
(1–3). In contrast to T cells, these cells lack rearranged antigen receptors (1–3). It has been
demonstrated that ILCs develop in the fetal liver and adult bone marrow, whereas mature ILCs
are mainly enriched in the GI tract, lungs, liver, and skin (1–3). NK cells, which account for ∼15%
of human peripheral blood (PB) lymphocytes, exert cytolytic effects, and secrete IFN-γ, granzyme
B, and perforin. In mouse, NK cells are characterized by the expression of natural killer cell
p46-related protein (NKp46; also known as NCR1) receptor, and expressing transcription factors
T-bet and Eomes (4–6) (Figure 1, Table 1). In humans, there are two main subsets of NK cells:
CD3−CD56brightCD16− and CD3−CD56dim CD16+ cells (4–6) (Table 2). ILCs exhibit a cytokine
repertoire that mirrors that of T helper cells. For instance, similar to Th1 cells, ILC1 cells can
respond to IL-12 and IL-15 and subsequently secrete effector cytokines, such as IFN-γ and TNF-α
(4–6). However, unlike NK cells, ILC1 cells do not display cytolytic effects (15). Murine ILC1 cells
express Nkp46, NK1.1, T-bet, and CD200r1, but without expression of Eomes (16).

In humans, CD127+CD161+CD34− c-Kit− T-bet+ Eomes−IFN-γ+ILC1 cells are enriched in
the tonsils (15–17). Interestingly, Lin−CD127+CD161+CD117−NKp44−CRTH2− ILC1 cells have
been found in the PBMCs of healthy individuals and atopic dermatitis (AD) patients (15–18).
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FIGURE 1 | Characteristic of ILCs. ILCs encompass NK, ILC1, ILC2, and ILC3 cells. Murine and human NK cells can secrete IFN-γ, granzyme B, and perforin. In

humans, NK cells have two main subsets: CD3−CD56brightCD16− and CD3−CD56dimCD16+ cells. ILC1 cells can respond to IL-12 and IL-15, and subsequently

produce IFN-γ and TNF-α. In humans, CD127+CD161+ CD34− c-Kit−T-bet+ Eomes− IFN-γ+ ILC1 cells are enriched in the tonsils. Additionally,

Lin−CD127+CD161+ CD117− NKp44−CRTH2− ILC1 cells have been found in the human PBMCs. In mice, ILC2 cells are Lin−CD127+CD25+ KLRG1+

GATA3high cells which are responsive to IL-2, IL-4, IL-7, IL-25, IL-33, TSLP, and prostaglandin D2, and subsequently produce multiple effector cytokines. In humans,

ILC2 cells express GATA3, CD127, CD161, CD25, ST-2, IL-17A, and CRTH2. Both murine and human ILC3 cells are Lin−CD127+RORγt+. They are responsive to

IL-1β, IL-6, and IL-23, and produce IL-22, IL-17A, IL-17F, GM-CSF, TNF-α, and LTα1β2.
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TABLE 1 | Phenotype of murine ILCs.

Marker Mouse

NK ILC1 ILC2 ILC3

CD3 – (7) – (7) – (7) – (7)

CD4 – (8) – (9) – (9) ± (7, 9)

CD19 – (7) – (7) – (7) – (7)

CD25 ± (10) ± (10) + (7, 10) ± (10)

CD45 + (10) + (7, 10) + (7, 10) + (7, 10, 11)

CD49a ± (7, 10) + (7, 10) ND – ND –

CD69 ± (10) + (10) ND – ND –

CD90 ± (10) + (10) + (10) + (10)

CD94 ± (10) ND – ± (10) ND –

CD103 ± (10) – (10) ND – ND –

CD117 – (10) ± (10) ± (10) + (10)

CD122 + (10) + (10) + (10) – (10)

CD127 ± (10) ± (9, 10) + (9, 10) + (7, 9, 10)

CD160 ± (10) + (10) ND – ND –

CD294 – (10) ND – + (10) ND –

NKp46 + (7, 10) + (7, 10) – (10) ± (7, 10, 11)

NK1.1 + (7, 10) + (7, 10) – (10) ± (10)

NKG2D + (10) ND – – (10) ± (10)

ND, not determined.

+ positive; – negative; ± sometimes positive.

ILC2 cells are defined as Lin−CD127+CD25+KLRG1+

GATA3high cells in mice. These cells are responsive to multiple
cytokines, including IL-2, IL-4, IL-7, IL-25, IL-33, TSLP, and
prostaglandin D2, and subsequently produce Th2-type cytokines,
such as IL4, IL-5, IL-9, IL-13, and amphiregulin (AREG) (1, 13,
19–26). In humans, ILC2 cells express GATA3, CD127, CD161,
CD25, ST-2, IL-17A, and chemo-attractant receptor-homologous
molecule expressed on Th2 lymphocytes (CRTH2) (1, 13, 15).

Both murine and human ILC3 cells are identified as
Lin−CD127+RORγt+ cells (15). Mouse ILC3 cells consists
of three subsets: lymphoid tissue-inducer cells (LTi), LTi-like
CCR6-expressing ILC3 cells and NCR-expressing ILC3 cells
(NCR+ILC3) (1, 15). Similar to Th17 cells, they are poised
to respond to the stimulation by IL-1β, IL-6, and IL-23 and
subsequently produce effector cytokines, such as IL-22, IL-17A,
IL-17F, GM-CSF, TNF-α, and LTα1β2 (1, 15, 27–29).

NK cells are critical players in controlling intracellular
bacterial and tumor surveillance (1, 15, 30). ILC1 cells are
capable of controlling intracellular pathogens, whereas ILC2
cells have the capacity to limit extracellular parasitic worm
infections, promote epithelial repair, andmaintainmucosal tissue
homeostasis. Notably, ILC2 cells are associated with chronic
diseases such as pulmonary fibrosis, hepatic fibrosis, and atopic
dermatitis (1, 2, 15, 30). NCR+ILC3 cells are the most prevalent
ILC3 subset in the intestine, whereas LTi-like ILC3 cells are
mainly localized in the colon and lymphoid tissues (2, 30–32).
ILC3 cells are key contributors to tissue repair and protect
mucosal barriers against infection by extracellular bacterial and
fungi (1, 2, 30–32).

TABLE 2 | Phenotype of human ILCs.

Marker Human

NK ILC1 ILC2 ILC3

CD1a – (5, 12) – (5, 12) – (5, 12) – (5, 12)

CD3 – (12) – (5, 12) – (12) – (12)

CD4 – (13) ± (14) – (13) ± (15)

CD7 + ND + (9) + (9) + (9)

CD11c – (5, 12) – (5, 12) – (5, 12) – (5, 12)

CD14 – (5, 12) – (5, 12) – (5, 12) – (5, 12)

CD16 ± (10, 15) – (10) – (10) – (10)

CD19 – (5, 12) – (5, 12) – (5, 12) – (5, 12)

CD25 ± (10) + (10) + (10, 14, 15) ± (10)

CD34 – (5, 12) – (5, 12) – (5, 12) – (5, 12)

CD45 + (5, 10) + (10) + (10) + (5, 10)

CD49a ± (15) ± (15) ND – ND –

CD56 + (10, 15) – (5, 10) – (9, 10) ± (9, 10)

CD69 ± (10) ± (10) ND – + (5)

CD94 ± (5, 10) – (5, 10, 12) – (5, 10, 12) – (5, 10, 12)

CD103 ± (15) ± (9, 15) – (9) – (9)

CD117 ± (10) – (10) ± (10) + (10)

CD123 – (5, 12) – (5, 12) – (5, 12) – (5, 12)

CD127 ± (10) ± (10) + (5, 10, 13) + (5, 10)

CD294 – (12) – (12) + (5, 12) – (12)

TCRαβ – (12) – (12) – (12) – (12)

TCRγδ – (12) – (12) – (12) – (12)

NKp46 + (10) – (10) – (10) ± (10)

NKp44 ± (10) – (10) – (10) ± (5, 10)

NKp30 + (10) + (10) + (10) ± (10)

NK1.1 ± (10) + (5, 10) + (10) ± (10)

NKG2D + (10) ND – ND – ± (10)

ND, not determined.

+ positive; – negative; ± sometimes positive.

Generation, Transcription, and Plasticity
of ILCs
ILCs originate from common lymphoid progenitors (CLPs),
which subsequently differentiate into two different lineages: the
common helper-like innate lymphocyte progenitors (CHILPs)
and the conventional natural killer cell progenitors (cNKps)
(Figure 2). However, CHILPs are a heterogeneous population
consisting of innate lymphoid cell precursors (ILCPs) and
lymphoid tissue-inducer precursors (LTiPs) (33, 34). CHILPs
are defined as Lin−IL-7R+Flt-3−α4β7+CD25− Id2highPLZF+

cells and can give rise to ILC1, ILC2, ILC3, and LTi cells
but not cNK cells (30, 33, 35). ILCPs are designated as
Lin−CD127+α4β7+PLZF+ cells and can produce all ILC lineages
(33). LTiPs are the precursors of LTi cells and are defined as
Lin−CD127+α4β7+c-Kit+ RORγt+PLZF− cells (33). cNKps can
generate cNK cells and are unable to give rise to ILC2 and ILC3
cells. The development of cNK cells requires inhibitor of DNA
binding 2 (Id2) (36–38), nuclear factor interleukin 3 (NFIL3)
(39–42), thymocyte selection-associated high-mobility group box
protein (TOX) (43, 44) and Eomesodermin (Eomes) (45, 46).
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FIGURE 2 | Generation, transcription and plasticity of ILCs. (A) ILCs originate from CLPs, which subsequently differentiate into CHILPs and cNKps. cNKps can

generate cNK cells. The development of cNK cells requires Id2, NFIL3, TOX, and Eomes. Its functional maturation and bone marrow egress of these cells requires

T-bet. ILC1 cells arise from Id2+PLZF+CHILP progenitor cells. The development of ILC2 cells requires Id2, GATA-3, RORα, TCF-1, BCL11B, and Notch. ILC1 cells

can be converted into NK cells after ectopic expression of Eomes. IL-12 can endow ILC2 cells with ILC1 features by secreting IFN-γ, whereas IL-12 and IL-23 can

induce the transition of ILC3 cells into ILC1 cells. The development of ILC2 cells requires Id2, GATA-3, RORα, TCF-1, BCL11B, and Notch. RUNX3 is necessary for

the expression of RORγt and AHR in ILC3 cells. (B) The development of murine LTi and LTi-like ILC3 cells requires the expression of RORγt, AHR, RUNX3, and Notch,

while the development of NCR+ ILC3 cells need RORγt and Id2.

However, the functional maturation and bone marrow egress
of these cells requires T-bet (45–48). NFIL3 is involved in the
development of bone marrow-derived NK cells from CLPs under
homeostatic conditions and is necessary for the formation of
splenic and thymic NK cells (39–42). Unlike cNK cells, ILC1 cells
arise from Id2+PLZF+CHILP progenitor cells (49). Interestingly,
the development of ILC2 cells requires Id2 (36, 37), GATA-
binding protein 3 (GATA-3) (50–52), RORα (53), transcription
factor 1 (TCF-1) (54–56), BCL11B (57, 58), and Notch (59, 60).
GATA-3 is crucial for the secretion of effector cytokines, such as
IL-5 and IL-13, by mature ILC2 cells (50–52, 61). In addition,
Gfi1 can promote the development of ILC2 cells and control their
responsiveness during infection by Nippostrongylus brasiliensis
and protect against allergen-induced lung inflammation (62).
Runx3 is another key factor in the differentiation of ILC1 and
ILC3 cells. It controls the survival of ILC1 cells and is necessary
for the expression of RORγt and AHR in ILC3 cells (7, 63).

ILC3 cells differentiate from Lin−IL-7Rα+Flt3−γ4β7+ fetal
liver progenitors and express Id2 and RORγt in mice (1, 37).

The development of murine LTi cells and LTi-like ILC3 cells

requires the expression of RORγt, the aryl hydrocarbon receptor
(AHR), RUNX3 and Notch (1, 2, 37, 64). The AHR seems
to be involved in the expansion of CCR6−/lowILC3 cells (65–
68). AHR−/− mice exhibit a decrease in CCR6−/lowILC3 cells
without alteration in the CCR6+ILC3 population. Furthermore,
T-bet controls the fate and function of CCR6−RORγt+ILCs.
Postnatal CCR6−RORγt+ILCs upregulate T-bet, which is
modulated by the commensal microbiota. Tbx21−/− mice exhibit
normal development of CCR6−RORγt+ cells, but they fail to
differentiate into NKp46+RORγt+ ILCs, suggesting that T-bet
is necessary for the differentiation of NKp46+RORγt+ ILCs
in mice (8, 69). Additionally, the IL-1β/IL-1R/MyD88 pathway
controls the production of IL-22 by NKp46+RORγt+ILCs in
the small intestine (SI) of mice (70). In contrast to mice, both

human Lin−CD34+CD45RA+CD117+IL-1R+RORγt+ cells and
stage 2 IL-1R+ cells in secondary lymphoid tissues (SLT) can
differentiate into nearly all ILC populations including NK cells
(71). Collectively, these results demonstrate that the development
of ILCs is not dependent on a single “master regulator” but on
a complex network of transcription factors (TFs) (1, 15, 31).
Interestingly, recent studies have focused on the plasticity of
ILCs. For instance, ILC1 cells can be converted into NK cells
after ectopic expression of Eomes (31, 48). IL-12 can endow ILC2
cells with ILC1 features by secreting IFN-γ (60, 72), whereas IL-
12 and IL-23 can induce the transition of ILC3 cells into ILC1
cells (60, 73, 74). Furthermore, dermal NCR−ILC3 cells can be
transformed into NCR+ ILC3 cells in the presence of IL-1β and
IL-23 in vitro (42, 75–77).

Localization and Migration of ILCs
NK cells are mainly located in the bone marrow, lymph nodes,
spleen, lungs, and liver, whereas ILC1 cells mainly reside in the
intestinal intraepithelia (IE) (2, 78, 79). ILC2 cells are located
in the lungs and lamina propria of the small intestine (SI)
and skin, whereas ILC3 cells are predominantly located in the
lamina propria, Peyer’s patches and lymphoid follicles of the
small intestine (78, 79).

It is generally considered that fetal liver and bone marrow are
the “factories” where ILC subsets are generated (1, 2). However, a
report by Gasteiger et al. have indicated that the vast majority of
ILCs in both lymphoid and non-mymphoid organs are long-lived
tissue-resident under steady state (80). Another elegant study
by Di Santo JP’s lab has proposed a model of “ILC-poiesis” and
provided a mechanism by which tissue ILCs could be replenished
from blood ILCPs in response to steady-state losses and under the
circumstance of infection and inflammation (81–83).

Recently, increasing evidence has indicated that ILC1 and
ILC3 cells can migrate into SLTs, depending on integrins and
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chemo-attractant receptors, whereas the migration of ILC2 cells
from hematopoietic sites to target tissues is independent of the
aforementioned receptors.

It has been indicated that the migration of NK cells to LNs
via high endothelial cells (HEVs) might be mediated by CCR7
or CXCR3. The migration of ILC1 and ILC3 cells to SLTs occurs
in a CCR7-dependent manner (84, 85). ILC2 cells, located in
the bone marrow, spleen as well as mesenteric lymph nodes,
constitutively express CCR9 and α4β7, rather than the RA-
dependent homing receptor (79, 84). The migration of LTi-
ILC3 cells to lymphoid follicles and the spleen marginal zone is
regulated by the CXCL13-CXCR5 axis (86). Notably, trafficking
receptor switches play a crucial role in the migration of ILCs. For
instance, activation of spleen ILC3 cells induces upregulation of
CCR9 and α4β7 with concomitant downregulation of CCR7 in
the presence of IL-7 and all-trans retinoic acid (RA) and prompts
the migration of these cells to the intestine (84, 87, 88).

ILCs and GVHD
Allogeneic hematopoietic stem cell transplantation (Allo-HSCT)
is the most powerful therapy for hematologic malignancies and
a majority of non-malignant hematological diseases. One of the
major barriers to the efficacy of allo-HSCT is the occurrence
of GVHD. Radiotherapy/chemotherapy induction regimens
damage epithelia, especially the intestinal mucosa, in recipients,
followed by the translocation of commensal microbiotas from
the GI tract into the peripheral blood. Subsequent activation of
adaptive immunity promotes the occurrence of aGVHD (89–94).

The Role of Donor-Derived ILCs in GVHD

The role of NK cells in the pathogenesis of GVHD seems to
be controversial (95, 96). Early studies indicated that target
organs, such as the skin, liver, and GI tract, in HSCT recipients
with aGVHD were infiltrated with NK cells, suggesting that
NK cells might promote the development of GVHD (97–99).
In accordance, administration of NK cell depleting antibodies
against GM1 or NK1.1 significantly mitigated GVHD in murine
models (100, 101). Cooley et al. have demonstrated that, in
unrelated HSCT, increased production of IFN-γ by NK cells has
correlated with more aGVHD, and decreased KIR expression
has associated with inferior survival of patients, suggesting that
NK cells might promote GVHD via secretion of inflammatory
cytokines such as IFN-γ and TNF-α (102).

Recently, a first-in-human trial of adoptive transfer of donor-
derived IL-15/4-1BBL -activated NK cells was conducted in
an HLA-matched, T-cell-depleted non-myeloablative peripheral
blood stem cell transplantation (103). In this clinical trial, five
of nine transplant recipients experienced acute GVHD, with
grade 4 GVHD in three patients. Together, the aforementioned
studies seem to support the notion that NK cells promote
GVHD. However, contradictory results were obtained from
other studies where adoptive transfer of donor-derived NK cells
into HSCT recipients can prevent the occurrence of GVHD in
mouse and humans (104–107). In an MHC mismatched murine
model (BALB/c→ C57BL6), IL-2–activated donor-derived NK
cells were administered with allogeneic bone marrow cells and
splenocytes (104). Mice receiving pre-activated donor-derived

NK cells significantly delayed the onset of GVHD and prolonged
the survival of mice. Consistently, these mice exhibited no
infiltration of inflammatory cells with normal structure of gut
(104). In accordance, another animal study by Song et al. has
shown that single infusion of IL-12/IL-18- pre-activated donor
NK cells one day 0 after HSCT has mitigated severe or mild
aGVHD, and enhanced GVL effects (108).

In line with animal data, clinical results from a phase 1
clinical trial have shown that the infusion of high doses of
ex vivo-membrane-bound interleukin 21(mbIL-21) expanded
donor-derived NK cells is safe without adverse effects, without
increased GVHD or high mortality (109). Therefore, early
infusion of pre-activated donor-derived NK cells has the
potential of prevention of GVHD. However, it should be
taken into account that different strategy for the activation of
donor-derived NK cells might bring different outcomes. Other
important issues that should be considered are the infusion
timing of NK cells, MHC/HLA matching degree between
donors and recipients as well as the pretreatment strategy
before HSCT.

Interestingly, NK cells can alleviate cGVHD by directly
constraining recipient minor histocompatibility Ag (mHA)-
triggered proliferation of donor-derived CD4+ T cells in a Fas-
dependent manner (110). Evidence from Ruggeri L’s report has
indicated that the KIR ligand incompatibility between donor and
recipient might endow donor-derived NK cells to prevent the
occurrence of GVHD, via direct depletion of recipient-derived
antigen-presenting cells (APCs) (107). Clinical investigation on
the early NK cell reconsitution in 82 patients following T cell-
depleted allo-SCT have shown that NK cell number at day 14 after
HSCT was inversely correlated with the incidence of grade II-
IV aGVHD (111). Mechanistically, NK cells at day 14 produced
high levels of IL-10 and showed upregulation of gene transcript
of IL-10 compared with healthy individuals, suggesting that the
regulatory phenotype might enable NK cells to suppress the
development of GVHD (111).

Together, NK cells could prevent GVHD via (1) direct lysing
of activated T cells; (2) indirect inhibition of T cell proliferation
through depleting host APCs; (3) production of suppressive
cytokines, such as IL-10 (Figure 3).

Only one clinical study by Munneke et al. have tried to
elucidate the role of ILC1s in GVHD after HSCT (12). In the
study, patients without developing aGVHD diplayed increased
proportions of skin-homing donor-derived ILC1s. Notably,
following transplantation, patients with more severe GVHD
exhibited fewer circulating ILC1s in PB, compared with healthy
controls. Mobilization of ILC1s seemed to be associated with
increased expression of CD69, CLA, and CCR10which correlated
with less severe progression of GVHD (12). However, the
functionality of these aforementioned ILC1s was not determined
in this study. Further question is whether skin-homing ILC1s
alone can prevent the occurrence of GVHD? As we know,
multiple organs, including GI tract, skin, lung, liver, and mouth,
in recipients are targeted in GVHD, while ILC1s-expressing CLA
and CCR10, which are skin homing markers, might only traffic
to the skin. Therefore, further experiments where direct infusion
of ILC1s into recipients with GVHD need to be taken and will
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FIGURE 3 | Role of ILCs in GVHD. NK cells can suppress GVHD via three main mechanisms, including direct lysing of activated T cells, indirect inhibition of T cell

proliferation through depleting host APCs and production of suppressive cytokines, such as IL-10. ILC1 cells might migrate to the skin and alleviate cutaneous GVHD.

Intravenous infusion of donor-derived ILC2 cells into ongoing GVHD mice can reduce the production of Th1 and Th17 cells while increasing the number of MDSCs via

secreting IL-13. ILC3 cells play a protective role in GVHD. Recipient-derived ILC3 cells can alleviate pretreatment regimen-induced GI tract lesion via secretion of

IL-22. Furthermore, these ILC3 cells can improve thymopoiesis in the hosts after HSCT.

be beneficial to the understanding of the role of ILC1s in the
prevention of GVHD.

It has been shown that ILC2 cells in the lower GI tract
but not in the lung are sensitive to conditioning treatment
and exhibit a limited repopulation ability from donor bone
marrow (112). Remarkably, a single infusion of donor-derived
ILC2 cells at day 7 post-HSCT was shown to remain effective
at reducing the severity and mortality of ongoing aGVHD in
murine model. Intravenously infused ILC2 cells migrated to
the GI tract, produced Th2 cytokines, limited inflammatory
Th1 and Th17 cells, and induced myeloid-derived suppressor
cells (MDSCs). IL-13 produced by ILC2 cells seemed to be
involved in this process. Importantly, infusion of donor ILC2
cells did not affect the beneficial graft-vs.-leukemia (GVL) effect
(106). Collectively, these data indicate that intravenously infused
donor-derived ILC2 cells have the capacity to alleviate ongoing
aGVHD without affecting the beneficial GVL effect in murine
models (112). However, several questions still require further
elucidation. For instance, how do intravenously infused donor-
derived ILC2 cells migrate to the GI tract in the context of
GVHD?Why do these cells not migrate to the lungs of recipients?
Furthermore, how do these cells survive during the migration
process? All these questions require further investigation.

The Role of Recipient-Derived ILCs in GVHD

An increasing body of evidence has indicated that ILC3 cells
have the capacity to promote tissue repair. Under homeostatic
circumstances, ILC3 cells can respond to environmental signals
and maintain tissue homeostasis. In contrast, abnormal signals
from infection or tissue damage can activate the ILC3 response

(9, 113, 114). Therefore, in GVHD conditions, induction of
regimen-induced tissue damage might cause a dysregulated
ILC3 response.

In an animal model, a deficiency in recipient-derived
IL-22 was shown to significantly increase the severity and
mortality of GVHD (113). Furthermore, pretransplantation
conditions increased the intestinal expression of IL-22 in
recipients, which was mainly produced by recipient-derived
CD45+CD3−RORγt+NKp46−IL-7Rα+ CCR6+ ILCs. In
accordance, IL-22 deficiency resulted in more severe epithelial
damage during aGVHD and significant loss of intestinal stem
cells. Taken together, these data suggest that loss of tissue-
protective IL-22-producing ILCs in the intestines of recipients
might be a pathological factor responsible for the GI tract lesions
observed in aGVHD (113).

Recent work has shed light on the correlation between
thymopoiesis and GVHD. Mice with GVHD after allo-HSCT
exhibited a loss of intrathymic ILC3s, decreased intrathymic
levels of IL-22 and impaired recovery of thymopoiesis. Not
surprisingly, IL-22−/− mice that underwent transplantation
showed an increased severity of GVHD-associated thymic
injury. IL-22 receptor−/− recipient mice that underwent
transplantation displayed increased numbers of cortical and
medullary thymic epithelial cells (TECs). In accordance,
administration of exogenous IL-22 after transplantation
improved thymopoiesis and promoted the development of
new thymus-derived peripheral T cells (115, 116). These
findings encourage researchers to uncover what actually
occurs after loss of ILC3s in the hosts induced by an
induction regimen.
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CONCLUDING REMARKS

Although studies on ILCs have become a focus of research in
recent years, the precise role of ILCs in the pathogenesis of
GVHD remains elusive. Many questions remain to be answered
in the future. For instance, what is the precise role of ILC1
cells in the pathology of GVHD? Can intravenous infusion of
ILC3 cells alleviate ongoing GVHD? Lastly, how do these cells
migrate to the GI tract in recipients after intravenous transfer?
How about the clinical application of ILC2 for the treatment
of GVHD? A recent study identified a cell population–ILCregs
(117). Like Tregs, ILCregs have the suppressive ability to curb
ILCs. Therefore, the question remains whether ILCregs play a
role in the pathogenesis of GVHD? Additionally, what is the
interaction between ILCs and ILCregs at the onset of GVHD?
These questions require further elucidation in future work.
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