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Biopsies in Prostate Cancer Active
Surveillance Programs

Anirudh Tomer , Dimitris Rizopoulos, Daan Nieboer, Frank-Jan Drost,

Monique J. Roobol, and Ewout W. Steyerberg

Background. Low-risk prostate cancer patients enrolled in active surveillance programs commonly undergo biopsies
for examination of cancer progression. Biopsies are conducted as per a fixed and frequent schedule (e.g., annual
biopsies). Since biopsies are burdensome, patients do not always comply with the schedule, which increases the risk
of delayed detection of cancer progression. Objective. Our aim is to better balance the number of biopsies (burden)
and the delay in detection of cancer progression (less is beneficial) by personalizing the decision of conducting biop-
sies. Data Sources. We used patient data of the world’s largest active surveillance program (Prostate Cancer
Research International Active Surveillance; PRIAS). It enrolled 5270 patients, had 866 cancer progressions, and an
average of 9 prostate-specific antigen (PSA) and 5 digital rectal examination (DRE) measurements per patient.
Methods. Using joint models for time-to-event and longitudinal data, we model the historical DRE and PSA mea-
surements and biopsy results of a patient at each follow-up visit. This results in a visit and patient-specific cumulative
risk of cancer progression. If this risk is above a certain threshold, we schedule a biopsy. We compare this persona-
lized approach with the currently practiced biopsy schedules via an extensive and realistic simulation study, based on
a replica of the patients from the PRIAS program. Results. The personalized approach saved a median of 6 biopsies
(median: 4, interquartile range [IQR]: 2–5) compared with the annual schedule (median: 10, IQR: 3–10). However,
the delay in detection of progression (years) is similar for the personalized (median: 0.7, IQR: 0.3–1.0) and the
annual schedule (median: 0.5, IQR: 0.3–0.8). Conclusions. We conclude that personalized schedules provide substan-
tially better balance in the number of biopsies per detected progression for men with low-risk prostate cancer.
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Prostate cancer is the second most frequently diagnosed
cancer in men worldwide.1 In prostate cancer screening
programs, many of the diagnosed tumors are clinically
insignificant (overdiagnosed).2 To avoid further over-
treatment, patients diagnosed with low-grade prostate
cancer are commonly advised to join active surveillance
(AS) programs. In AS, invasive treatments such as sur-
gery are delayed until cancer progresses. Cancer progres-
sion is routinely monitored via serum prostate-specific
antigen (PSA) measurements, a protein biomarker; digi-
tal rectal examination (DRE) measurements, a measure
of the size and location of the tumor; and biopsies.

While larger values for PSA and/or DRE may indi-
cate cancer progression, biopsies are the most reliable can-
cer progression examination technique used in AS. When a
patient’s biopsy Gleason score becomes larger than 6 (posi-
tive biopsy, cancer progression detected), AS is stopped,
and the patient is advised treatment.3 However, biopsies
are invasive, painful, and prone to medical complications.4,5
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Hence, they are conducted intermittently until a positive
biopsy. Consequently, at the time of a positive biopsy, can-
cer progression may be observed with a delay of unknown
duration. This delay is defined as the difference between the
time of the positive biopsy and the unobserved true time of
cancer progression. Thus, the decision to conduct biopsies
requires a compromise between the burden of biopsy and
the potential delay in the detection of cancer progression.

In AS, a delay in the detection of cancer progression
of about 12 to 14 months is assumed to be unlikely to
substantially increase the risk of adverse downstream
outcomes.6,7 However, for biopsies, there is little consen-
sus on the time gap between them.8–10 Many AS pro-
grams focus on minimizing the delay in the detection of
cancer progression, by scheduling biopsies annually for
all patients. A drawback of annual biopsies, and other
currently practiced fixed/heuristic schedules,8–10 is that they
ignore the large variation in the time of cancer progression
of AS patients. While they may work well for patients who
progress early (fast progressing) in AS, for a large propor-
tion of patients who do not progress, or progress late (slow
progressing) in AS, many unnecessary burdensome biop-
sies are scheduled. To mediate the burden between the fast
and slow progressing patients, the world’s largest AS pro-
gram, the Prostate Cancer Research International Active
Surveillance11 (PRIAS), schedules annual biopsies only for
patients with a low PSA doubling time.3 For everyone else,
PRIAS schedules biopsies at the following fixed follow-up
times: year 1, 4, 7, and 10 and every 5 years thereafter.
Despite this effort in PRIAS, patients may get scheduled
for 4 to 10 biopsies over a period of 10 years. Therefore,
compliance for biopsies is low in PRIAS.3 This can lead to
a delay in the detection of cancer progression and reduce
the effectiveness of AS.

We aim to better balance the number of biopsies
(more are burdensome) and the delay in the detection
of cancer progression (less is beneficial) than currently
practiced schedules. We intend to achieve this by

personalizing the decision to conduct biopsies (see
Figure 1). These decisions are made at a patient’s pre-
scheduled follow-up visits for DRE and PSA measure-
ments. To develop the personalized decision-making
methodology, we use the data of the patients enrolled in
the PRIAS study. We model these data and develop the
personalized approach using joint models for time-to-
event and longitudinal data.12,13 To compare the perso-
nalized approach with current schedules, we conduct an
extensive simulation study based on a replica of the
patients from the PRIAS program.

Methods

Study Population

To develop our methodology, we use the data of prostate
cancer patients from the world’s largest AS study called
PRIAS11 (see Table 1). More than 100 medical centers
from 17 countries worldwide contribute to the collection
of data, using a common study protocol and a web-
based tool, both available at www.prias-project.org. We
use data collected over a period of 10 years, between
December 2006 (beginning of the PRIAS study) and
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Figure 1 The personalized decision-making problem: available
data of a patient j, who had his latest negative biopsy at
t= 2:6 years. The shaded region shows the time period in
which the patient is at risk of cancer progression. His current
prescheduled follow-up visit for a digital rectal examination
(DRE) and measurement of prostate-specific antigen (PSA) is
at s= 4 years. Using his entire history of DRE Ydj(s) and PSA
Ypj(s) measurements up to the current visit s, and the time of
the latest biopsy t, we intend to make a decision on scheduling
a biopsy at the current visit.

500 Medical Decision Making 39(5)



December 2016. The primary event of interest is cancer
progression detected upon a positive biopsy. The time of
cancer progression is the interval censored because biop-
sies are scheduled periodically. Biopsies are scheduled as
per the PRIAS protocol (see the introduction section).
There are 3 types of competing events, namely, death,
removal of patients from AS on the basis of their observed
DRE and PSA measurements, and loss to follow-up. We
assume these 3 types of events to be censored observations
(see Supplementary Appendix A.5 for details). However,
our model allows removal of patients to depend on
observed longitudinal data and baseline covariates of the
patient. Under the aforementioned assumption of censor-
ing, Figure 2 shows the cumulative risk of cancer progres-
sion over the study follow-up period.

For all patients, PSA measurements (ng/mL) are
scheduled every 3 months for the first 2 years and every
6 months thereafter. The DRE measurements are sched-
uled every 6 months. We use the DRE measurements as
DRE = T1c versus DRE . T1c. A DRE measurement
equal to T1c14 indicates a clinically inapparent tumor
that is not palpable or visible by imaging, while tumors
with DRE . T1c are palpable.

Data accessibility. The PRIAS database is not openly
accessible. However, access to the database can be

requested on the basis of a study proposal approved by
the PRIAS steering committee. The website of the
PRIAS program is www.prias-project.org.

A Bivariate Joint Model for the Longitudinal
PSA, DRE Measurements, and Time of Cancer
Progression

Let T�i denote the true cancer progression time of the
i- th patient included in PRIAS. Since biopsies are con-
ducted periodically, T�i is observed with interval censor-
ing li\T�i � ri. When progression is observed for the
patient at his latest biopsy time ri, then li denotes the
time of the second latest biopsy. Otherwise, li denotes
the time of the latest biopsy and ri =‘. Let ydi and ypi

denote his observed DRE and PSA longitudinal mea-
surements, respectively. The observed data of all n

patients is denoted by Dn = fli, ri, ydi, ypi; i= 1, . . . , ng.
In our joint model, the patient-specific DRE and PSA

measurements over time are modeled using a bivariate
generalized linear mixed-effects submodel. The submodel
for DRE is given by (see Figure 3A)

Figure 2 Estimated cumulative risk of cancer progression in
active surveillance (AS) for patients in the Prostate Cancer
Research International Active Surveillance (PRIAS) data set.
Nearly 50% of patients (slow progressing) do not progress in
the 10-year follow-up period. Cumulative risk is estimated
using nonparametric maximum likelihood estimation,15 to
account for interval censored cancer progression times
observed in the PRIAS data set. Censoring includes death,
removal from AS on the basis of observed longitudinal data,
and patient dropout.

Table 1 Summary Statistics for the PRIAS Data Set

Data Value

Total patients 5270
Cancer progression (primary event) 866
Loss to follow-up (anxiety or unknown) 685
Removal on the basis of PSA and DRE 464
Death (unrelated to prostate cancer) 61
Death (related to prostate cancer) 2
Median age (years) 70 (IQR: 65–75)
Total PSA measurements 46 015
Median number of PSA
measurements per patient

7 (IQR: 7–12)

Median PSA value (ng/mL) 5.6 (IQR: 4.0–7.5)
Total DRE measurements 25 606
Median number of DRE measurements
per patient

4 (IQR: 3–7)

DRE = T1c (%) 23 538/25 606 (92%)

PRIAS, Prostate Cancer Research International Active Surveillance;

PSA, prostate-specific antigen; DRE, digital rectal examination; IQR,

interquartile range. The primary event of interest is cancer

progression. A DRE measurement equal to T1c14 indicates a clinically

inapparent tumor that is not palpable or visible by imaging, while

tumors with DRE . T1c are palpable.
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logit ½Prfydi(t).T1cg�=b0d + b0di +(b1d + b1di)t
+b2d(Age i � 70)
+b3d(Age i � 70)2

ð1Þ

where t denotes the follow-up visit time and Age i is the
age of the i-th patient at the time of inclusion in AS. We
have centered the age variable around the median age of
70 years for better convergence during parameter estima-
tion. However, this does not change the interpretation of
the parameters corresponding to the age variable. The
fixed-effect parameters are denoted by fb0d , . . . ,b3dg,
and fb0di, b1dig are the patient-specific random effects.
With this definition, we assume that the patient-specific
log odds of obtaining a DRE measurement larger than
T1c remain linear over time.

The mixed-effects submodel for PSA is given by (see
Figure 3B):

log2fypi(t)+ 1g=mpi(t)+ epi(t),mpi(t)

=b0p + b0pi +
X4

k = 1

(bkp + bkpi)

Bk(t,K)+b5p(Age i � 70)+b6p(Age i � 70)2,

ð2Þ

where mpi(t) denotes the underlying measurement error–
free value of log2 (PSA + 1) transformed16,17 measure-
ments at time t. We model it nonlinearly over time using
B-splines.18 To this end, our B-spline basis function
Bk(t,K) has 3 internal knots at K= f0:1, 0:7, 4g years
and boundary knots at 0 and 5.42 years (95th percentile
of the observed follow-up times). This specification
allows fitting the log2 (PSA + 1) levels in a piecewise
manner for each patient separately. The internal and
boundary knots specify the different time periods (analo-
gously pieces) of this piecewise nonlinear curve. The
fixed-effect parameters are denoted by fb0p, . . . ,b6pg,
and fb0pi, . . . , b4pig are the patient-specific random
effects. The error epi(t) is assumed to be t-distributed with
3 degrees of freedom (see Supplementary Appendix B.1)
and scale s and is independent of the random effects.

To account for the correlation between the DRE and
PSA measurements of a patient, we link their corre-
sponding random effects. More specifically, the complete
vector of random effects bi =(b0di, b1di, b0pi, . . . , b4pi)

T is
assumed to follow a multivariate normal distribution
with mean zero and variance-covariance matrix D.

To model the impact of DRE and PSA measurements
on the risk of cancer progression, our joint model uses a
relative risk submodel. More specifically, the hazard of can-
cer progression hi(t) at a time t is given by (see Figure 3D):

hi(t)= h0(t) exp g1(Age i � 70)+ g2(Age i � 70)2
�

+a1d logit ½Prfydi(t).T1cg�
+a1pmpi(t)+a2p

∂mpi(t)

∂t

�
,

ð3Þ

where g1, g2 are the parameters for the effect of age. The
parameter a1d models the impact of log odds of obtain-
ing a DRE . T1c on the hazard of cancer progression.
The impact of PSA on the hazard of cancer progression
is modeled in 2 ways: 1) the impact of the error-free
underlying PSA value mpi(t) (see Figure 3B) and 2) the
impact of the underlying PSA velocity ∂mpi(t)=∂t (see
Figure 3C). The corresponding parameters are a1p and
a2p, respectively. Lastly, h0(t) is the baseline hazard at
time t and is modeled flexibly using P-splines.19 The

Figure 3 Illustration of the joint model fitted to the Prostate
Cancer Research International Active Surveillance data set.
(A) Observed digital rectal examination (DRE) measurements
and the fitted probability of obtaining DRE . T1c (equation
[1]) for the i-th patient. (B) Observed and fitted log2 (PSA + 1)

measurements (equation [2]). (C) Estimated log2 (PSA + 1)
velocity (velocity cannot be observed directly) over time. The
hazard function (equation [3]) shown in D depends on the
fitted log odds of having a DRE . T1c, and the fitted
log2 (PSA +1) value and velocity.
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detailed specification of the baseline hazard h0(t) and the
joint parameter estimation of the 2 submodels using the
Bayesian approach (R package JMbayes

20) are presented
in Supplementary Appendix A.

Personalized Decisions for Biopsy

Let us assume that a decision of conducting a biopsy is
to be made for a new patient j, shown in Figure 1, at
his current follow-up visit time s. Let t� s be the time of
his latest negative biopsy. Let Ydj(s) and Ypj(s) denote his

observed DRE and PSA measurements up to the current
visit, respectively. From the observed measurements, we
want to extract the underlying measurement error–free
trend of log2 (PSA + 1) values and velocity and the log
odds of obtaining DRE . T1c. We intend to combine
them to inform us when the cancer progression is to be
expected (see Figure 4) and to further guide the decision
making on whether to conduct a biopsy at the current
follow-up visit. The combined information is given by
the following posterior predictive distribution g(T�j ) of
his time of cancer progression T�j .t (see Supplementary
Appendix A.4 for details):

g(T�j )= pfT�j jT�j .t,Ydj(s),Ypj(s),Dng: ð4Þ

The distribution g(T�j ) is not only patient specific but also
updates as extra information is recorded at future follow-
up visits.

A key ingredient in the decision of conducting a
biopsy for patient j at the current follow-up visit time s is
the personalized cumulative risk of observing a cancer
progression at time s (illustrated in Figure 4). This risk
can be derived from the posterior predictive distribution
g(T �j ),

21 and for s � t, it is given by

Rj(sjt)= PrfT �j � sjT �j .t,Ydj(s),Ypj(s),Dng: ð5Þ

A simple and straightforward approach to decide upon
conducting a biopsy for patient j at the current follow-
up visit would be to do so if his personalized cumulative
risk of cancer progression at the visit is higher than a cer-
tain threshold 0� k� 1. For example, as shown in
Figure 4B, biopsy at a visit may be scheduled if the perso-
nalized cumulative risk is higher than 10% (example risk
threshold). This decision-making process is iterated over
the follow-up period, incorporating on each subsequent
visit the newly observed data, until a positive biopsy is
observed. Subsequently, an entire personalized schedule
of biopsies for each patient can be obtained.

The choice of the risk threshold dictates the schedule
of biopsies and has to be made on each subsequent
follow-up visit of a patient. In this regard, a straightfor-
ward approach is choosing a fixed risk threshold, such as
5% or 10% risk, at all follow-up visits. Fixed risk thresh-
olds may be chosen by patients and/or doctors according
to how they weigh the relative harms of doing an unne-
cessary biopsy versus a missed cancer progression (e.g.,
10% threshold means a 1:9 ratio) if the biopsy is not
conducted.22 An alternative approach is that at each
follow-up visit a unique threshold is chosen on the basis
of its classification accuracy. More specifically, given the
time of latest biopsy t of patient j, and his current visit

Figure 4 Illustration of the personalized decision of biopsy for
patient j at 2 different follow-up visits. Biopsy is recommended
if the personalized cumulative risk of cancer progression
estimated from the joint model fitted to the observed data of
the patient is higher than the example risk threshold for biopsy
(k= 10%). (A) Biopsy is not recommended for the patient j

at the follow-up visit time s= 4 years because his estimated
personalized cumulative risk of cancer progression (7.8%) is
less than the threshold. (B) Biopsy is recommended for patient
j at the follow-up visit time s= 5:3 years, because his
estimated personalized cumulative risk of cancer progression
(13.5%) is more than the threshold.
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time s, we find a visit-specific biopsy threshold k, which
gives the highest cancer progression detection rate (true-
positive rate; TPR) for the period (t, s�. However, we also
intend to balance for unnecessary biopsies (high false-
positive rate) or a low number of correct detections (high
false-negative rate) when the false-positive rate is mini-
mized. An approach to mitigating these issues is to maxi-
mize the TPR and positive predictive value (PPV)
simultaneously. To this end, we use the F 1 score, which
is a composite of both TPR and PPV (estimated as in
Rizopoulos et al.23) and is defined as

F1(t, s, k)= 2
TPR(t, s, k) PPV(t, s, k)

TPR(t, s, k)+ PPV(t, s, k)
,

TPR(t, s, k)= PrfRj(sjt).kjt\T �j � sg,
PPV(t, s, k)= Prft\T �j � sjRj(sjt).kg,

ð6Þ

where TPR(t, s, k) and PPV(t, s, k) are the time-
dependent TPR and PPV, respectively. These values are
unique for each combination of the time period (t, s� and
the risk threshold k that is used to discriminate between
the patients whose cancer progresses in this time period
versus the patients whose cancer does not progress. The
same holds true for the resulting F1 score denoted by
F1(t, s, k). The F1 score ranges between 0 and 1, where a
value equal to 1 indicates perfect TPR and PPV. Thus,
the highest F1 score is desired in each time period (t, s�.
This can be achieved by choosing a risk threshold k that
maximizes F 1(t, s, k). That is, during a patient’s visit at
time s, given that his latest biopsy was at time t, the visit-
specific risk threshold to decide a biopsy is given by
k=argmaxkF 1(t, s, k). The criteria on which we evalu-
ate the personalized schedules based on fixed and visit-
specific risk thresholds are the total number of biopsies
scheduled and the delay in detection of cancer progres-
sion (details are given in the Results section).

Simulation Study

Although the personalized decision-making approach is
motivated by the PRIAS study, it is not possible to eval-
uate it directly on the PRIAS data set. This is because
the patients in PRIAS have already had their biopsies as
per the PRIAS protocol. In addition, the true time of
cancer progression is interval or right censored for all
patients, making it impossible to correctly estimate the
delay in detection of cancer progression due to a particu-
lar schedule. To this end, we conduct an extensive simu-
lation study to find the utility of personalized, PRIAS,
and fixed/heuristic schedules. For a realistic comparison,
we simulate patient data from the joint model fitted to

the PRIAS data set. The simulated population has the
same 10-year follow-up period as the PRIAS study. In
addition, the estimated relations between DRE and PSA
measurements and the risk of cancer progression are
retained in the simulated population.

From this population, we first sample 500 data sets,
each representing a hypothetical AS program with 1000
patients in it. We generate a true cancer progression time
for each of the 5003 1000 patients and then sample a set
of DRE and PSA measurements at the same follow-up
visit times as given in PRIAS protocol. We then split
each data set into training (750 patients) and test (250
patients) parts and generate a random and noninforma-
tive censoring time for the training patients. We next fit
a joint model of the specification given in equations (1),
(2), and (3) to each of the 500 training data sets and
obtain Markov chain Monte Carlo samples from the 500
sets of the posterior distribution of the parameters.

In each of the 500 hypothetical AS programs, we use
the corresponding fitted joint models to develop cancer
progression risk profiles for each of the 500 3 250 test
patients. We make the decision of biopsies for patients at
their prescheduled follow-up visits for DRE and PSA
measurements (see the Study Population section), on the
basis of their estimated personalized cumulative risk of
cancer progression. These decisions are made iteratively
until a positive biopsy is observed. A recommended gap
of 1 year between consecutive biopsies3 is also main-
tained. Subsequently, for each patient, an entire persona-
lized schedule of biopsies is obtained.

We evaluate and compare both personalized and cur-
rently practiced schedules of biopsies in this simulation
study. Comparison of the schedules is based on the num-
ber of biopsies scheduled and the corresponding delay in
the detection of cancer progression. We evaluate the fol-
lowing currently practiced fixed/heuristic schedules:
biopsy annually, biopsy every 1½ years, biopsy every 2
years, and biopsy every 3 years. We also evaluate the
biopsy schedule of the PRIAS program (see the intro-
duction section). For the personalized biopsy schedules,
we evaluate schedules based on 3 fixed risk thresholds:
5%, 10%, and 15%, corresponding to a missed cancer
progression being 19, 9, and 5.5 times more harmful than
an unnecessary biopsy,22 respectively. We also implement
a personalized schedule in which for each patient, visit-
specific risk thresholds are chosen using the F 1 score.

Results

From the joint model fitted to the PRIAS data set, we
found that both log2fPSA + 1g velocity and log odds of

504 Medical Decision Making 39(5)



having DRE . T1c were significantly associated with
the hazard of cancer progression. For any patient, an
increase in log2fPSA + 1g velocity from –0.03 to 0.16
(first and third quartiles of the fitted velocities, respec-
tively) corresponds to a 1.94-fold increase in the hazard
of cancer progression. Whereas an increase in odds of
DRE . T1c from –6.650 to –4.356 (first and third quar-
tiles of the fitted log odds, respectively) corresponds to a
1.40-fold increase in the hazard of cancer progression.
Detailed results pertaining to the fitted joint model are
presented in Supplementary Appendix B.

Comparison of Various Approaches for Biopsies

From the simulation study, we obtain the number of
biopsies and the delay in detection of cancer progression
for each of the 500 3 250 test patients using different
schedules. Figure 5 shows that the personalized and

PRIAS approaches fall in the region of better balance
between the median number of biopsies and the median
delay than fixed/heuristic schedules. We next evaluate
these schedules on the basis of both the median and
interquartile range (IQR) of the number of biopsies and
delay (see Figure 6). For brevity, only the most widely
used annual and PRIAS schedules, the proposed perso-
nalized approach with fixed risk thresholds of 5% and

Figure 5 Burden-biopsy frontier: Median number of biopsies
(x-axis) and median delay in detection of cancer progression
(in years, y-axis), estimated from the simulation study. Results
for currently practiced fixed/heuristic biopsy schedules are
shown by red squares, for Prostate Cancer Research
International Active Surveillance schedule by a blue rhombus,
and for personalized schedules by green triangles. Types of
personalized schedules: risk 15%, risk 10%, and risk 5%
approaches, schedule a biopsy if the cumulative risk of cancer
progression at a visit is more than 15%, 10%, and 5%,
respectively. Risk: F1 works similar as previous, except that
for each patient, a visit-specific risk threshold is chosen by
maximizing the F1 score (see the Methods section). The green-
shaded region depicts the region of better balance in the
median number of biopsies and median delay than the
currently practiced fixed/heuristic schedules.

Figure 6 Boxplot showing variation in the number of biopsies
and the delay in detection of cancer progression, in years (time
of positive biopsy – true time of cancer progression) for
various biopsy schedules. Biopsies are conducted until cancer
progression is detected. (A) Results for simulated patients who
had a faster speed of cancer progression, with progression
times between 0 and 3.5 years. (B) Results for simulated
patients who had an intermediate speed of cancer progression,
with progression times between 3.5 and 10 years. (C) Results
for simulated patients who did not have cancer progression in
the 10 years of follow-up. Types of personalized schedules:
risk 10% and risk 5% approaches, schedule a biopsy if the
cumulative risk of cancer progression at a visit is more than
10% and 5%, respectively. Risk: F1 works similar as previous,
except that a visit-specific risk threshold is chosen by
maximizing the F1 score (see the Methods section). Annual
corresponds to a schedule of yearly biopsies, and PRIAS

(Prostate Cancer Research International Active Surveillance)
corresponds to biopsies as per the PRIAS protocol (see the
introduction).
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10%, and visit-specific threshold chosen using the F1

score are discussed next (see Supplementary Appendix C
for remaining).

Since patients have varying cancer progression speeds,
the impact of each schedule also varies with it. To high-
light these differences, we divide the results for 3 types of
patients, as per their time of cancer progression. They
are fast, intermediate, and slow progressing patients.
Although such a division may be imperfect and can be
done only retrospectively in a simulation setting, we
show results for these 3 groups for the purpose of illus-
tration. Roughly 50% of the patients did not obtain can-
cer progression in the 10-year follow-up period of the
simulation study. We assume these patients to be slow
progressing patients. We assume that fast progressing
patients are the ones with an initially misdiagnosed state
of cancer24 or high-risk patients who choose AS instead
of immediate treatment upon diagnosis. These are
roughly 30% of the population, having a cancer progres-
sion time of less than 3.5 years. We label the remaining
20% patients as intermediate progressing patients.

For fast progressing patients (Figure 6A), we note
that the personalized schedules with a fixed 10% risk
threshold and visit-specific threshold chosen using the F1

score reduce 1 biopsy for 50% of the patients, compared
with PRIAS and the annual schedule. Despite this, the
delay (years) is similar for the personalized schedule with
a fixed 10% risk threshold (median: 0.7, IQR: 0.3–1.0)
and the commonly used annual (median: 0.6, IQR: 0.3–
0.9) and PRIAS (median: 0.7, IQR: 0.3–1.0) schedules.

For intermediate progressing patients (Figure 6A), we
note that the delay (years) due to a personalized schedule
with fixed 5% risk threshold (median: 0.6, IQR: 0.3–0.9)
is comparable to that of annual schedule (median 0.5,
IQR: 0.2–0.7). However, it schedules fewer biopsies
(median: 6, IQR: 5–7) than the annual schedule (median:
7, IQR: 5–8). The delays (years) for PRIAS (median: 0.7,
IQR: 0.3–1.3) and personalized schedule with a fixed
10% risk (median: 0.7, IQR: 0.4–1.3) are similar, but the
personalized approach schedules 1 fewer biopsy for 50%
of the patients. Although the approach with a visit-
specific risk threshold chosen using the F1 score sche-
dules fewer biopsies than the 10% fixed risk approach, it
also has a higher delay.

The patients who are at the most advantage with the
personalized schedules are the slow progressing patients.
These are a total of 50% patients who did not progress
during the entire study. Hence, the delay is not available
for these patients (Figure 6C). For all of these patients,
an annual schedule leads to 10 (unnecessary) biopsies.
The schedule of the PRIAS program schedules a median

of 6 biopsies (IQR: 4–8). In comparison, the biopsies
scheduled by the personalized schedules using a fixed
10% risk threshold (median: 4, IQR: 4–6) and visit-
specific risk chosen using the F1 score (median: 2, IQR:
2–4) are much fewer.

Overall, we observed that the personalized schedule
that uses a 10% risk threshold at all follow-up
visits is dominant over the PRIAS schedule, biennial
schedule of biopsies, and biopsies every 1½ years (see
Supplementary Appendix C for the latter 2 schedules).
This personalized schedule not only schedules fewer
biopsies than the aforementioned currently practiced
schedules, but the delay in detection of cancer progres-
sion is also either equal or less. The personalized sched-
ule that uses a risk threshold chosen on the basis of
classification accuracy (F1 score) is dominant over the
triennial schedule (see Supplementary Appendix C) of
biopsies. The personalized schedule that uses a 5% risk
threshold schedules fewer biopsies than the annual
schedule, while the delay is only trivially more than the
annual schedule.

Discussion

We proposed a methodology that better balances the
number of biopsies and the delay in detection of cancer
progression than the currently practiced biopsy schedules
for low-risk prostate cancer patients enrolled in AS pro-
grams. The proposed methodology combines a patient’s
observed DRE and PSA measurements and the time of
the latest biopsy into a personalized cancer progression
risk function. If the cumulative risk of cancer progres-
sion at a follow-up visit is above a certain threshold, then
a biopsy is scheduled. We conducted an extensive simula-
tion study, based on a replica of the patients from the
PRIAS program, to compare this personalized approach
for biopsies with the currently practiced biopsy sche-
dules. We found personalized schedules to be dominant
over many of the current biopsy schedules (see the
Results section).

The main reason for the better performance of perso-
nalized schedules is that they account for the variation in
cancer progression rate between patients and also over
time within the same patient. In contrast, the existing
fixed/heuristic schedules ignore that roughly 50% of the
patients never progress in the first 10 years of follow-up
(slow progressing patients) and do not require biopsies.
The fast progressing patients require early detection.
However, existing methods of identifying these patients,
such as the use of PSA doubling time in PRIAS, inap-
propriately assume that PSA evolves linearly over time.
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Thus, they may not correctly identify such patients. The
personalized approach, however, models the PSA pro-
files nonlinearly. Furthermore, it appends information
from PSA with information from DRE and previous
biopsy results and combines them into a single cancer
progression risk function. The risk function is a finer
quantitative measure than individual data measurements
observed for the patients. In comparison to decision
making with flowcharts, the risk as a single measure of a
patient’s underlying state of cancer may facilitate shared
decision making for biopsies.

Existing work on reducing the burden of biopsies in
AS primarily advocates less frequent heuristic schedules
of biopsies6 (e.g., biopsies biennially instead of annually).
To our knowledge, risk-based biopsy schedules have
barely been explored in AS.9,10 The part of our results
pertaining to the fixed/heuristic schedules is comparable
with corresponding results obtained in existing work,6

even though the AS cohorts are not the same. Thus, we
anticipate similar validity for the results pertaining to the
personalized schedules.

A limitation of the personalized approach is that the
choice of risk threshold is not straightforward, as differ-
ent thresholds lead to different combinations of the num-
ber of biopsies and the delay in detection of cancer
progression. An approach is to choose a risk threshold
that leads to personalized schedule dominant (e.g., 10%
risk) over the currently practiced schedules, for a given
delay. Since personalized biopsy schedules are less bur-
densome, they may lead to better compliance. A second
limitation is that the results that we presented are valid
only in a 10-year follow-up period, whereas prostate can-
cer is a slow progressing disease. Thus, more detailed
results, especially for slow progressing patients, cannot
be estimated. However, very few AS cohorts have a lon-
ger follow-up period than PRIAS.9 In a screening setting,
often the ethno-racial background of the patient and the
history of cancer in first-degree relatives are checked.
Our model does not take into account either of these.
The reason is that the history of cancer in relatives been
found to be predictive of cancer progression only in
African American patients.25,26 This is also evident by
the fact that PRIAS and many other surveillance pro-
grams do not use this information in their biopsy proto-
cols.10,11 In addition, patients who have a higher risk of
an aggressive form of cancer are usually not recom-
mended AS. Hence, the proposed model is relevant only
for low-risk prostate cancer patients eligible for AS. An
exception is the AS patients who are old and/or have
comorbid illnesses. Currently, such patients may be

removed from AS and are instead offered the less inten-
sive watchful waiting11 option. It is also possible to
model watchful waiting as a competing risk in our model.
However, this falls outside the scope of the current work
because cancer progression as detected via biopsy is the
standard trigger for treatment advice. Lastly, our results
are not valid when the patient data are missing not at
random.

There are multiple ways to extend the personalized
decision-making approach. For example, biopsy Gleason
grading is susceptible to interobserver variation.27 Thus,
accounting for it in our model will be interesting to
investigate further. To improve the decision-making
methodology, future consequences of a biopsy can be
accounted for in the model by combining Markov deci-
sion processes with joint models for time-to-event and
longitudinal data. There is also a potential for including
diagnostic information from magnetic resonance imaging
(MRI), such as the volume of the prostate tumor as a
longitudinal measurement in our model. The resulting
predictions can be used to the decide the time of the next
MRI as well as to make a decision about biopsy. The
same holds true for the quality-of-life measures.
However, given the scarceness of both MRI and quality-
of-life measurements in the data set, including them in
the current model may not be feasible. We intend to fur-
ther validate our results in a multicenter AS cohort and
subsequently develop a web application to assist in mak-
ing shared decisions for biopsies.
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