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Abstract

The proposed research contributes to our understanding of incorporating heterogeneity in

discrete choice models with respect to exogenous variables and decision rules. Specifically,

the proposed latent segmentation based mixed models segment population to different clas-

ses with their own decision rules while also incorporating unobserved heterogeneity within

the segment level models. In our analysis, we choose to consider both random utility and

random regret theories. Further, instead of assuming the number of segments (as 2), we

conduct an exhaustive exploration with multiple segments across the two decision rules.

The model estimation is conducted using a stated preference data from 695 commuter

cyclists compiled through a web-based survey. The probabilistic allocation of respondents

to different segments indicates that female commuter cyclists are more utility oriented; how-

ever, the majority of the commuter cyclist’s choice pattern is consistent with regret minimiza-

tion mechanism. Overall, cyclists’ route choice decisions are influenced by roadway

attributes, cycling infrastructure availability, pollution exposure, and travel time. The analysis

approach also allows us to investigate time based trade-offs across cyclists belonging to dif-

ferent classes. Interestingly, we observe that the trade-off values in regret and utility based

segments for roadway attributes are similar in magnitude; but the values differ greatly for

cycling infrastructure and pollution exposure attributes, particularly for maximum exposure

levels.

Introduction

Population homogeneity

Discrete choice models and their variants are employed extensively for analyzing decision pro-

cesses in various fields including transportation, marketing, social science, bio-statistics, and

epidemiology. In discrete choice models, decision maker’s choice behavior is examined as a

response to several exogenous variables that include attributes of the choice alternative or

characteristics of the decision maker. The widely employed traditional discrete choice models

restrict the impact of exogenous variables to be the same across the entire sample of records.
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The assumption is referred to as population homogeneity and is often highlighted as a

limitation.

Several approaches have been employed to address population homogeneity restriction in

discrete choice models. Segmenting the population based on exogenous variables and estimat-

ing separate models for each segment is a common approach. However, because there may be

many variables to consider in the segmentation scheme, the number of segments (formed by

the combination of the potential segmentation variables) can explode rapidly. To address the

potential explosion of segments, clustering methods have been employed where target groups

are divided into different clusters based on a multivariate set of factors and separate models

are estimated for each cluster. However, both methods require allocating data records exclu-

sively to a particular cluster, and do not consider the possible effects of unobserved factors that

may moderate the impact of observed exogenous variables. Additionally, these approaches

might result in very few records in some clusters resulting in loss of estimation efficiency.

A second approach to allow heterogeneity effects (variations in the effects of variables

across the sample population) is to specify random coefficients (rather than imposing fixed

coefficients) (for example, see [1–5]). But, while the mean of the random coefficients can be

allowed to vary across decision makers based on observed exogenous variables, the random

coefficients approach usually restricts the variance and the distributional form to be the same

across all decision makers. A third approach to accommodate heterogeneity is to undertake an

endogenous (or sometimes also referred to as latent) segmentation approach (see, for example

[6–11]). In this approach, decision makers are allocated probabilistically to different segments,

and segment-specific choice models are estimated. At the same time, each segment is identified

based on a multivariate set of exogenous variables. The approach limits the number of seg-

ments to a manageable number (relative to the combinatorial scheme realized in the first

approach).

A further extension of this approach would be accommodating unobserved heterogeneity

within the segment specific choice models employing random parameters or error component

model structures (see Hess and Stathopoulos [12]); thus subsuming the choice models from

the second approach. Overall, the endogenous segmentation with segment level unobserved

heterogeneity, offers an elegant alternative to address heterogeneity (observed and unob-

served). In recent years, several studies have employed endogenous segmentation approaches

(with or without unobserved heterogeneity) across different areas in transportation (for exam-

ple, see [7–9, 11] in safety and see [6, 13–15] in travel behavior).

Decision rule homogeneity

The exact formulation of discrete choice models are a function of the decision rule employed.

In traditional discrete choice models, the analyst generally assumes the same decision rule

across the sample population. The predominantly adopted decision rule for developing discrete

choice models is random utility maximization (RUM) that hypothesizes that decision makers,

when faced with multiple alternatives with varying attributes, choose the alternative that pro-

vides them with the highest utility or satisfaction [16–18]. While random utility model formula-

tions have served as the predominant decision rule for discrete choice models, there is growing

recognition of their limitations. The implicit compensatory nature of the formulation allows for

a poor performance on an attribute (such as travel time) to be compensated by a positive perfor-

mance on another attribute (such as travel cost) [19]. In some choice occasions, such behavior

is not realistic. In recent years, motivated by research in behavioral economics, there has been

considerable interest in alternative decision rules for discrete choice models such as relative

advantage maximization [20], contextual concavity model [21], fully-compensatory decision

Decision rule heterogeneity in bicyclist route choice

PLOS ONE | https://doi.org/10.1371/journal.pone.0208309 November 30, 2018 2 / 19

https://doi.org/10.1371/journal.pone.0208309


making [22, 23], prospect theory (PT) [24, 25] and random regret minimization (RRM) [19,

26].

Current study

Based on the aforementioned discussion, it is evident that homogeneity in both exogenous var-

iable impact and decision rule restrict the flexibility offered by discrete choice models. In fact,

the model parameters estimated with these restrictions are likely to be biased. While several

research studies have focused on exogenous variable homogeneity, the decision rule homoge-

neity assumption has received less attention (for example see Hess et al. and Boeri et al. [27,

28]). The current research contributes to our understanding regarding heterogeneity in dis-

crete choice models with respect to both exogenous variables and decision rules. Specifically,

the proposed latent segmentation based mixed models segment population to different classes

with their own decision rules while also incorporating unobserved heterogeneity within the

segment level models. In our analysis, we choose to consider both random utility and random

regret theories. The random regret minimization approach has received wide application

because of its mathematical similarity to the random utility approach and its intuitive appeal

[26, 29–34]. In Hess et al., [27] a two-segment latent class model is proposed–one segment rep-

resented by random utility formulation and the other by random regret formulation. In our

approach, instead of assuming the number of segments (as 2), we conduct an exhaustive explo-

ration with multiple segments across the two decision rules. Further, within each segment, we

also allow for unobserved heterogeneity. The reader would note that the estimation of latent

class models become complex with increasing number of segments and presence of unob-

served heterogeneity (see Sobhani et al. [35] for some discussion). The extensive modeling

exercise is developed employing a stated preference data compiled to understand influence of

air pollution exposure on bicycle route choice.

The remainder of the paper is organized as follows. Next section provides a discussion of

econometric methodology applied followed by the empirical context. In the section after, data

source, variables considered, and model estimation results are presented in detail. Results

from the trade-off analysis is presented in the fifth section. Final section presents a summary

of findings and concludes the paper.

Econometric framework

In this section, we describe the mathematical formulation of the model used in the current

study. Let c (c = 1,2,. . .,C) be the index for cyclists, i (1,2,. . .,I) be the index for route alterna-

tives characterized by m (m = 1,2,. . .,M) attributes, and k (1,2,. . .,K) be the index for choice

occasions for each cyclist. In our case, I = 3 and K = 5 for all c. Let us also consider S possible

number of segments where the cyclists would be probabilistically assigned. The probability

that cyclist c belongs to segment s (s = 1,2,. . .,S) is given as:

Pcs ¼
expðg0szcÞ

PS
s¼1

expðg0szcÞ

zc is a (M x 1) column vector of cyclist attributes that influences the propensity of belonging to

segment s, g0s is a corresponding (M x 1) column vector of estimable coefficients. Within the

latent class approach, the unconditional probability of a cyclist c choosing a commuting route i
is given as:

PcðiÞ ¼
XS

s¼1

ðPcðiÞjsÞðPcsÞ
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where Pc(i)|s represents the probability of cyclist c choosing route i within the segment s. Note

that the decision paradigm used to obtain the conditional probability Pc(i)|s may follow either

utility or regret based unordered choice (traditionally multinomial logit) mechanism.

If a random utility based multinomial logit model is assumed to evaluate the route choice

decision accommodating unobserved heterogeneity, the conditional probability would take

the following form:

Pc ið Þjs ¼
Z YK

k¼1

expða0sxcikÞ
PR

r¼1
expða0sxcikÞÞ

 !

f að Þda

Here, a0s is a (L x 1) column vector of coefficients, and xcik is a (L x 1) column vector of route

attributes, where f(α) is a density function specified to be normally distributed with mean 0

and variance σ2.

On the other hand, if a random regret based multinomial logit model is assumed to evaluate

the route choice decision, the conditional probability would be given as:

Pc ið Þjs ¼
Z YK

k¼1

expð� RcikÞ
PR

r¼1
expð� RcikÞ

 !

f dð Þdd

Here, Rcik ¼
P

j6¼i

PM
m¼1

ln½1þ expfdmðxcjmk � xcimkÞg�; δm is a (Lx1) column vector of estima-

ble coefficients associated with attribute xm; xim and xjm are (Lx1) column vectors of route

attributes for the considered alternative i and another alternative j, respectively, where f(δ) is a

density function specified to be normally distributed with mean 0 and variance ρ2. The log-

likelihood function for the entire dataset with appropriate Pc(i)|s is as follows:

LL ¼
XC

c¼1
logðPcðiÞÞ

Contrary to the traditional endogenous segmentation approaches, capturing decision rule het-

erogeneity involves a more computationally intensive estimation approach. The estimation

approach begins with single segment models from each regime. Then, a new segment from

one of the two approaches is added. The process is continued until there is no further improve-

ment in data fit. The approach allows for multiple segments originating from the same deci-

sion rule i.e. the segmentation model can have multiple RUM and RRM segments; thus

offering enhanced flexibility. Finally, given the complexity of adding multiple segments from

both regimes, we also consider overall sample shares of the segments in arriving at the final

model as opposed to only data fit.

Empirical context

The analysis of population and decision rule heterogeneity is conducted drawing on an empiri-

cal context–impact of air pollution on bicycle route choice. While bicycling offers health bene-

fits, there is growing recognition that the potential health benefits might be offset by increased

exposure to air pollutants for bicyclists. Several research efforts have documented the potential

increased exposure to air pollution for bicyclists owing to their close proximity to traffic, high

respiration rates, and longer journeys [36–38]. Furthermore, there is growing evidence from

health research studies highlighting the potential consequences of increased air pollution expo-

sure (for example see Weichenthal et al. [39]). Thus, there is need to explore the impact of air

pollution exposure on bicycling choices.

An exhaustive review of literature on bicycling related decisions (such as decision to cycle,

frequency of cycling, and route choice) is beyond the scope of the paper. Given the focus of
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our current study, we provide a concise summary of literature on route choice decision process

for commuter cyclists (see Anowar et al. [40] for more details). For examining route choice,

studies relied on both stated preference (SP) [41–48] and revealed preference (RP) survey data

[49–53]. The most commonly employed analytical approaches to model route choice include

binary logit (BL) or multinomial logit (MNL), mixed multinomial logit (MMNL), multinomial

probit (MNP), and heuristic approaches. The important factors affecting route choice decision

include socio-demographic characteristics, bike route characteristics, traffic characteristics,

environmental attributes, access to facilities (such as showers at work place), and trip charac-

teristics. Of these, the most significant factors are: travel time (lower is preferred), presence of

incline (flat is preferred), bicycle infrastructure (continuous and exclusive/segregated routes

are preferred), traffic volume (lower is preferred), and air pollution exposure (lower is pre-

ferred) [36, 40, 41, 43–47, 49, 50, 52, 54–56].

The current study builds on the first research effort that studied the impact of air pollution

exposure on bicycling route choice (see Anowar et al., [40]). In the previous study, the empha-

sis was on examining if air pollution exposure information affected route choice. The study

employed stated preference experiment data from 695 commuter cyclists and used a random

utility approach to examine cyclist’s willingness to trade-off air pollution exposure with other

attributes such as roadway characteristics, bike facilities, and travel time.

Empirical analysis

Data source and experimental design

In our SP survey, responses from bicyclists were collected along four dimensions. (1) Respon-

dent’s personal and household characteristics (such as gender, age, education level, employ-

ment type and schedule, nearest intersections at the place of residence and work, household

income, number of persons in the household, level of automobile and bicycle ownership, and

commute time in minutes); (2) Cycling habits (frequency of cycling, if accompanied by chil-

dren while making the trip, regular bicycling experience in years, primary reasons for cycling,

seasons of cycling, and how often they switch their usual biking route); (3) Hypothetical choice

scenarios with three route options per scenario; and (4) Cyclist’s perception about the charac-

teristics of his/her usual commuting route.

The experimental design for identifying the hypothetical choice scenarios for the SP game

was developed considering the following attributes: roadway characteristics: grade, traffic vol-

ume, and roadway type; bike route characteristics: cycling infrastructure continuity and segre-

gation and landmarks along the route; and air pollution: mean exposure level (in ppb) and

maximum exposure level (in ppb). A detailed description of the considered attributes and the

corresponding attribute levels are presented in Table 1. Considering and comparing all of

these attributes would burden the respondents significantly and complicate their route choice

process. Hence, an innovative partitioning technique where only five attributes were used to

characterize the alternative routes in each of the SP scenarios was used. Of these five attributes,

the air pollution (mean and maximum exposure) and travel time attributes were always

retained. These air pollution exposures were measured as a concentration of Nitrogen dioxide

(NO2) in units of parts per billion (ppb). In addition, one attribute from roadway characteris-

tics and one from bike route characteristics were randomly chosen for each individual through

carefully designed rotating and overlapping approach to capture all variable effects when the

responses from the different SP choice scenarios across different individuals are compiled

together. Route choice alternatives were developed by experimental design routines in SAS in

such a way that every individual gets five choice experiments in the survey. The SP scenarios

were preceded by clear definitions of the attributes–pictorial representations were provided to
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give respondents a clearer idea about exclusive/shared and continuous/discontinuous cycling

infrastructure.

We also conducted an “information provision” experiment to understand two issues. First,

to identify if receiving information on the potential health effects resulting from exposure to

traffic-related air pollution has any impact on a cyclist’s route choice decision and second, to

study the sensitivity towards the nature of information provided. For this purpose, we devised

three types of informational messages (see Supplementary information S1 Table for the mes-

sages). One (or none) of these messages was presented to the respondent in a window preced-

ing the scenarios and following the description of attributes. The survey was designed so that

information display was randomized to ensure that a quarter of the respondents received no

information while the rest of them received at least one of the three messages. The details of

the experimental design, attribute selection process, and survey dissemination strategies with

demographic profile of commuters are described in Anowar et al. [40, 57].

The web-based survey was approved by the Health Sciences Research Ethics Board

(HSREB) of the University of Toronto (UofT), Canada and was run from April 2016 through

July 2016 for about 12 weeks. Several dissemination schemes were adopted including emailing

web-link to the survey to individuals, university (University of Toronto and University of Cen-

tral Florida) electronic mailing lists, various bicyclist forums, organizations, and groups;

uploading posts in different social media platforms including Facebook, LinkedIn, and Twit-

ter; placing advertisement posters in public message sharing spaces alongside major roadways

(in Toronto). Additionally, bicycle-related websites posted the link on their web pages. Indi-

viduals who learnt about our survey from these sources may have distributed it to their peers,

colleagues, family, and friends. Participation was completely voluntary and open to individuals

Table 1. Attribute levels for the SP experiments.

Attribute Category Attribute Definition of Attribute Attribute Levels

Roadway

characteristics

Grade Nature of terrain 1. Flat

2. Moderate

3. Steep

Traffic volume Amount of traffic on the roadway 1. Light

2. Moderate

3. Heavy

Roadway type Functional classification of roadway 1. Residential /Local

roads

2. Minor arterial

3. Major arterial

Bike route

characteristics

Cycling infrastructure continuity Continuous bike route–if the whole route has a bicycle facility (a

bike lane or shared-use path)

Discontinuous—otherwise

1. Continuous

2. Discontinuous

Cycling infrastructure segregation Exclusive/Segregated–if physically separated from motor vehicle

traffic

Shared–otherwise

1. Exclusive

2. Shared

Environmental

condition

Amount of traffic-related air pollution

subjected to while cycling

Mean exposure levels to pollutants 1. 5 ppb

2. 10 ppb

3. 15 ppb

Maximum exposure levels to pollutants 1. 20 ppb

2. 40 ppb

3. 60 ppb

Trip characteristics Duration of trip Travel time to destination (for commuting bicyclists only) 1. 20 minutes

2. 25 minutes

3. 30 minutes

4. 35 minutes

5. 40 minutes

https://doi.org/10.1371/journal.pone.0208309.t001
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over 18 years of age. At the beginning of the survey, participants were provided with an over-

view of what the survey entails and what it is for. They were given the option to proceed (I

agree) or exit (I do not agree) from the survey, after reading the information. A total of 750

cyclists responded, out which 695 cyclists completed the survey.

Data compilation and sample demographics

The survey data was processed by removing incomplete information from raw data. A total of

3475 choices were compiled from 695 respondents. Fig 1 presents the descriptive statistics for

the 695 commuter respondents from the sample. The sample of respondents is composed of

58 percent male and 42 percent female cyclists. Almost three-fifths (60%) of the respondents

are aged between 18–34 years, reflecting that young adults are more likely to bicycle for com-

mute purposes than older people. Almost fifty percent of commuter cyclists holds a graduate

degree while almost three-fifths of cyclists are full-time job holders. About 40% of the com-

muter cyclists belong to a high-income household (more than $100,000/year). The majority

(77%) of commuter cyclists reside in multi-individual households. A vast majority of them

come from households owning multiple bicycles (77% of respondents’ household own at least

2 bicycles) while 42% of the respondents come from vehicle-less household. The reader would

note that the survey participants include a higher proportion of younger, highly educated and

high income households. While the sample is not representative of the general population,

given that the emphasis is on route choice decision process, the lack of representativeness

does not adversely affect the sample quality (see TCRP [58] and Sener et al. [46] for more

discussion).

Fig 1. Socio-demographic profile of commuter cyclists.

https://doi.org/10.1371/journal.pone.0208309.g001
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Variables considered

In our study, we considered household and individual socio-demographic characteristics for

latent segmentation component and bicycle route choice attributes for within segment models.

The socio-demographic characteristics considered are: gender, age category, education,

employment status, experience of bicycling, bicycling frequency, accompaniment by children,

and actual commute time reported by respondents, number of household members, number

of automobiles and bicycles owned by household. The variables considered for the route

choice part are: (1) roadway characteristics: grade (flat, moderate, and steep), traffic volume

(low, medium, and heavy), and roadway type (residential/local street, minor arterial, and

major arterial), (2) bike route characteristics: cycling infrastructure continuity and cycling

infrastructure segregation (exclusive and shared), and (3) air pollution (mean exposure level

and maximum exposure level), and (4) trip characteristics: travel time.

Note that residential/local streets are those with light traffic with speeds< 40 km/h or 25

mph, minor arterials are those with moderate traffic with speeds 40–60 km/h or 25–40 mph, and

major arterials are those with heavy traffic with speeds> 60 km/h or 40 mph. A bicycle route is

labeled continuous if the whole route has a bicycle facility (a bike lane or a shared-use path). In

contrast, a bicycle route is considered to be discontinuous if on some portions of the route bicy-

clists must share a lane with automobiles. Finally, exposure to traffic-generated pollution was

expressed in two ways. First, mean exposure ranging from 5–15 ppb and maximum exposure

ranging from 20–60 ppb. We used discretized travel time attribute ranging from 20–40 minutes.

Model specification and performance evaluation

The empirical analysis involves estimation of several models. More specifically, we estimated

four traditional models and nine latent class models. Four traditional models include: (1) ran-

dom utility based multinomial logit model, (2) random utility based mixed multinomial logit

model, (3) random regret based multinomial logit model, (4) random regret based mixed mul-

tinomial logit model. The estimated latent class models are: (1) random utility based latent

multinomial logit model with two segments, (2) random regret based latent multinomial logit

model with two segments, (3) random regret based latent multinomial logit model with three

segments, (4) latent class multinomial logit model with hybrid segments (LCMHS). In the

LCMHS category, we tested different combinations of decision rules with different number of

classes. These are: (1) LCMHS with two segments (1 random utility based segment, 1 random

regret based segment), (2) LCMHS with three segments (2 random regret based segment– 1

random utility based segment), (3) LCMHS with three segments (1 random regret based seg-

ment– 2 random utility based segment), (4) LCMHS with four segments (2 random regret

based segment– 2 random regret based segment), (5) LCMHS with four segments (3 random

regret based segment– 1 random utility based segment) and (6) LCMHS with four segments (1

random regret based segment– 3 random utility based segment). Note that we also tested for

taste heterogeneity in the segment specific models, but the results were not supportive of the

presence of further segment level unobserved heterogeneity. The variables that offered a statis-

tically significant parameter at the 90% confidence level and offered intuitive impacts were

retained.

The performance of the estimated (13) models was compared based on two goodness of fit

measures best suited for comparing non-nested models: (1) Akaike information criterion

(AIC) and (2) Bayesian Information Criterion (BIC). AIC for a given empirical model is

expressed as:

AIC ¼ 2k � 2lnðLÞ

Decision rule heterogeneity in bicyclist route choice
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where k is the estimated number of parameters and L denotes the maximized value of likeli-

hood function for a given empirical model. The empirical equation of BIC is:

BIC ¼ � 2lnðLÞ þ K lnðQÞ

where ln(L) denotes the log likelihood value at convergence, K denotes the number of parame-

ters, and Q represents the number of observations. Many of the earlier studies suggested that

the BIC is the most consistent information criterion (IC) among all other traditionally used

ICs (AIC, AICc, adjusted BIC) for number of segments selection in latent class models [6, 7,

11, 13, 59, 60]. The advantage of using BIC is that it imposes substantially higher penalty than

other ICs on over-fitting. The model with the lowest AIC and BIC value is the preferred

model. The BIC and AIC values for the final specifications of all the models are presented in

Table 2. Based on these values, LCMHS with four segments (3 random regret based segment–

1 random utility based segment) offers the best data fit.

Population share distribution among segments

The latent segmentation component determines the probability that a cyclist is assigned to the

identified segments. We used the model estimations to generate the population shares across

the various segments of all the latent class models following the equation [6, 61] below:

GS ¼

P
cPcs

C

where C denotes the total number of respondents in the sample. The shares are presented in

Table 3. The table offers some interesting insights. In all the latent class models with mixed

choice paradigms, cyclists are more likely to be part of the segment(s) with random regret deci-

sion rule. For instance, in our best specified model, only 30% of the cyclists are likely to be allo-

cated to the random utility based segment while the rest of them to the three random regret

based segments (8%, 43%, and 19%). It is interesting to note that the split of cyclists who make

their route choice decision following regret minimization concept is not equal.

Table 2. Goodness of fit measures.

Model Log-likelihood Number of

Parameters (K)

Number of

Observations (Q)

BIC AIC

Traditional Choice Models

RUM based MNL -2765.470 23 3475 5718.467 5576.940

RUM based mixed MNL -2759.650 24 3475 5714.980 5567.300

RRM based MNL -2709.500 35 3475 5704.367 5489.000

RRM based mixed MNL -2688.781 32 3475 5638.470 5441.563

Latent Segmentation Models

RUM based Latent MNL with two segments -2734.217 20 3475 5631.500 5508.434

RRM based Latent MNL with two segments -2693.295 23 3475 5574.118 5432.591

RRM based Latent MNL with three segments -2665.158 26 3475 5542.304 5382.316

LCMS with two segments (1 RUM based segment-1 RRM based segment) -2729.685 20 3475 5622.438 5499.371

LCMS with three segments (2 RUM based segment-1 RRM based segment) -2601.792 36 3475 5497.104 5275.583

LCMS with three segments (1 RUM based segment-2 RRM based segment) -2647.804 29 3475 5532.055 5353.608

LCMS with four segments (2 RUM based segment-2 RRM based segment) -2559.369 42 3475 5461.178 5202.738

LCMS with four segments (1 RUM based segment-3 RRM based segment) -2566.263 33 3475 5401.587 5198.526

LCMS with four segments (3 RUM based segment-1 RRM based segment) -2624.438 34 3475 5526.090 5316.876

https://doi.org/10.1371/journal.pone.0208309.t002
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Model results

In addition to the best model fit, LCMHS with four segments (3 random regret based seg-

ment– 1 random utility based segment) provided the most intuitive behavioral interpretation

in terms of route choice decision. Hence, in this section we only discuss about the results of

the best fit model in detail. Table 4 presents the results for the segmentation component (top

panel of results) and segment specific route choice models (bottom panel of results). To pro-

vide a benchmark for the proposed model, we have also included the results for the mixed

MNL model in Table 5.

Latent segmentation component. The variables in the segmentation part with positive

(negative) coefficient indicate increase (decrease) in the propensity of the cyclists being part of

the segment. In our analysis, we considered Segment 1 as the base. The positive sign on the

constant term does not have any functional interpretation, but simply reflects the larger likeli-

hood of bicyclists being part of other three segments. The variables influencing segment mem-

bership include gender, age, auto ownership, biking frequency, and commute length. Our

results indicate that female bicyclists are more likely to be assigned to Segment 2 (utility based

decision rule segment). Examining the coefficients of Segment 3, we find that bicyclists in this

class are more likely to be daily commuters, less than 35 years of age, from a household with

less number of automobiles, and have a moderate commute duration. Interestingly, Segment 4

is more likely to be comprised of daily commuters as well (with a slightly higher propensity for

Segment 4 membership than Segment 3 membership) but with short commute length.

Segment specific route choice models. A cursory examination of the results indicates the

presence of the higher number of segment specific effects for Segment 2 and Segment 3. On

the other hand, Segment 1 route choice behavior is only influenced by one variable. It is also

evident that across the various segments, the variable impacts are significantly different mani-

festing the presence of population heterogeneity. We provide a discussion of model results

across the 4 segments in this section by variable characteristics.

Roadway characteristics. Grade, traffic volume, and roadway type variables influence

route choice behavior in segments 2, 3 and 4. As expected, for commuting purposes, steep

roadway grades reduce the likelihood of choosing the route in both utility (Segment 2) and

regret (Segment 3) segments. In Segment 2, the coefficient indicates a reduction in utility for

routes with steep grade. In Segment 3, commuter bicyclists will be predisposed to lower regret

toward routes with flat or moderate grades relative to routes with steep grades. Cyclists are

inclined to avoid steep grade presumably because of the discomfort from rigorous physical

activity while commuting to work (see similar results in Sener et al. and Anowar et al. [40,

Table 3. Population share distribution.

Model Segment-1 Segment-2 Segment-3 Segment-4

RUM based Latent MNL with two segments 72 28 - -

RRM based Latent MNL with two segments 47 53 - -

LCMHS with two segments (1 RUM based segment-1 RRM based segment) 35 65 - -

RRM based Latent MNL with three segments 16 18 66 -

LCMHS with three segments (2 RUM based segment-1 RRM based segment) 30 34 36 -

LCMHS with three segments (1 RUM based segment-2 RRM based segment) 24 21 55 -

LCMHS with four segments (2 RUM based segment-2 RRM based segment) 19 14 21 46

LCMHS with four segments (1 RUM based segment-3 RRM based segment) 8 30 43 19

LCMHS with four segments (3 RUM based segment-1 RRM based segment) 13 25 33 29

https://doi.org/10.1371/journal.pone.0208309.t003
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46]). High vehicular traffic volume (medium and heavy) on roadway deters cyclists from

choosing the route. In Segment 2, in particular, there is a larger drop in utility for routes with

heavy traffic. The negative coefficients for heavy traffic volume in Segment 3 and Segment 4

suggest that regret reduces if traffic volume on the non-chosen alternatives is higher, thus

reducing the likelihood for opting for route with heavy traffic (see similar result in Dill and

Voros [62]). The presence of increased vehicular traffic will increase the probability of conflict

between cyclists with motorized vehicles; so it is expected that commuter cyclists prefer routes

with lower traffic levels. In terms of roadway type, routes on minor and major arterials (rela-

tive to routes on residential roads) are less likely to be chosen for commuting purpose. The

effect is more pronounced in Segment 2, the utility for a route drops significantly when that

route is located on a major arterial. In segment 3, the coefficient for major arterial is negative

indicating that the regret associated with not choosing a route along major arterial is lower

Table 4. Results of LCMS with four segments (1 RUM based segment-3 RRM based segment).

Variables Segment-1 (RRM) Segment-2 (RUM) Segment-3 (RRM) Segment-4 (RRM)

Estimate t-statistics Estimate t-statistics Estimate t-statistics Estimate t-statistics

Segmentation Component

Constant - - 0.892 3.225 2.710 6.854 0.710 1.836

Female (Base: Male) - - 0.869 3.697 - - - -

Age (Base: 18–34 years)

35 or more years - - - - -1.119 -4.883 - -

Auto Ownership - - - - -0.498 -3.913 - -

Biking frequency (Base: Rarely)

Daily - - - - 0.546 2.023 0.795 2.36

Commute length (Base: Short commute)

Long Commute - - - - -1.013 -2.442 - -

Moderate to Long Commute - - - - - - -0.978 -3.448

Route Choice Component

Roadway Characteristics

Grade (Base: Flat)

Steep - - -1.795 -6.221 -2.131 -10.220 - -

Traffic Volume (Base: Light)

Medium - - -1.027 -3.492 - - - -

Heavy - - -1.604 -5.906 -1.137 -6.399 -1.906 -5.760

Roadway Type (Base: Residential roads)

Minor arterial - - -0.904 -5.156 - - - -

Major arterial - - -2.178 -6.356 -1.843 -11.443 - -

Bike Route Characteristics

Infrastructure Continuity (Base: Discontinuous)

Continuous - - 1.325 6.071 1.000 5.486 - -

Infrastructure Segregation (Base: Shared)

Exclusive - - 1.859 8.215 1.029 8.136 - -

Environmental condition

Mean Exposure -0.055 -3.433 -0.058 -3.027 -0.067 -5.776 -0.050 -3.404

Maximum Exposure - - -0.034 -6.957 -0.015 -5.723 -0.027 -6.984

Trip Characteristics

Travel Time - - -0.050 -4.247 -0.248 -12.122 -0.139 -8.205

Log-likelihood at Convergence -2566.263

https://doi.org/10.1371/journal.pone.0208309.t004
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(relative to other alternatives). The results are quite intuitive and could be attributed to cyclist’s

perception of higher level of safety on residential streets.

Bike route characteristics. The effect of bike route characteristics is found significant only in

Segment 2 and Segment 3 –these two classes captured respondents who are highly sensitive to

cycling infrastructure. The routes with continuous or segregated facilities are associated with higher

utility in segment 2 and lower regret in segment 3 increasing the inclination to choose routes with

continuous or segregated facilities relative to routes without continuous or segregated facilities. The

results indicate that cyclists prefer to ride on a route with continuous cycling facility or on an exclu-

sive route segregated from vehicular traffic with a slightly higher preference for exclusive routes.

The result is expected and is reported in earlier research as well (see similar results in [55, 62–67]).

On the other hand, the bicycle infrastructure variables have no impact on segment 1 and 4.

Air pollution. Of the two air pollution attributes, only mean exposure was found to affect

route choice behavior across all segments. This essentially implies that irrespective of the deci-

sion rule, cyclists in all segments are strongly sensitive to exposing themselves to air pollution

Table 5. Results of RUM based mixed MNL.

Attribute Category Attribute Attribute Levels Coefficient t-statistics

Roadway Characteristics Grade

(Base: Flat)

Steep -0.982 -10.579

Female -0.804 -5.601

Traffic Volume

(Base: Light)

Moderate -0.657 -7.729

Heavy -1.508 -16.662

Roadway Type

(Base: Residential Roads)

Minor arterial -0.398 -4.776

Major arterial -1.290 -15.025

Female -0.345 -2.576

Bike Route Characteristics Infrastructure Continuity

(Base: Discontinuous)

Continuous 0.879 13.485

Infrastructure Segregation

(Base: Shared)

Exclusive 0.939 10.353

Female 0.306 2.561

Environmental Condition Mean Exposure Mean exposure -0.054 -8.791

Biking experience (Base: 2 or more years)

Less than 2 years -0.021 -1.961

Maximum Exposure Maximum exposure -0.019 -10.271

Standard deviation 0.016 6.480

Exposure impact information (Base: No information)

Short-term -0.007 -2.148

Trip Characteristics Travel Time Travel time -0.075 -4.551

Female 0.018 2.942

Age (Base: 18–24 years)

25–34 years -0.043 -6.740

55–64 years 0.027 2.656

65 years or more 0.056 2.762

Biking frequency (Base: Rarely)

Once or several times a month -0.049 -2.988

Daily -0.080 -4.982

Commute length (Base: Short commute)

Moderate 0.030 4.831

Long 0.072 7.997

Log-likelihood at convergence (N = 3475): -2759.650

https://doi.org/10.1371/journal.pone.0208309.t005
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while on road. As expected, increase in mean exposure for a route reduces the likelihood that a

bicyclist chooses the alternative. On the other hand, maximum exposure affects route choice

behavior in segments 2, 3 and 4. The influence of maximum exposure is also along expected

lines–increase in maximum exposure along the route reduces the probability of choosing that

route (see Anowar et al. [40] for similar results). The reader would note that between mean

and maximum exposure, the influence of mean exposure is consistently larger than the influ-

ence of maximum exposure on a parts per billion basis. The higher negative coefficient for

mean exposure level indicates that cyclists are more sensitive towards a constant level of pollu-

tion on a regular basis rather than instantaneous exposure to pollution.

Trip characteristics. For commuters, travel time is an important determinant of route

choice. The variable influences route choice decision in segments 2, 3 and 4. An increase in

travel time is associated with reduction in utility or increase in regret for the route with longer

travel time. Thus, that route have a lower probability of being chosen. Several studies have

highlighted the impact of travel time along the same lines (see, Anowar et al. [40], Sener et al.

[46] and Stinson and Bhat [66]). It is however, quite interesting that for segment 1, travel time

is not a factor. The results highlight the behavior of a small population group that is focused

solely on reducing their exposure to air pollution. The discovery of their presence would not

have been possible without the 4 segment latent class model developed in our study.

Information provision. We tested for the effect of information provision on route choice

in the model specification. However, in our latent class model framework, the variables repre-

senting the message received by the cyclist did not offer any statistically significant impact.

The result indicates that while the exposure impact information could have influenced the

route choice decision process, the impact is not statistically significant in our study.

Trade-off analysis

Using the outputs from the model, we computed the time-based trade-offs, i.e. how much (in

minutes) bicyclists are willing to travel extra for using routes with better facilities or less traf-

fic-generated pollution. This analysis gives us an insight on how the trade-off values are vary-

ing across different segments of cyclists. For Segment 2, the calculation is straightforward–

dividing the coefficient value of each attribute by the coefficient value of travel time. However,

Segment 3 and Segment 4 are random regret based classes. When all attributes in a model are

evaluated using random regret decision rule, the calculation of trade-offs is done using the fol-

lowing equation (Chorus, [68]):
P

j6¼i � bt=ð1þ 1=exp½btðtj � tiÞ�Þ
P

j6¼i � br=ð1þ 1=exp½brðrj � riÞ�Þ

where βt and βr are the estimated coefficients for the two attributes for which we are calculating

the trade-off. In our case, the rth attribute is travel time and the tth attribute represents the attri-

bute for which the “willingness to travel extra” for a one-unit increase/decrease is being inves-

tigated. The results from the trade-off exercise (for main effects only) are presented in Table 6.

The results of the trade-off analysis provides some interesting insights. For the utility ori-

ented segment, as expected, cyclists are willing to travel 15–45 minutes extra to avoid steep

grade, medium/heavy traffic volume, and riding on routes along minor/major arterial. More-

over, they are also willing to travel in excess of 25 minutes to ride on a continuous or exclusive

bike facility. “Value of Clean Ride (VCR)” for mean exposure, was estimated as 1.16 min/ppb

and for maximum exposure, was estimated as 0.68 min/ppb suggesting that commuter cyclists

are more sensitive to mean exposure than maximum exposure. The value obtained in our cur-

rent analysis is double the value we obtained in our previous analysis (see [40]). This signifies
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that Segment 2 commuter cyclists, who more likely to be females, are strongly sensitive to air

pollution and are willing to travel 5–40 minutes extra to avoid them.

Trade-off values from random utility paradigm is insensitive to the changes in the attribute

values. However, we can see from Table 6 that random regret formulation based trade-offs cal-

culated for Segment 3 and 4 are alternative and choice set dependent and monotonically

decrease with increase in travel time. For example, from trade-off values, we can see that when

a chosen alternative does poorly in terms of roadway attribute (has steep grade, or has heavy

vehicular traffic or is located on a major arterial), but has a faster commuting time, an increase

in travel time leads to a small increase in regret while improvement in terms of road grade

leads to a relatively large decrease in regret. Hence, cyclists are willing to travel more than 40,

20, and 35 minutes, respectively for travelling on a route with better grades (medium or flat),

better traffic situation (medium or low), and convenient roadway type (minor or residential).

Cyclists in Segment 4 are willing to travel longer than cyclists in Segment 3 to avoid heavy traf-

fic. Interestingly, the trade-off values in regret and utility based segments for roadway attri-

butes are similar in magnitude; but values differ greatly for cycling infrastructure and exposure

attributes, particularly for maximum exposure levels.

The Segment 3 and Segment 4 regret-based trade-off results might appear counter-intuitive

on first glance. However, the reported results are a result of the construction of the RRM

model. For alternatives with smaller travel times, any undesirable route feature (such as steep

or high traffic volume) makes the alternative quite undesirable. Thus, individuals are willing to

make larger trade-offs to avoid such features. The result is consistent across all attributes. At

the lower end of travel time spectrum, the trade-off is quite high and drops as we move

towards higher travel times. The result is analogous to the large shift in the “Value of Time

(VoT)” values reported in Chorus [68]. Overall, these results clearly highlight how ignoring

the presence of decision rule heterogeneity are likely to result in incorrect policy guidelines.

Conclusions

In the extant literature, several approaches have been employed to address population homo-

geneity restriction in discrete choice models. Of these, latent class model is one of the elegant

Table 6. Time based trade-offs.

Attribute Attribute Levels Travel Times (minutes)

Segment-2 (RUM) Segment-3 (RRM) Segment-4 (RRM)

20–40 20 25 30 35 40 20 25 30 35 40

Grade Steep 35.90 46.22 13.95 7.68 5.30 4.19 - - - - -

Traffic Volume Medium 20.54 - - - - - - - - - -

Heavy 32.08 20.89 6.31 3.47 2.39 1.89 34.04 18.23 11.94 8.88 7.24

Roadway type Minor Arterial 18.08 - - - - - - - - - -

Major Arterial 43.56 38.61 11.65 6.42 4.43 3.50 - - - - -

Infrastructure Continuity Continuous 26.50 3.26 0.99 0.54 0.37 0.30 - - - - -

Infrastructure Segregation Exclusive 37.18 3.29 0.99 0.55 0.38 0.30 - - - - -

Environmental Condition Mean Exposure (5 ppb) 5.80 3.07 0.93 0.51 0.35 0.28 2.09 1.12 0.73 0.55 0.44

Mean Exposure (10 ppb) 11.60 8.13 2.45 1.35 0.93 0.74 5.13 2.75 1.80 1.34 1.09

Mean Exposure (15 ppb) 17.40 15.17 4.58 2.52 1.74 1.38 9.11 4.88 3.20 2.38 1.94

Maximum Exposure (20 ppb) 13.60 2.84 0.86 0.47 0.33 0.26 3.44 1.84 1.21 0.90 0.73

Maximum Exposure (40 ppb) 27.20 7.28 2.20 1.21 0.83 0.66 11.08 5.93 3.88 2.89 2.36

Maximum Exposure (60 ppb) 40.80 13.32 4.02 2.21 1.53 1.21 22.91 12.26 8.03 5.97 4.87

https://doi.org/10.1371/journal.pone.0208309.t006
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and intuitive approaches. Studies using latent class model have primarily focused on exoge-

nous variable homogeneity; the decision rule homogeneity assumption has received less atten-

tion. Our study aims to bridge the gap in the literature in this context by analyzing population

and decision rule heterogeneity simultaneously while drawing on a novel empirical context–

impact of air pollution on bicycle route choice. In our analysis, we choose to consider the ran-

dom utility framework along with random regret minimization approach. Further, instead of

assuming the number of segments (as 2), we conduct an exhaustive exploration with multiple

segments across the two decision rules. Within each segment we also allow for unobserved het-

erogeneity. The model estimation is conducted using a stated preference data from 695 com-

muter cyclists compiled through a web-based survey. Model fit measures revealed that latent

class models with four segments (3 random regret based segment– 1 random utility based seg-

ment) provided the best data fit. The probabilistic allocation of respondents to different seg-

ments was achieved based on multivariate set of cyclist demographics and cycling habits. The

results indicate that female commuter cyclists are more utility prone, however, the majority of

the commuter cyclist’s choice pattern is consistent with regret minimization mechanism.

Overall, cyclists’ route choice decisions are influenced by roadway attributes, cycling infra-

structure availability, pollution exposure, and travel time. Although travel time is the most

important attribute for commuter cyclists in their route choice decision, it is however, quite

interesting that for one of the segments, travel time is not a factor. The results highlight the

behavior of a small population group that is focused solely on reducing their exposure to air

pollution. The discovery of their presence would not have been possible without the 4 segment

latent segmentation model developed in our study. This observation has interesting policy

implications–it suggests that bicyclists’ exposure to air pollution should be incorporated in

bicycle route planning. In addition, we find that between mean and maximum exposure, the

influence of mean exposure is consistently larger than the influence of maximum exposure on

a parts per billion basis. The higher negative coefficient for mean exposure level indicates that

cyclists are more sensitive towards a constant level of pollution on a regular basis rather than

instantaneous exposure to pollution. The analysis approach also allows us to investigate time

based trade-offs across cyclists belonging to different classes. Interestingly, we observed that

the trade-off values in regret and utility based segments for roadway attributes are similar in

magnitude; but the values differ greatly for cycling infrastructure and exposure attributes, par-

ticularly for maximum exposure levels.

However, the study is not without limitations. The parameter estimates from our model

systems are influenced by how respondents considered mean exposure and maximum expo-

sure attributes. Given the scope of our survey, we could not educate bicyclists comprehensively

on air quality measurement and impact of air quality on health. Our study is aimed to offer a

guidance on how bicyclists respond to air quality information. Future research efforts can

focus on offering additional approaches to providing air quality information in an effort to

identify the most appropriate information dissemination framework.
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