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Abstract: Starch, α-polyglucan consisting of a large number of anhydroglucose units joined by α-1,4-
and α-1,6-glycosidic bonds, seems to be characterized by a simple structure when compared to other
natural polymers. Nevertheless, starches of various botanical origins have different physicochemical
properties that are related to the differences in molecular and supramolecular structure of this polymer.
In terms of the functional value of starch, the behavior of its macromolecules in solution is the
most important result of its structural features. Extremely high molecular mass is the fundamental
structural property of starch. Water, considered simply as a solvent for solubilization, does not
provide molecular dispersion of starch without its degradation. The objectives of this study are to
characterize the suitability of a new aqueous media (urea/NaOH) for enhancing the dispersion of
native corn and potato starches and its effect on the consequent size-exclusion chromatography
(SEC) analysis. The results were referred to other aqueous base solvents used for dispersing starch
(NaOH and KOH). The samples were separated using SEC with triple detection and phosphate
buffer (pH 8.0) with urea as the eluent. The characteristics of tested normal and waxy starches were
compared. The results revealed that urea/NaOH did not degrade starch during the dispersion process.
The recovery of starches, however, was not higher than 42%. These results prove that while the
urea/NaOH solvent allows to obtain cold-water-soluble starch, the degree of disintegration of the
intramolecular interactions of amylopectin chains is still insufficient.

Keywords: corn starch; potato starch; solubilization; size-exclusion chromatography (SEC)

1. Introduction

Starch is one of the most useful polymers in the food and non-food applications (paper, chemistry,
fermentation, material and pharmaceutical industries). It is a biopolymer that is biodegradable and
renewable [1]. It is also considered as a raw material for the production of green materials that could
substitute synthetic polymers [2]. It is widely used as a thickening, stabilizing, and gelling component
in the food industry. Low price and ease of obtaining starch are the main factors that encourage
producers to use it on a large scale [3]. Edible plants, such as corn, potato, wheat, barley, cassava, rice,
and sweet potato, are abundant sources of starch. [4] Commercially available starch is obtained mainly
from corn [5] but potato starch is also widely used in a variety of products [6].

Generally, starch granules consist of amylose (AM) and amylopectin (AP) as well as minor
components–proteins, lipids, and minerals [7]. AP has a high molecular weight and is highly branched.
It contains anhydroglucose chains linked by (1→4)-α glycosidic linkages. Branches are formed by
(1→6)-α linkages [8,9]. The structure of AM is predominately linear with α (1→4)-linkages and rare
branches. The molecular mass of amylose (approximately 106 Da) is much lower than amylopectin
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which is known as one of the largest biopolymers (approximately 108 Da) [10]. The structural variability
and the ratio of AM to AP is strongly dependent on the botanical origin of starch [11]. Generally,
AM fills spaces within the AP matrix. AP is branched with 4–5% α-1,6 linkages, short AP chains are
oriented within clusters that are connected by longer chains. Long linear chain segments of AP form
double helices which pack into ordered lamellar arrays [12].

Starch is classified into four crystalline types (A, B, C, and V) according to X-ray diffraction (XRD).
The A-type crystalline pattern is typical for most cereal starches, such as corn, wheat, and rice starch.
Tuber starches (potato starch) with their high amylose starch content belong to B-type crystalline type.
The combination of A- and B-type crystalline pattern is typical for legume starches, classified as type C.
A V-type crystalline pattern is observed when amylose complexes with fatty acids or alcohols [13].
In general, regular starches contain about 70–80% AP and 20–30% AM. High-AM starches contain more
than 40% AM, and waxy starches contain more than 90% AP [11]. Granule-bound starch synthase I
(GBSSI) enzyme is responsible for the biosynthesis of amylose. Cereal waxy starches and amylose-free
starches in potato are a result of either low or no expression of the GBSS gene [14,15]. The molecular
structure and the ratio of AM/AP in starch granule have influence on the gelatinization temperature,
solubility, viscosity, gelation, and retrogradation properties which are in turn reflected in the texture
and stability of starch-based products [16]. Swollen granules of waxy-starches are highly susceptible
to mechanical breakdown and solubilized faster than starches with a higher content of AM. In the
latter case, extensive granule swelling is inhibited. High water retention capacity (1.2–1.5×) and higher
viscosity of pastes (up to 40% for corn) were observed for waxy starches [17]. Waxy starches are also
more resistant to retrogradation, a crystallization process which occurs during ageing of gels of normal
starches within a day, and this advantage is utilized in polymer and food applications [8]. It was also
reported that amylopectin of normal starch has a lower molecular weight than that of waxy starch
counterpart. It is probably attributed to the carbon flux which is not directed exclusively to amylopectin
in the biosynthesis of normal starch [18]. Extra-long branch chains of amylopectin are found in normal
starches while amylopectins of waxy starches have more branch-chains. This results in less densely
packed molecules of amylopectin in normal starches compared to amylopectin of waxy starches [19].

Properties of starch are also determined by other compounds. Root or tuber starches contain little
or no lipids while significant amounts of lipids are complexed with amylose in amylose-containing
cereal starches. Cereal and root (tapioca) contain lower phosphate monoester content than tuber starches
(canna, potato) [20]. Interaction between lipids and amylose can occur upon starch gelatinization,
especially in cereal grains where lipids occur in the native granules of starch or surround the
granules [21]. Lipid-amylose complexes have impact on the formation and content of resistant starch
of type V, swelling capacity in water, pasting characteristics, solubility, and gel texture [22]. Phosphate
groups have impact on the rheological properties of starch. Their presence results in increased viscosity
and clearness of gels which is advantageous for many industrial applications [23].

It is often required that the starch withstands high temperatures, low pH, and high shear forces [6].
Therefore starches are modified physically (pre-gelatinization, heat-moisture treatment, annealing,
high pressure treatment) and chemically (acid hydrolysis, substitution, cross-linking, oxidation) since
native starches usually do not meet industrial needs.

It is a huge challenge that is driven by high demand to destroy the molecular hydrogen bonds
in starch in order to extend the range of applications of and enhance the processability of this
biopolymer [2,24]. Hydrogen bonding and areas of crystallinity render granules of starch insoluble
in water at room temperature. Highly swollen but insoluble granules and granule fragments can be
separated from aqueous solution after heating although an increase of solubility in water is observed
as temperatures approach 95–100 ◦C [25]. Swollen hydrated forms, known as ghost structures, are
typically found after gelatinization in water under common heating conditions (below 100 ◦C) [26].
Dimethyl sulfoxide (DMSO) is one of the known organic solvents which makes it possible to plasticize
and disrupt hydrogen bonds formed between polysaccharide chains [27]. Alkaline solutions (NaOH,
KOH) are also commonly used to disperse starch [28]. Some application of zinc chloride aqueous
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solution [29], molten imidazole [27], 4-methylmorpholine 4-oxide (NMMO) [30], and NaOH/urea [31,32]
were also proposed recently. Ionic liquids, promising “green solvents,” can be used for the processing
of polysaccharides, however they have a tendency to cause starch degradation and their potential
toxicity limits their applicability in starch-based foods [2].

There is no general agreement as to the best approach to the characterization of starch which
is a huge and highly branched molecule. However, it is very important to determine not only the
average molecular mass of starch but also its distribution. Samples with the same molecular mass but
with very different distribution could manifest different rheological properties. The knowledge of the
average molecular mass and radius of gyration of starch is important for its industrial application,
for example: (i) Beverage thickeners—too high molecular mass makes the product too viscous with a
chalky or slimy texture; (ii) resistant starch-control of digestive properties and retrogradation requires
molecular mass in the correct range; (iii) enteral nutrition solutions–excessive molecular mass reduces
energy supply and causes clogging of the tubing [33].

The biggest problem in determining the molecular mass of starch is the necessity to fully disperse
the sample (disperse as separate molecules) without its degradation [33]. However, it was noted that
even under minimal shear conditions, such as gentle agitation, the amylopectin molecules are very
susceptible to shear degradation [34].

Whole starch molecules are usually separated using common techniques of size-exclusion
chromatography (SEC), field-flow fractionation (FFF), analytical ultracentrifugation (AUC),
and hydrodynamic chromatography (HDC) [35]. SEC can be performed in an aqueous medium
and then is denoted as gel filtration chromatography (GFC), whereas gel permeation chromatography
(GPC) is a term used when an organic solvent is used for elution. Generally, the term SEC is preferred
since it is all-inclusive and more aptly descriptive [36]. SEC and GPC are often used as synonyms.
The structural analysis of starch in aqueous media is difficult because starch chains have limited
stability in neutral aqueous solutions which results in inaccuracy of the determination of molar masses
which stems from incomplete dispersion or chain aggregation [37].

Unfortunately, dispersing starch in DMSO is also not straightforward, mainly because the required
conditions (time, temperature, stirring) are not universal to all starches. Namely, amylose-rich corn
starch is easier to disperse in DMSO than waxy starch. Excessive mechanical stirring, high temperature,
excessive boiling (2 h or longer in water bath at 100 ◦C), autoclaving (121 ◦C, 15 min) can lead to
an increased size of the apparent amylose peak as a consequence of amylopectin degradation [34].
However, this is not the only problem of using organic SEC with DMSO. The determination of the
weight average molecular mass of starch (Mw) with static light scattering (SLS) is limited since light
scattering intensity is dependent on the increment in the refractive index (dn/dc) [38]. Comparison of
dn/dc for starch in DMSO (0.066 mL/g) or DMSO/H2O (90/10, dn/dc = 0.074 mL/g) [39] with dn/dc
value in aqueous SEC (0.160 mL/g for 0.1 M sodium nitrate in water with 0.02% sodium azide) makes
it clear that detector response is significantly decreased in DMSO.

Summing up, the dispersion of starch can be obtained by the formation of hydrogen bodings
with a protonic solvent (water) or dipolar aprotic solvent (DMSO), or by hydration of the ionized
hydroxyl groups of starch in presence of a base (NaOH) [31]. However, there is still a need for cheap
and environmentally friendly solvents that guarantee real dispersion of starch where each molecule is
surrounded by the solvent. Recently, urea/NaOH aqueous solutions were proposed [31,32,40] since
urea is known as a good plasticizer for starch [41,42] and NaOH shows good dissolving capacity
toward the polymer [43].

The aim of this study is to determine the suitability of urea/NaOH aqueous media for enhancing
the dispersion of starch for the purpose of SEC analysis. Normal and waxy starches from corn and
potato were tested as the most popular examples for A-and B-type crystalline pattern. The samples
were neutralized immediately after the dispersion process using phosphoric acid, then diluted directly
in the alkaline mobile phase (phosphate buffer (pH 8.0) with urea). The idea was to verify the possibility
to characterize starch in an aqueous solvent which is its natural plasticizer and which enables to
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reflect the conditions encountered in food matrices. The obtained results were then compared with the
effectiveness of dispersion in aqueous solutions of NaOH and KOH.

2. Materials and Methods

2.1. Starch Samples and Chemicals
The study was performed with commercial native potato starch, Superior Standard (PPZ

Trzemeszno, Poland), waxy potato starch, Eliane (Avebe, Groningen, Netherlands), corn starch
(donated by the Department of Food Concentrates, Institute of Agricultural and Food Biotechnology,
Poznań, Poland), waxy corn starch (with trace amounts of amylose; Sigma, S-9679). Pullulan and
amylose from potato standards were purchased from Shodex (Tokyo, Japan) and Sigma–Aldrich
Chemie GmbH (Munich, Germany), respectively. Urea, Na2HPO4, NaH2PO4, NaOH, KOH, H3PO4,
sucrose were obtained from Avantor Performance Materials Poland S.A. (Gliwice, Poland).

2.2. Determination of Dn/Dc in a New Eluent
An Abbe refractometer was used to determine dn/dc for sucrose dissolved in 50 mM phosphate

buffer (pH 8.0) with 100 mM urea at concentrations in the range from 0 to 0.3 g/mL. Measurements
were performed at the temperature of 50 ◦C. Methodology was adapted form Behrens et al. [44].
The dn/dc of pullulan standard (11.3 kDa; 0.8–3.1 mg/mL) and amylose from potato (0.3–1.2 mg/mL)
in the same solvent were determined using SEC (Malvern, TX, USA) equipped with a conventional
dual cell refractometer calibrated with sucrose solution using dn/dc determined previously with the
Abbe refractometer. The calculations were performed using OmiSEC 4.7 software (Malvern, TX, USA).
The accuracy of calculated dn/dc for pullulan was verified by pullulan standards with molar masses in
the range of 6.15–2460 kDa. The justification of predefining dn/dc in a new aqueous solvent using a
sucrose solution is described in detail in the Section 3.

2.3. Alkaline Pasting and Dispersion of Starch
Starch samples of 30 mg were allowed to disperse in 4.5 mL of urea (2.3 M)/NaOH (1 M) aqueous

solution [31] at 0 ◦C for 24 h and then were neutralized with 0.5 M H3PO4 and diluted with the
mobile phase used for SEC separation. Results for corn starch were compared with other alkaline
dispersion methods which employed 0.5 or 1 M NaOH [45] or 2 M KOH [46,47] at 65 ◦C and stirring
with a magnetic bar at 400 rpm. Briefly, 30 mg of starch were wetted by 50 µL of ethanol to prevent
lumping. The alkali solutions (65 ◦C) were added into stirred sample placed in a water bath at 65 ◦C.
Three procedures were applied: (i) 0.5 mL 1 M NaOH was added to a sample of corn starch and stirred
gently for 2 min after which 4 mL of water were introduced and the dispersion was continued for 1 h;
(ii) 0.5 mL 0.5 M NaOH was added to a sample of corn starch and stirred gently for 2 min after which
4 mL of water were introduced and the dispersion was continued for 1 h; (iii) 4.5 mL 2 N KOH was
added to starch sample, dispersion time was 1 h as previously. After the dispersion with NaOH/KOH,
the samples (variants (i)–(iii)) were neutralized with 0.5 M H3PO4 and diluted with the mobile phase
used for SEC. The final concentration of all samples was 1.2 mg/mL. The samples were clarified using
5 µm PTFE filters (Merck Millipore, Ireland). The injection volume was 50 µL. The experiments were
conducted in triplicate.

2.4. Molecular Characterization Using SEC with Triple Detection
SEC equipment (Malvern, TX, USA) with triple detection (Viscotek 305 TDA) was used for the

separation of samples. A conventional dual cell refractometer (RI), viscometer (Vis), and light scattering
(low-angle light scattering, LALS and right-angle light scattering RALS) detectors were employed.
Aqueous SEC analysis was performed using two aqueous SEC columns (Shodex OHpak SB-800HQ
series) with a guard SB-G type column (Showa Denko, Tokyo, Japan). Total of 50 mM phosphate buffer
(pH 8.0) with 100 mM urea was used as the eluent at a flow rate of 0.4 mL/min. The detectors and
column were in the same oven operated at 50 ◦C. Calibration was performed with a pullulan standard
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(11.3 kDa). The refractive index of the solvent was 1.334. The calculations were performed using
OmiSEC 4.7 software (Malvern, TX, USA).

2.5. Calculations, Statistical Analysis
RI signal (RIarea) is described by the following equation: RIarea = k′ × (dn/dc) ×minj [48], where: k′

is the instrument constant of the RI detector (k/n0; the refractometer response constant, k, the refractive
index of the solvent, n0), minj is the total injected mass calculated from the injected concentration
and the injection volume (minj = cinj × Vinj). The Mw was calculated from the Rayleigh equation
limited for low scattering angles (Kc/∆Rθ = (1/Mw + 2A2c)1/Pθ,) where: c is the concentration of the
polymer; ∆Rθ the Rayleigh ratio (defined as the amount of light scattered by the analyte solution
in excess of that scattered by the solvent at a given angle θ), A2 the second viral coefficient (in
the limit of zero angle and near-infinite dilution this coefficient can be neglected); K the optical
constant K = (4π2n0

2/NAλ
4)(dn/dc)2; n0 the solvent refractive index; λ the laser wavelength; and NA is

Avogadro’s number), Pθ is a form factor related to the size of the molecule and the angle at which the
scattering is determined, at θ = 0◦, Pθ = 1 [36,49,50]. LALS and RALS signals were used to calculate
the radius of gyration Rg because Pθ can be determined for samples that scatter anisotropically. This in
turn can be used to estimate a value of Rg assuming a structural model such as a random coil or a hard
sphere [36]. Rg is the distance from the center of mass of a body at which the whole mass could be
concentrated without changing its moment of rotational inertia about an axis through the center of
mass [51]. The viscometric radius (Rη) was calculated as the radius of a homogeneous sphere according
to the formula Rη = ((3IVMw)/(10πNA))1/3, where: IV is the intrinsic viscosity, Mw the molecular mass,
NA Avogadro’s number [50]. One-way ANOVA and Tukey test was used to test the significance of
differences at alfa = 0.05. Statistical analysis was performed using Statistica version 10, StatSoft Inc.
(Tulsa, OK, USA).

3. Results and Discussion

3.1. Determination of Dn/Dc Using a Calibrated RI Detector
Calibration of the RI detector should be performed using the same solvent that is applied during

SEC. Therefore, a reference sample with a known dn/dc in this solvent is required. Unfortunately,
reference values for dn/dc cannot always be found in the literature, and an Abbe refractometer is
usually not sensitive enough to determine dn/dc precisely in a low concentration range. It seems
justified to use sucrose for the calibration of the RI detector since it dissolves in a wide range of
concentrations in aqueous eluents and gives the opportunity to determine dn/dc precisely with an
Abbe refractometer. The dn/dc determined for sucrose dissolved in the tested solvent is presented
in Figure 1, the estimated dn/dc value in 50 mM phosphate buffer (pH 8.0) with 100 mM urea was
0.138 (mL/g) whereas the refractive index of the solvent n0 was 1.334. The calibration of the RI detector
was done in the next step; the refractometer response constant (k) was 1.05689 × 103.

1 

 

 

 

Figure 1. Determination of dn/dc for sucrose in 50 mM phosphate buffer (pH 8.0) with 100 mM urea
using Abbe refractometer.
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Since different polymers have unique RI responses it is necessary to precisely determine dn/dc
for the tested types of polymers. The dn/dc parameter depends on the solvent, the temperature,
the wavelength of light, the average molar mass (especially if Mn is less than 103 Da), the chemical
structure of the polymer. Chain branching, however, has no effect on dn/dc [52]. Using the parameters
estimated for sucrose and the refractometer response constant it was possible to determine dn/dc
for the standards of pullulan and amylose from potato for the tested polymer solvent pairs using
the RI detector. The results presented in Figure 2 gave the opportunity to calculate dn/dc as
dn/dc = slope/(k/n0)/Vinj. The calculated dn/dc values for pullulan and amylose from potato were 0.129
and 0.124 (mL/g), respectively.

1 

 

 

 

Figure 2. Chromatographic RI data used for the determination of dn/dc of pullulan and amylose from
potato in 50 mM phosphate buffer (pH 8.0) with 100 mM urea, Vinj = 100 µL.

Finally, the response constants and offsets (relative to the RI signal, mL) for other detectors (LS, Vis)
were calculated with the pullulan standard (11.3 kDa). The recovery and accuracy of molecular mass
determination were calculated for standards of pullulan (6.15–2460 kDa). The results (Table 1) showed
that the recovery of pullulan standards was 99.99 ± 1.83%. The difference between the molecular
mass declared by the producer and determined experimentally was not higher than 4.4%. The high
recovery and low error of molar mass determination prove that the use of sucrose to predetermine the
instrument constant of the RI detector can give accurate results. The procedure proposed here is simple,
however, it is an unusual approach that gives the opportunity to determine the instrument constant
using a new aqueous solvent. It is possible to directly determine dn/dc of the pullulan standard in a
new solvent using an Abbe refractometer but this requires the use of a very sensitive refractometer or a
standard, which is usually a limited resource, in a large amount.

Table 1. Molar masses and hydrodynamic parameters of pullulan standards (P5–P2500, Shodex, Japan)
estimated by SEC method with triple detection after dispersion in 50 mM phosphate buffer (pH 8.0)
with 100 mM urea; the values of the coefficient of variation (%) are given in brackets.

Standard Mn
1 (Da) Mw

1 (Da) Mw Expected 2

(Da)
Mw Error 2

(%) IV 3 (dL/g) Rη 4

(nm)
Rg

5

(nm)
Recovery

(%)

P5 5.79 × 103 (1.8) 6.15 × 103 (1.1) 6.00 × 103 2.5 0.07 (0.4) 2 (1.0) n/c 99.4 (0.3)
P10 9.86 × 103 (0.92) 1.03 × 104 (0.46) 1.00 × 104 3.3 0.10 (12.2) 3 (5.5) n/c 101.3 (0.1)
P20 2.14 × 104 (0.95) 2.17 × 104 (1.11) 2.17 × 104 0.2 0.15 (0.9) 4 (2.5) n/c 99.9 (1.1)
P50 4.67 × 104 (1.64) 4.94 × 104 (1.34) 4.88 × 104 1.2 0.27 (0.0) 6 (0.7) n/c 101.0 (0.8)
P200 1.95 × 105 (2.54) 2.19 × 105 (1.23) 2.10 × 105 4.4 0.58 (4.6) 13 (1.1) n/c 103.2 (1.2)
P400 3.44 × 105 (0.94) 3.68 × 105 (1.08) 3.66 × 105 0.6 1.01 (10.1) 18 (5.1) 27 (5.2) 99.7 (1.2)
P800 7.18 × 105 (2.73) 8.08 × 105 (1.23) 8.05 × 105 0.3 1.66 (5.8) 28 (2.3) 40 (6.4) 100.0 (1.9)

P1300 1.18 × 106 (3.91) 1.35 × 106 (2.25) 1.33 × 106 1.6 2.47 (2.8) 37 (3.6) 54 (4.4) 97.8 (1.3)
P2500 1.78 × 106 (10.35) 2.46 × 106 (2.33) 2.56 × 106 3.8 3.45 (10.8) 47 (3.9) 73 (4.6) 97.6 (0.3)

1 Mn–number average molar mass; Mw–weight average molar mass; L/RALS–low-and right-angle light scattering
(LALS) and RALS were employed to determine absolute molecular mass; 2 Mw expected–molar mass declared
by producer; Mw =

∣∣∣(Mwexpected) −Mw
∣∣∣/(Mwexpected) × 100% ; 3 intrinsic viscosity; 4 Rη–viscosimetric radius;

Rg–gyration radius; 5 calculated from differential refractometer using dn/dc = 0.129.
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3.2. SEC of Samples Dispersed in NaOH/Urea

Following the dispersion in NaOH/urea at 0 ◦C, the starch samples were diluted and separated
using SEC. Signals recorded with RI, Vis, and LALS detectors are presented in Figure 3. The starch
molecules were eluted in retention volume ranging from 12.7 to 23.3 mL, Figure 3a. A trimodal peak
distribution (RI signal) was observed for corn starch sample. The first peak (15–18.7 mL) corresponded
to amylopectin, the second and third peaks—to amylose. The RI chromatogram of waxy corn starch
contained a single peak (15–22.5 mL) with a noticeable tailing toward higher retention volumes.
The profile of potato starch did not show a pronounced valley between amylopectin and amylose
peaks recorded in the range of 15–22 mL. The waxy potato starch showed a pattern similar to waxy
corn starch. Tailing of right side of the peak was observed together with a weak signal indicating large
hydrodynamic volume recorded in range of retention volume from 12.7 to 15.4 mL. Intensive, non-starch
signals were also observed since the samples were not precipitated after dispersion but neutralized and
diluted directly. Thus, the excess of urea and phosphorus salts was recorded (23.4–34 mL). The samples
diluted in the eluent (pH 8.0) did not precipitate in vials for 3 days and their SEC profiles did not
change during 24 h. This is especially important in the analysis of a batch of samples.
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Figure 3. SEC chromatograms of corn, waxy corn, potato, waxy potato starch; (a) signals of the
refractive index (RI) detector, (b) four-capillary viscometer (Vis) detector, (c) low-angle light scattering
(LALS); the samples were dispersed in aqueous solution of urea/NaOH at 0 ◦C for 24 h and eluted
with 50 mM phosphate buffer (pH 8.0) with 100 mM urea. The arrows indicate amylose (AM) and
amylopectin (AP) ranges; the possible traces of amylose in waxy starches were neglected.

Light scattering (LS) signals (Figure 3b) were proportional to the molecular mass and concentration
of the polymer. Other factors were constant (dn/dc and calibration factor of detector). It was observed
that the LALS signal did not reach the level of the baseline from before the injection after 23.3 mL
retention volume. This suggests that some part of sample gradually eluted from the column with
a delay. It was especially apparent for waxy samples. Comparing the LS signals, it was noted that
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waxy potato starch consisted of molecules of the largest size (intensive LS signals and low RI signal
simultaneously).

Surprisingly, the Vis detector (Figure 3) gave only a weak signal for potato starch. It is a huge
disadvantage because without the Vis signal it was not possible to determine the viscosimetric radius
(Rη), intrinsic viscosity, parameters of Mark–Houwink (M–H) parameters, and M–H plot. Low polymer
concentration or low polymer recovery, wide range of sample elution, incompatibility of solvent are
the possible reasons for the weak signal of the Vis detector. Comparison of the signals for pullulan
P2500 (elution range 15–20 mL) and potato starch with the same load on the column showed that the
RI signal for pullulan (recovery close to 100%, dn/dc = 0.129 mL/g) was about 2.8 times lower than
the signal for potato starch (recovery 42%, dn/dc = 0.124 mL/g). It proves that the main reasons for
the weak signals from the Vis detector for the starch samples were mainly low recovery and a broad
elution range (Table 2).

3.3. SEC of Samples Dispersed in NaOH or KOH

Additional experiments were conducted to compare the effectiveness of dispersion of starch in
urea (2.3 M)/NaOH (1 M) aqueous solution at 0 ◦C with other methods where base conditions are
applied, i.e., using 0.5/1.0 M NaOH or 2 M KOH at 65 ◦C. Corn starch was used for this purpose.
RI chromatograms of corn starch are presented in Figure 4, the SEC profiles were analogical to the ones
presented previously for corn starch sample dispersed in urea/NaOH. The intensity of the amylopectin
band was similar to the amylose band which suggests that amylopectin was not dispersed fully.
Chromatograms where the sample was dispersed in 2 M KOH for 0.5 and 1 h, respectively, provide
evidence that the low recovery of the samples was related to low dispersion of amylopectin (Figure 4).
A more intensive signal for amylopectin (15–18.7 mL) was observed when a longer dispersion time
was applied. At the same time the amylose signal remained unchanged. Dispersion of the samples in
alkaline conditions with gentle stirring did not result in the destruction of amylopectin as indicated
by the calculated content of amylose which oscillated within the range of 20–21%. The determined
content of amylose in the tested sample was consistent with earlier determinations performed using
the amylose/amylopectin test kit (Megazyme Ltd., Wicklow, Ireland) based on a Con A precipitation
procedure [53] which proves a 100% amylose recovery.
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3.4. Molecular Mass, Size, and Recovery of Starch Samples

Parameters calculated for the tested starches dispersed in urea/NaOH, 0.5/1.0 M NaOH, or 2 M
KOH are presented in Table 2. The recovery of potato amylose was close to 100% and the determined
weight average molar mass (Mw) was typical for this fraction as determined previously [10]. The highest
molecular masses and gyration radiuses (Rg) were calculated for potato and waxy potato starches.
Nonetheless, the recovery of waxy potato starch (21%) was significantly lower than the recovery of
potato starch (42%) since the latter contains amylose which disperses fully in urea/NaOH solvent.
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Analogical difference was noted for corn and waxy corn starches. These observations provide evidence
that the aqueous urea/NaOH solvent does not allow to properly disperse amylopectin. The highest
recovery (58%) was obtained with 2.0 M KOH and corn starch in which case also the molar mass
was determined to be higher compared to the respective sample dispersed in urea/NaOH but lower
compared to corn starch dispersed in 1 M NaOH. Nonetheless, it is not possible to conclude that
urea/NaOH solvent degrades amylopectin of corn starch more than NaOH or KOH. With such small
recovery values it is possible that each of the applied solvents disperses a slightly different fraction of
the sample.

Table 2. SEC results of starch samples dispersed in aqueous solution of urea (2.3 M)/NaOH (1 M) at
0 ◦C for 24 h and NaOH or KOH at 65 ◦C for 1h; the values of the coefficient of variation (%) were
given in brackets.

Starch Origin Dispersion Mn
1 (Da) Mw

1 (Da) Mw/Mn
1 Rg

1 (nm) Recovery 1 (%)

corn urea/NaOH 7.85 × 106 a (3.6) 2.13 × 107 b (7.4) 2.7 b (3.8) 122 b (11.3) 39.0 b (8.9)
waxy corn urea/NaOH 4.11 × 107 c (5.9) 5.27 × 107 e (2.1) 1.3 a (8.0) 124 b (2.1) 28.3 a (8.9)

potato urea/NaOH 7.30 × 107 d (2.2) 9.16 × 107 f (2.3) 1.3 a (0.1) 185 c (1.2) 42.2 b (5.8)
waxy potato urea/NaOH 2.54 × 108 e (3.0) 2.94 × 108 g (0.5) 1.2 a (2.6) 252 d (7.5) 21.2 a (8.0)

potato amylose urea/NaOH 3.91 × 105 a (3.2) 1.37 × 106 a (1.9) 3.5 c (1.3) 62 a (12.3) 99.8 d (1.5)
corn 0.5 M NaOH 2.57 × 107 b (6.2) 3.09 × 107 c,d (5.1) 1.2 a (1.1) 113 b (10.2) 38.9 b (2.1)
corn 1.0 M NaOH 2.93 × 107 b,c (4.8) 3.45 × 107 d (4.6) 1.2 a (0.2) 120 b (4.7) 45.2 b (4.0)
corn 2.0 M KOH 2.37 × 107 b (2.8) 2.89 × 107 c (1.2) 1.2 a (1.7) 110 b (6.6) 57.5 c (3.7)

1 Mn–number average molar mass; Mw–weight average molar mass; Mw/Mn–polydispersity index; Rg–gyration
radius; recovery was calculated from differential refractometer using dn/dc = 0.129; a–g different letters show
significant differences in means (p < 0.05) between values in columns.

4. Discussion

The nutritional and industrial importance of starch is unquestionable but its application requires
knowledge of its structure and molecular size distribution. SEC is the most common technique used
to characterize this distribution [54]. However, a uniform method of dispersion of starch for the
purpose of SEC has not been established yet. Generally, water, dimethyl sulfoxide (DMSO), and N,
N-dimethyloacetamide supplemented with LiCl are examples of systems in which starch undergoes
dispersion but the conformation of chains and their behavior depend on the type of the solvent
used [55]. Common food environments are aqueous but amylose retrogrades in water quickly and
forms particles of uniform size [56]. The coils of amylopectin create a network in water that results
from the entanglement of the side branches. [55]. Amylose predominantly takes the conformation
of a helix in DMSO which transits into a loose helix and then into a random coil with an increasing
water content [57]. Amylopectin demonstrates a compact spherical conformation in DMSO [58]. It can
thus be deduced that the characterization of starch should be performed in an aqueous solvent as
its structure under such conditions reflects its nature in food systems much closer than the structure
it takes in an organic solvent. Performing SEC analysis with the use of an aqueous solvent is also
advantageous in terms of signal-to-noise ratio since the dn/dc values are high compared to the small
values that cause problems during analyses performed with DMSO [35]. Therefore, a solvent was
proposed, a 50 mM phosphate buffer (pH 8.0) with 100 mM urea in case of which the dn/dc value was
0.124 for starch. The idea was to dilute starch after dispersion in the aqueous urea/NaOH solvent
would be non-degradative and retrogradation-limiting. Aqueous media with pH in the range of 4–10
are considered non-degradative toward starch [59]. Increased pH values were also found to diminish
the retrogradation of starch [60,61]. This corresponds to our observations as no precipitation of sample
was observed prior to SEC analysis at pH 8.0. The dispersions of starch samples were stable for 3 days
at 22 ◦C.

The proposed SEC conditions yielded repeatable SEC separations. The determined molar masses
and Rg values were consistent throughout repeated injections performed over 24 h. Nevertheless,
the weak signals recorded by the viscometric detector did enable to calculate the viscosimetric radius
and intrinsic viscosity or apply a universal calibration validated for a number of branched polymers,
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including starch [62]. It was reported that urea and NaOH are good plasticization and dissolving factors
for corn starch, respectively, and that the molar mass determined using an Ubbelohde viscometer
and Mark-Houwink relation was 1.53 × 107 Da [31]. A similar result was obtained in this study
(2.13 × 107 Da). Despite the fact that the solubility of corn starch in urea (2.3 M)/NaOH (1 M) was
found to be 99% up to a concentration of 1% and pose no serious degradation problems [62], it was not
possible to obtain a high recovery during SEC. However, degradation of amylopectin during dispersion
was not observed as the calculated amylose concentration was typical for corn starch [53]. Autoclaving,
microwave heating, homogenization provide better SEC recovery but result in degradation of starch
molecules. The recovery of corn starch dispersed in an aqueous NaOH solution was found to be <50%
(elution using aqueous NaNO3) [63]. When DMSO/water solution (90:10, v/v) was used to obtain
starch dispersion prior to aqueous SEC the recovery was also not improved (41% recovery for corn
starch) [53]. Dispersion of potato starch for 2 h in 1 M alkali aqueous solution at 25 ◦C yielded recovery
rates of 85% during organic (DMSO) SEC [46].

It was also reported that 20–30% of large amylopectin molecules may not pass the SEC column
and the injection membrane filter (3.0 µm) [63]. The samples in our experiments were therefore filtered
using membranes of 5.0 µm porosity and the post column filter was removed from SEC equipment.
The flow rate during SEC analysis did not cause degradation of amylopectin of corn and potato
starch but tailing of peaks of the analyzed waxy starches was recorded. It is possible that a slight
shear degradation took place during SEC separation since extensive shear scission that occurs in the
column was suggested as the cause behind changes in the apparent size distribution of the amylopectin
region [54]. A recent report shows that a 10-minute treatment of corn starch with urea and NaOH in
higher concentrations (3.5 M and 2 M, respectively) and gentle stirring at ambient temperature results
in obtaining granular cold-water-soluble starch. Nonetheless, it was accompanied by a slight increase
in the amylose content due to the degradation of amylopectin [32].

5. Conclusions

The main problem that affects the analysis of the structure of starch using SEC is the poor solubility
of this biopolymer in aqueous solvents. For this reason, DMSO is usually used as a solvent but its
physical properties limit the sensitivity of RI and LS detectors. Moreover, utilization of this organic
solvent does not allow to reflect the conditions in which starch is dispersed in the water phase of food.
This justifies the investigation into the possibility of applying new aqueous solvents for SEC analysis
of starches intended for food applications. The conducted experiments support previous conclusions
that urea and NaOH are good plasticization and dissolving factors, respectively. However, the analysis
of SEC data proves that urea/NaOH does not show as efficient dispersion of amylopectin as DMSO.
At the same time the application of this aqueous solvent does not lead to the degradation of the sample
which was also reported when aqueous solutions of NaOH were used.
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3. Przetaczek-Rożnowska, I. Physicochemical properties of starches isolated from pumpkin compared with
potato and corn starches. Int. J. Biol. Macromol. 2017, 101, 536–542. [CrossRef] [PubMed]

4. Tabasum, S.; Younas, M.; Zaeem, M.A.; Majeed, I.; Majeed, M.; Noreen, A.; Iqbal, M.N.; Zia, K.M. A review on
blending of corn starch with natural and synthetic polymers, and inorganic nanoparticles with mathematical
modeling. Int. J. Biol. Macromol. 2019, 122, 969–996. [CrossRef] [PubMed]

5. Mendes, J.F.; Paschoalin, R.; Carmona, V.B.; Sena Neto, A.R.; Marques, A.C.P.; Marconcini, J.M.;
Mattoso, L.H.C.; Medeiros, E.S.; Oliveira, J.E. Biodegradable polymer blends based on corn starch and
thermoplastic chitosan processed by extrusion. Carbohydr. Polym. 2016, 137, 452–458. [CrossRef] [PubMed]

6. Dupuis, J.H.; Liu, Q. Potato starch: A review of physicochemical, functional and nutritional properties.
Am. J. Potato Res. 2019, 96, 127–138. [CrossRef]

7. Copeland, L.; Blazek, J.; Salman, H.; Tang, M.C. Form and functionality of starch. Food Hydrocoll. 2009, 23,
1527–1534. [CrossRef]
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