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Abstract: The MutL family of DNA mismatch repair proteins (MMR) acts to maintain genomic
integrity in somatic and meiotic cells. In baker’s yeast, the MutL homolog (MLH) MMR proteins
form three heterodimeric complexes, MLH1-PMS1, MLH1-MLH2, and MLH1-MLH3. The recent
discovery of human PMS2 (homolog of baker’s yeast PMS1) and MLH3 acting independently of
human MLH1 in the repair of somatic double-strand breaks questions the assumption that MLH1 is
an obligate subunit for MLH function. Here we provide a summary of the canonical roles for MLH
factors in DNA genomic maintenance and in meiotic crossover. We then present the phenotypes
of cells lacking specific MLH subunits, particularly in meiotic recombination, and based on this
analysis, propose a model for an independent early role for MLH3 in meiosis to promote the accurate
segregation of homologous chromosomes in the meiosis I division.

Keywords: MutL homologs; MLH; DNA mismatch repair; meiosis; Holliday junction resolution;
homologous recombination

1. Introduction

The eukaryotic MutL homolog (MLH) family of DNA mismatch repair (MMR) pro-
teins consists of three heterodimeric complexes conserved from baker’s yeast to humans.
In baker’s yeast, they are referred to as MLH1-PMS1 (MutLα), MLH1-MLH2 (MutLβ),
and MLH1-MLH3 (MutLγ) (Figure 1). In this review, we use by default the baker’s yeast
designations for the MLH factors, and when appropriate, specify the mammalian des-
ignations. As explained more fully below, MLH proteins act in both MMR and meiotic
recombination; MLH1-PMS1 functions as the primary MLH factor in MMR with MLH1-
MLH2 and MLH1-MLH3 playing minor roles, though MLH1-MLH3 has been implicated in
trinucleotide repeat expansion steps that appear related to MMR. In meiotic recombination,
MLH1-MLH2 limits the length of heteroduplex tracts that arise from strand invasion events
that are initiated from double-strand breaks, and MLH1-MLH3 is critical for the faithful seg-
regation of homologous chromosomes in meiosis I division by ensuring crossover-specific
resolution of double Holliday junctions [1–4].

Phylogenetic studies provided evidence for the occurrence of ancient gene duplica-
tion events that led to the specialization of the MLH family of paralogs. Such work also
indicated that the MLH1 outgroup diverged prior to the splits that led to the PMS1,
MLH2, and MLH3 paralogs [5–8]. One of the long-lasting paradigms of the eukary-
otic MLH family is MLH1 serving as a common partner for PMS1, MLH2, and MLH3
(Figure 1). In Section 2, we present the well-established MLH1-dependent roles in three
cellular contexts: DNA MMR, trinucleotide repeat expansion, and meiotic recombination.
In Section 3, we examine recent evidence hinting at MLH1-independent roles for MLH3 in
homologous recombination. Lastly, in Section 4 we consolidate these observations into a
model proposing that in meiosis, MLH3 plays an early, MLH1-independent role to stabilize
nascent joint molecules that form during initial stages of recombination.
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Figure 1. Summary of roles for canonical MLH complexes in MMR and meiotic recombination (see text for details). 

Phylogenetic studies provided evidence for the occurrence of ancient gene duplica-
tion events that led to the specialization of the MLH family of paralogs. Such work also 
indicated that the MLH1 outgroup diverged prior to the splits that led to the PMS1, 
MLH2, and MLH3 paralogs [5–8]. One of the long-lasting paradigms of the eukaryotic 
MLH family is MLH1 serving as a common partner for PMS1, MLH2, and MLH3 (Figure 
1). In Section 2, we present the well-established MLH1-dependent roles in three cellular 
contexts: DNA MMR, trinucleotide repeat expansion, and meiotic recombination. In Sec-
tion 3, we examine recent evidence hinting at MLH1-independent roles for MLH3 in ho-
mologous recombination. Lastly, in Section 4 we consolidate these observations into a 
model proposing that in meiosis, MLH3 plays an early, MLH1-independent role to stabi-
lize nascent joint molecules that form during initial stages of recombination. 

2. Coordinated Roles for the MLH Proteins in DNA Metabolism 
To explore new roles for the MLH family in meiosis, we first present the established 

roles for this family in various cellular contexts. Section 2 then outlines studies showing 
that MLH1 is a critical component of heterodimeric MLH complexes that act in a variety 
of DNA-repair events. 

2.1. MLH Family Proteins Function Together in Post-Replicative DNA-Mismatch Repair 
MMR enforces genomic integrity by repairing misincorporated nucleotides and 

loops resulting from DNA-slippage events that are introduced during DNA replication. 
Much of our insights into the mechanism of MMR come from the bacterial Escherichia coli 
system. In E. coli, mismatch recognition by the MutS homodimer triggers ATP-dependent 
conformational changes, which convert MutS into a sliding clamp capable of recruiting 
the MutL homodimer. The MutS-MutL complex then recruits the MutH endonuclease to 
nick the newly replicated unmethylated strand in a process temporally regulated by the 
activity of DNA adenine methyltransferase (Dam). The nicked DNA serves as an entry 

Figure 1. Summary of roles for canonical MLH complexes in MMR and meiotic recombination (see
text for details).

2. Coordinated Roles for the MLH Proteins in DNA Metabolism

To explore new roles for the MLH family in meiosis, we first present the established
roles for this family in various cellular contexts. Section 2 then outlines studies showing
that MLH1 is a critical component of heterodimeric MLH complexes that act in a variety of
DNA-repair events.

2.1. MLH Family Proteins Function Together in Post-Replicative DNA-Mismatch Repair

MMR enforces genomic integrity by repairing misincorporated nucleotides and loops
resulting from DNA-slippage events that are introduced during DNA replication. Much
of our insights into the mechanism of MMR come from the bacterial Escherichia coli sys-
tem. In E. coli, mismatch recognition by the MutS homodimer triggers ATP-dependent
conformational changes, which convert MutS into a sliding clamp capable of recruiting
the MutL homodimer. The MutS-MutL complex then recruits the MutH endonuclease to
nick the newly replicated unmethylated strand in a process temporally regulated by the
activity of DNA adenine methyltransferase (Dam). The nicked DNA serves as an entry
site for the unwinding of DNA by the UvrD helicase. Unwound single-stranded DNA is
then digested by exonucleases to create a gap through the mismatch site that is repaired by
DNA polymerase and ligase ([9,10] and reviewed in [1,11]).

In eukaryotes, mismatches and insertion/deletion loops are recognized by MutS ho-
molog (MSH) heterodimers. MSH2-MSH6 primarily recognizes base–base mismatches and
1 nt insertion/deletion loops, and MSH2-MSH3 primarily recognizes insertion/deletion
loops that can be as large as 17 nt in size [1,12–14] (Figure 2A). Recent models propose
that mismatch recognition by MSH heterodimers triggers ATP-dependent conformational
changes in these proteins, converting them into sliding clamps that primarily recruit MLH1-
PMS1, which contains an endonuclease motif within the PMS1 subunit. These steps result
in MLH1-PMS1 nicking the newly replicated strand through interactions with PCNA,
enabling downstream factors to act through multiple pathways to excise the misincor-
porated DNA. The resulting gap is resynthesized by DNA polymerases and sealed by
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DNA ligase ([15,16] and reviewed in [1,17]). MLH1-MLH2 and MLH1-MLH3 are also
recruited to mismatches by MSH heterodimers, but their roles appear to be narrower than
for MLH1-PMS1, as indicated by the relatively minor defects in MMR seen in yeast in
mlh2∆ and mlh3∆ mutants [7,18–21].

Numerous in vitro biochemical and genetic studies in MMR have suggested a require-
ment for MLH1 as a subunit of all three heterodimers. All four eukaryotic MLH proteins
possess an N-terminal ATP binding domain, an unstructured linker, and a structured C-
terminal domain. The asymmetric binding of ATP to MLH1 and its MLH partner triggers
conformational changes that facilitate the coordinated condensation of the N-terminal
domains of the complex, bringing them in close proximity to the C-termini [1,22,23].
Accordingly, MLH1 exhibits higher affinity for ATP than PMS1 [24], and mutations in
MLH1′s ATPase motifs confer greater MMR defects than mutations in PMS1′s ATPase mo-
tifs [25]. Given their structural similarities, we infer that MLH1-MLH2 and MLH1-MLH3
undergo ATP-dependent conformational changes upon interacting with their substrates
in mechanisms analogous to that seen for MLH1-PMS1 [23,26,27]. Furthermore, these
studies provide a coherent rationale for why MLH1 is the common subunit for all known
MLH heterodimers.

Although MLH1-PMS1, MLH1-MLH2, and MLH1-MLH3 share many similarities
in their modes of action during MMR, distinctions can be made between their structure,
mechanisms of recruitment, substrate specificity, and strand-nicking specificity (Figure 2).
First, PMS1 and MLH3 contain endonuclease motifs, whereas MLH2 does not. Consistent
with these observations, MLH1-PMS1 and MLH1-MLH3 display endonuclease activities,
setting them apart from E. coli MutL, which lacks endonuclease activity and instead relies
on MutH for strand-specific nicking [21,28–30], though most bacteria contain MutL with
an intrinsic endonuclease activity and likely use a strand discrimination mechanism more
similar to eukaryotic MMR [31]. MLH1-MLH2, however, lacks such an activity [4].

Second, the variation in functionality between MLH complexes is reflected in their
recruitment and substrate specificity in MMR. MLH1-PMS1 is recruited to repair base–base
mismatches and insertion/deletion loops by either MSH2-MSH6 or MSH2-MSH3. MLH1-
MLH2 also appears to be recruited to mismatches by both MSH2-MSH6 or MSH2-MSH3,
but its exact function is less well understood, and it is considered an accessory factor [4,7].
Interestingly, MLH1-MLH3 acts in MSH2-MSH3-dependent MMR, specifically in the repair
of deletion loops [19–21] (Figure 2B). While these observations are consistent with the
hypothesis that MSH2-MSH3 directs strand-specific nicking by MLH1-MLH3, they do not
rule out the possibility of an alternative in vivo strand-specificity factor. That said, the
nicking activity performed by MSH2-MSH3 and MLH1-MLH3 is reminiscent of the activity
exhibited by MLH1-MLH3 in other cellular contexts (discussed below for trinucleotide
repeat instability) but appears distinct from the mechanism of strand specificity imposed
by interactions between PCNA and MLH1-PMS1 in MMR that involve a PCNA-interacting
protein-box (PIP-box) motif in PMS1 that is not found in the corresponding structural
location in MLH3 [15,32].
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Figure 2. Roles for MLH complexes in DNA mismatch repair and trinucleotide repeat instability. (A) MLH1-PMS1
plays a major role in MMR. Upon recruitment to the site of a mismatch by either MSH2-MSH6 or MSH2-MSH3, MLH1-
PMS1 is directed by PCNA to nick the newly synthesized strand enabling downstream factors to excise the mismatch
and resynthesize the excised DNA. (B) MLH1-MLH3 plays a minor role in MMR, where it is recruited to deletion-loop
mismatches by MSH2-MSH3 and is stimulated to nick the strand opposite a deletion loop. Restoration of the template
sequence proceeds as described for MLH1-PMS1. (C) MLH1-MLH3 acts in trinucleotide repeat expansion during DNA
replication. In this version of a model for trinucleotide repeat expansion, MLH1-MLH3 nicks the strand opposite a DNA
loop formed in the lagging strand in a reaction dependent on loop recognition by MSH2-MSH3. (D) MLH1-MLH3 acts in
trinucleotide repeat expansion independent of DNA replication [33]. As in (C), MLH1-MLH3 nicks the strand opposite
DNA loops formed in trinucleotide repeat sequences in a reaction dependent on loop recognition by MSH2-MSH3.

2.2. MLH1-PMS1 and MLH1-MLH3 Promote Trinucleotide Repeat Expansion in Mammals

Genome-wide-association studies in human patients, as well as genetic studies in
baker’s yeast, mice, and human cell cultures, have linked MLH1, PMS1 (PMS2 in mammals),
and MLH3 to trinucleotide repeat expansions in human diseases such as Huntington’s
(CAG expansions in the HTT gene) and myotonic dystrophy type I (CTG/CAG expansions
in the DMPK gene) [34–43]. Repeat expansions have been shown to occur in both germline
and somatic cells through events dependent on (Figure 2C) or independent of (Figure 2D)
DNA replication. Mechanistic studies in both baker’s yeast and mammals have provided
models for MSH2-MSH3, MLH1-PMS1, and MLH1-MLH3 acting as mediators of small
trinucleotide repeat expansions in somatic cells [34,35,37,44–46] (Figure 2). In these models,
MSH2-MSH3 is proposed to recognize small loops within triplet repeats and recruit the
MLH endonucleases MLH1-PMS1 and MLH1-MLH3.

In the context of a nonreplicating cell, repeat sequences are hypothesized to form
single-stranded loops that can be excised to yield expansions or contractions following
repair synthesis (Figure 2D). If the loop-containing strand is excised, DNA synthesis and
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ligation results in a repeat contraction. If the loop-lacking strand is excised, a repeat
expansion occurs. In vitro repair assays performed by Modrich, Kadyrov, and colleagues
showed that human MLH1-PMS1 is capable of generating roughly equal mixtures of
expansions and contractions following nicking and excision of a 3-bp loop-containing
covalently closed DNA substrate [37,45]. In contrast, human MLH1-MLH3 nicking was
heavily biased toward the generation of repeat expansions in a MSH2-MSH3-dependent
manner, and this bias was contingent on MLH3′s endonuclease activity. These observations
indicate that in vitro reactions containing MSH2-MSH3 and MLH1-MLH3 and essential
cofactors were sufficient to create the biased nicking of the loop-lacking strand of a plasmid
substrate [37]. As mentioned above, MLH1-MLH3′s role in MMR is biased toward a MSH2-
MSH3 repair pathway that involves the repair of deletion loops [19,20,33,46] (Figure 2B).
Thus, it is hypothesized that during repeat expansion, MSH2-MSH3 and MLH1-MLH3
inappropriately identify these substrates as deletion loops (Figure 2C,D). In the context of
meiosis, the ability of MLH1-MLH3 to be directed to nick the strand opposite a DNA loop
may provide an attractive model for how biased cleavage of a double Holliday junction
occurs (see below).

2.3. Roles for MLH1-MLH3 and MLH1-MLH2 in Meiotic Recombination

Meiosis is the process by which sexually reproducing eukaryotes create four haploid
cells from a single diploid cell via one round of DNA replication, followed by two con-
secutive rounds of cell division culminating in the production of four genetically distinct
haploid cells [47–50]. Crossing over denotes the reciprocal exchange of chromosome arms
between synapsed homologous chromosomes. In addition to its contribution to genetic
diversity by creating unique paternal/maternal hybrid chromosomes, crossing over and
distal sister chromatid cohesion ensure the faithful segregation of homologous chromo-
somes towards opposite poles by providing the necessary tension to biorient homologs
on the meiosis I spindle. Failure to receive at least one crossover (CO) per homolog pair
is thought to result in homolog nondisjunction at the first meiotic division due to achias-
mate homolog pairs lacking the stable physical linkage provided by a CO and distal sister
chromatid cohesion. Given the crucial nature of crossing over, it is unsurprising that in
humans, dysregulation of CO formation is linked to aneuploidy-associated disorders such
as Down syndrome, miscarriage, and infertility [49,51].

In S. cerevisiae and higher eukaryotes, recombination leading to crossing over is ini-
tiated in meiotic prophase with the formation of SPO11 induced double-strand breaks
that occur genomewide [52–56] (Figure 3A). These double-strand breaks undergo 5′-3′

resection to form 3′ single-stranded tails, which then undergo a homology search with a
preference for repair off of the homologous chromosome as opposed to the sister chromatid.
Strand invasion of the homologous donor chromosome results in the formation of a dis-
placement loop (D-loop) in a reaction catalyzed by recombinase machinery that includes
DMC1, RAD51, RAD52, and RAD54 [57,58]. Once formed, and following extension by
DNA synthesis, the D-loop may be unwound by the helicase/topoisomerase STR complex
(composed of SGS1-TOP3-RMI1 in baker’s yeast or BLM-TOP3-RMI1 in mammals). Such
unwound intermediates can participate in subsequent strand invasions or be repaired via
a synthesis-dependent strand-annealing mechanism to result in a noncrossover (NCO)
product (reviewed in [59]). Alternatively, the D-loop intermediate can be extended by
DNA synthesis followed by second-end capture of the other end of the double-strand
break to form double Holliday junction intermediates that are resolved into crossovers.
MLH1-MLH2 has been shown in genetic and biochemical studies to interact with the MER3
helicase to prevent excessive D-loop extensions and DNA synthesis (Figure 3B). Such a
mechanism modulates meiotic recombination tract length, and has been suggested to limit
the availability of DNA sequences that could participate in recombination events that lead
to genome rearrangements [3,4]. Curiously, MLH1 interacts with SGS1 helicase in budding
yeast and BLM helicase in human cells, though the relevance for such an interaction in
meiotic recombination remains unclear [60–62].
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In the major CO pathway, extended D-loops are stabilized by the meiosis-specific MSH
family complex MSH4-MSH5 along with other members of the functionally diverse ZMM
family, including ZIP1-4, MER3, and SPO16 (reviewed in [63]). This stabilization promotes
the formation of double Holliday junctions; MLH1-MLH3 is thought to be recruited to
ZMM-stabilized double Holliday junctions, where it asymmetrically cleaves them into
only crossover products, potentially through interactions with PCNA [64–67] (Class I COs;
Figure 3A). Importantly, the Class I CO pathway exhibits interference, which results in
COs that are widely and evenly spaced, as well as CO assurance, the phenomena in which
each homolog pair receives at least one CO. This pathway accounts for the 75–85% of COs
in budding yeast and 90–95% of COs in mice [59,63,64].

In the Class II CO pathway (~15 to 25% of all crossovers), double Holliday junctions
that arise independently of ZMMs are cleaved without orientation bias primarily by
the structure-selective nuclease MUS81-MMS4 (MUS81-EME1 in mammals) to result in
a roughly 50:50 mixture of CO and NCO products [59,64,68–70]. Additional structure-
selective nucleases such as SLX1-SLX4 and YEN1 also act in this pathway as compensatory
mechanisms for double Holliday junction resolution [64,71].
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role in meiotic crossover formation. Meiotic recombination is initiated by the formation of programmed double-strand
breaks catalyzed by SPO11. Following 5′-3′ resection of break ends, the DMC1 and RAD51 recombinases form a filament on
3′ single-stranded tails, catalyzing homology search for the allelic locus on the homologous chromosome. Strand invasion is
accompanied by D-loop migration and capture of the second end of the double-strand break. Ultimately, MLH1-MLH3
is recruited to ZMM-stabilized (not shown) double Holliday junctions, where it shows a bias for a nicking orientation
overlapping with new DNA synthesis tracts, resulting in a crossover product. (B) MLH1-MLH2, in connection with the
MER3 helicase, limits the length of heteroduplex tracts arising from extension of the 3′ tail of an invading double-strand
break. See text for details.

Numerous genetic studies in yeast and mice have indicated that both MLH1 and
MLH3 are critical for meiotic CO formation [64,72–74]. In yeast, deletion of MLH1 or MLH3
results in decreases in crossing over and spore viability, as well as increases in meiosis I (MI)-
nondisjunctions [2,26,75–78]. MLH3 confers the endonuclease activity of MLH1-MLH3; a
mutation in the DQHA(X)2E(X)4E metal-binding motif of MLH3 (mlh3-D523N) abolishes
the endonuclease activity of budding yeast MLH1-MLH3 in vitro, and confers mlh3∆-
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like phenotypes in vivo [21,29,78]. These and earlier data suggest that MLH1-MLH3 is
responsible for resolving double Holliday junctions via the endonuclease activity of MLH3.
However, MLH1-MLH3 does not conform to the paradigms of known structure-selective
nucleases that are capable of recognizing Holliday junction substrates in vitro and precisely
cleaving symmetrically at branch points (see examples in [79]). MLH1-MLH3 efficiently
binds model Holliday junction substrates, but binding to them inhibits its endonuclease
activity [21,29,30,65,66]. Rather, MLH1-MLH3 endonuclease activity is activated upon
polymer formation in vitro on large double-stranded substrates [30]. It is still unclear
whether MLH1-MLH3 is activated by polymer formation in vivo to cleave double Holliday
junctions, but the nucleosome remodeler CHD1 has been proposed as a potential candidate
for facilitating such activity [80].

An intact double Holliday junction is a symmetric molecule that must be asymmetri-
cally cleaved by MLH1-MLH3 in the Class I pathway to yield only CO products. Recent
studies have shed light on the mechanism of imparting asymmetry by analyzing het-
eroduplex DNA tracts following CO formation [81,82]. Using MMR-defective yeast and
mice strains, respectively, Marsolier-Kergoat et al. [81] and Peterson et al. [82] observed
the patterns of heteroduplex DNA recovered from MMR-defective strains. Their results
delineated a model involving extensive D-loop migration in the direction of DNA synthesis
following strand invasion by the broken homolog. Moreover, the patterns of heteroduplex
DNA recovered suggest a strong MLH1-MLH3 dependent bias for a nicking orientation
overlapping with new DNA synthesis tracts (Figure 3A). Curiously, this mode of directed
nicking fits neatly with a model in which the double Holliday junction remains unligated
following DNA synthesis. One hypothesis is that meiotic factors recognize unligated junctions
and direct MLH1-MLH3 to nick the opposite strand, analogous to the manner by which
MSH2-MSH3 directs MLH1-MLH3 in MMR and in trinucleotide repeat expansion (Figure 2).
Although this model benefits from parsimony in that MLH1-MLH3 need generate only
two nicks rather than four, further research is necessary to confirm this hypothesis.

3. Independent Roles for MLH Proteins in Homologous Recombination and Meiosis

MLH factors have been thought to primarily function as heterodimers with MLH1 as
the common binding partner. In this section, we will attempt to consolidate observations
within the literature hinting at expanded roles for the MLH family, in addition to proposing
explanations for these findings.

3.1. Human MLH3 and PMS2 (Homolog of Baker’s Yeast PMS1) Function Separately from MLH1
in Somatic Homologous Recombination

The MLH family of proteins has not been extensively characterized for direct roles
in somatic double-strand-break repair. In a recently published study, Rahman et al. [83]
deleted MLH1, PMS2, MLH3, and MSH2 in human TK6 B cells and found that PMS2
and MLH3 were important for the repair of double-strand breaks, whereas MLH1 and
MSH2 appeared dispensable, providing evidence for roles in human cells for PMS2 and
MLH3 independent of MMR (Figure 4A). Furthermore, PMS2 and MLH3 appeared to
be involved in the resolution of double Holliday junctions as measured by the decrease
in sister chromatid exchange events seen in PMS2 and MLH3 mutants. Curiously, PMS2
and MLH3 functions were each dependent on intact nuclease domains present in their C-
terminal interaction domains [78,83–85]. Additionally, PMS2 and MLH3 gene disruptions
were nonepistatic, suggesting that PMS2 and MLH3 act independently in double-strand-
break repair. Whether a nuclease role is required in these MLH1-independent processes
has yet to be confirmed biochemically, but the observation by Rahman et al. [83] that
ectopic expression of the Holliday junction resolvase GEN1 (YEN1 in yeast) was sufficient
to partially rescue the defects observed in the absence of PMS2 or MLH3 leaves open
the possibility that the nuclease activities of PMS2 and MLH3 are involved in the direct
processing of joint molecule intermediates, such as double Holliday junctions (Figure 4A).

How might PMS2 and MLH3 perform roles independent of MLH1? One of several pos-
sibilities (e.g., acting as monomers, interacting with other factors) is that PMS2 and MLH3
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act as homodimers. Indeed, in silico analysis suggests that PMS2 and MLH3 are capable of
homo/heterodimerization [83], and MLH3 has been observed to co-immunoprecipitate
with PMS1 in meiotic budding yeast cells [67]. Furthermore, purified yeast MLH1 forms
homodimers [86], and a homodimer of the C-terminal domain of yeast MLH1 has been crys-
tallized (Figure 4B; see PBD 3RBN cited in [84]). If MLH factors exist separately from MLH1,
and such complexes are functional in homologous recombination [83], it is conceivable that
human PMS2/budding yeast PMS1 and MLH3 may also function independently of MLH1
in other processes, such as in meiosis. As discussed below, unexpected observations in
the meiotic literature have been difficult to explain from the standpoint of canonical MLH
complexes. By entertaining the possibility that MLH factors possess separable functions
independently and in complex with MLH1, these enigmatic results may be easier to clarify.
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3.2. Differential Timing and Location of Mouse MLH1 and MLH3 Foci Formation in
Meiotic Recombination

Some of the earliest speculation of noncanonical MLH complexes in meiosis came
from cytological work in mice in the early 2000s. Lipkin et al. [72] noticed the differential
appearance of MLH1 and MLH3 foci in meiotic prophase in spermatocytes. They found
that MLH3 localized to sites of recombination in early pachynema, but then colocalized
with MLH1 in mid-pachynema. This MLH3 localization to recombination sites in early
pachynema was independent of MLH1 (Figure 5A; [87]). MLH1 foci formation, however,
was dependent on MLH3, indicating that MLH3 acts upstream of MLH1 and likely recruits
MLH1 to CO-designated sites. Additionally, MLH3 formed foci at repetitive sequences at
centromeres and on the Y chromosome independently of MLH1, but colocalized with MLH1
to these regions in a Pms2−/− background [87]. This localization of MLH3 to repetitive
sequences was dependent on MSH2-MSH3, perhaps reflecting an intrinsic behavior of
MLH complexes to interact with loop mismatches that form in repetitive DNA. Given
that MLH1-MLH3 is known to be recruited by MSH2-MSH3 for MMR and trinucleotide
repeat expansion [18–20], it may be that recruitment of MLH3 to repetitive sequences by
MSH2-MSH3 is reflective of an intrinsic behavior of MLH complexes.

As indicated above, MLH3 localizes in mouse meiosis to repetitive sequences in
a process dependent on MSH2-MSH3 but independent of MLH1. These observations
were further complicated by the colocalization of MLH1 and MLH3 seen at repetitive
sequences in Pms2−/− mice, indicating that deletion of a single MLH factor could lead
to a redistribution of MLH factors throughout the genome (see discussion in [87] for
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further details). If MLH3 alone is playing a functional role, it must be doing so in a
process that is distinct from MMR, trinucleotide repeat expansion, and meiotic crossover
resolution, which all require intact MLH1-MLH3 complexes [20,21,34,83,85]. While difficult
to interpret, these data hint at the possibility of MLH3 acting in an uncharacterized step in
meiosis as a homodimer or through an unknown partner.

Cells 2021, 10, x FOR PEER REVIEW 9 of 17 
 

 

to repetitive sequences was dependent on MSH2-MSH3, perhaps reflecting an intrinsic 
behavior of MLH complexes to interact with loop mismatches that form in repetitive 
DNA. Given that MLH1-MLH3 is known to be recruited by MSH2-MSH3 for MMR and 
trinucleotide repeat expansion [18–20], it may be that recruitment of MLH3 to repetitive 
sequences by MSH2-MSH3 is reflective of an intrinsic behavior of MLH complexes. 

 
Figure 5. Models to explain the different meiosis I nondisjunction phenotypes of mlh1∆ and mlh3∆ mutants in meiosis. (A) 
Timeline of MSH4-MSH5, MLH3, and MLH1 foci formation on meiotic chromosomes. In leptonema, double-strand breaks 
and subsequent recombination drive initial pairing of homologous chromosomes. MSH4-MSH5 is recruited to recombi-
nation sites in zygonema, stabilizing single-end invasion intermediates. MLH3 foci formation in early pachynema is ac-
companied by decreased MSH4-MSH5 foci numbers. In mid-/late pachynema, MLH3 recruits MLH1 to form the MLH1-
MLH3 complex that resolves double Holliday junctions to generate crossover products [87]. (B) A model for how MLH3 
may promote CO-independent chromosome segregation. MLH3 is recruited to recombination intermediates, where it 
binds Holliday junctions, displacing MSH4-MSH5 and protecting nascent joint molecules from being unwound by the 
STR complex. These semi-stable joint molecules may provide sufficient tension to allow for biorientation of homologous 
chromosomes. MLH3 later recruits MLH1 to form the MLH1-MLH3 heterodimer. 

Figure 5. Models to explain the different meiosis I nondisjunction phenotypes of mlh1∆ and mlh3∆ mutants in meiosis.
(A) Timeline of MSH4-MSH5, MLH3, and MLH1 foci formation on meiotic chromosomes. In leptonema, double-strand
breaks and subsequent recombination drive initial pairing of homologous chromosomes. MSH4-MSH5 is recruited to
recombination sites in zygonema, stabilizing single-end invasion intermediates. MLH3 foci formation in early pachynema
is accompanied by decreased MSH4-MSH5 foci numbers. In mid-/late pachynema, MLH3 recruits MLH1 to form the
MLH1-MLH3 complex that resolves double Holliday junctions to generate crossover products [87]. (B) A model for how
MLH3 may promote CO-independent chromosome segregation. MLH3 is recruited to recombination intermediates, where
it binds Holliday junctions, displacing MSH4-MSH5 and protecting nascent joint molecules from being unwound by the
STR complex. These semi-stable joint molecules may provide sufficient tension to allow for biorientation of homologous
chromosomes. MLH3 later recruits MLH1 to form the MLH1-MLH3 heterodimer.
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3.3. Differential Crossing Over and Spore Viability Phenotypes of MSH and MLH Mutants in
Yeast Suggest CO-Independent Mechanisms of Chromosome Segregation

We have discussed the evidence in favor of a model in which MLH proteins possess
functionality independently of MLH1. We will now look at genetic studies in yeast suggest-
ing that the CO-promoting roles of MSH4-MSH5 and MLH1-MLH3 are separable from their
roles in promoting accurate segregation of homologous chromosomes. Defects in the Class
I CO-promoting machinery (e.g., mutations that disrupt ZMM, MLH1-MLH3, and EXO1
proteins), are correlated with low meiotic spore viability in baker’s yeast due to increased
prevalence of MI-nondisjunction events where both homologs segregate toward the same
pole during the first meiotic division [2,64,69,77,78,88–90]. Accordingly, Class I CO mutants
in baker’s yeast exhibit the spore-viability pattern of 4, 2, 0 viable spores, indicative of
frequent MI-nondisjunction. The elevated frequency of achiasmate homolog pairs in these
mutants (homologs that fail to receive at least one CO), as well as the presence of randomly
placed noninterfering COs, are thought to be the principal drivers of MI-nondisjunction.

Despite the well-established role for COs as the primary providers of interhomolog
linkage, other data paint a more complicated picture of homolog-segregation methods.
Argueso et al. [77] and Nishant et al. [78] showed that baker’s yeast mutants defective in
both interference-dependent Class I and interference-independent Class II CO resolution
pathways (mlh1∆ mms4∆ and mlh3∆ mms4∆) displayed 6 to 17-fold reductions in COs.
Curiously, other combinations of Class I and Class II mutants (msh5∆ mms4∆ and msh5∆
mms4∆ mlh1∆) exhibited smaller defects (4 to 6-fold reductions) in crossing over than
mlh1∆ mms4∆ and mlh3∆ mms4∆ mutants. Why might msh5∆ mms4∆ and msh5∆ mms4∆
mlh1∆ mutants show weaker CO defects, given that both Class I and Class II CO pathways
are expected to be disrupted? One possibility is that the presence of MSH4-MSH5 obstructs
alternative resolution pathways (i.e., SLX1-SLX4 or YEN1), thus accounting for the dramatic
CO defect observed in mlh1∆ mms4∆ and mlh3∆ mms4∆ double mutants (see also [26]).
Surprisingly, the spore viabilities of mlh1∆ mms4∆ (42%) and mlh3∆ mms4∆ (62%) double
mutants were found to be relatively high compared to msh5∆ (36%), msh5∆ mlh1∆ (37%),
and msh5∆ mms4∆ (19%) mutants [26,77,78,89]. These results are consistent with MSH4-
MSH5 acting upstream of MLH1-MLH3, as inferred from msh5∆ mms4∆ mlh1∆ triple
mutants mimicking msh5∆ mms4∆ double mutants in terms of CO defects. However,
the differential relationship between spore viability and crossing over exhibited by these
mutants is inconsistent with the expectation that crossing over and spore-viability defects
manifest from the same underlying mechanistic failure. Rather, the presence of MSH4-
MSH5 appears to be refractory to chromosome segregation defects, independently of its
pro-crossover role.

By extrapolating the CO frequency observed over the tested interval on chromosome
XV, Argueso et al. [77] and Brown et al. [89] calculated that mlh1∆ mms4∆ or mlh3∆ mms4∆
meiotic yeast cells would each receive roughly 6–7 COs, well below the minimum threshold
of 16 needed for each chromosome to receive at least one CO. Although the exact numbers
of COs per cell may differ greatly from this extrapolation, these results are inconsistent
with the notion that COs are required for proper meiosis I chromosome segregation in yeast.
Indeed, CO-independent means of chromosome segregation have been well documented
in other species, primarily through centromeric pairing and/or pairing at repetitive se-
quences (reviewed in [50]). Together, these results suggest that CO-independent homolog
segregation mechanisms exist in baker’s yeast, and in some manner may be related to the
action of MSH4-MSH5.

3.4. Contrasting Meiotic Phenotypes for MLH1 and MLH3 in Yeast Hint at an Alternative Role for
MLH3 in Meiosis

Claeys, Bouuaert, and Keeney [26] performed a structure-function analysis of MLH1-
MLH3 in baker’s yeast and concluded that MLH1-MLH3 has a separable DNA-binding
activity for Holliday junctions and single-stranded DNA. Residues required for binding to
both DNA substrates mapped to the N-termini and linker domains of MLH1 and MLH3.
They further noted that the linker regions of MLH1 and MLH3 were particularly important
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for Holliday junction binding. The authors observed that mlh3∆ mutants exhibited a
higher frequency of MI-nondisjunctions compared to mlh1∆ mutants. This result was
unexpected because prior studies indicated that mlh1∆ mutants displayed spore viabilities
less than or equal to mlh3∆ mutants, and mlh1∆ and mlh3∆ mutants displayed similar
decreases in crossing over [26]. Curiously, they noted that mlh1 N-terminal mutants
mirrored the phenotype of mlh3∆ mutants, whereas mlh3 linker mutants closely resembled
mlh1∆. The authors proposed a number of possible explanations for this apparent paradox
between MI-nondisjunction and spore viability phenotypes. First, it could be that the
assayed chromosome (chromosome VIII) is nonrepresentative of global disjunction among
all 16 chromosomes. It is known that chromosome size impacts the density of double-
strand-break hotspots, crossover rates, and interference [69,91–94]. Alternatively, the spore
viability defect in mlh1∆ is due to moderate MI-nondisjunction due to CO defects plus
haplolethal mutations that arise during replication resulting from the absence of MLH1-
PMS1. Conversely, the spore-viability defect observed in mlh3∆ cells may be entirely due
to excess MI-nondisjunction.

Importantly, these hypotheses only explain why the differential nondisjunction phe-
notypes of mlh1 and mlh3 yeast mutants were not seen in prior studies of spore viability.
To explain why these phenotypes manifest, Claeys, Bouuaert, and Keeney [26] propose
that in mlh1∆ and mlh3 linker mutants, joint molecules remain long enough to promote
biorientation of homologs, but are ultimately resolved by structure-selective nucleases
into a mixture of COs and NCOs or disassembled by STR. In this model, mlh3∆ and
mlh1 N-terminal mutants are unable to stabilize early recombination intermediates, thus
experiencing higher levels of chromosome mis-segregation.

4. MLH3 may Promote Meiotic Homolog Disjunction through a
Crossover-Independent Mechanism

To understand the above observations, we hypothesize that MSH4-MSH5 and MLH3
cooperate in an early stage of meiotic recombination to stabilize Holliday junction inter-
mediates. In this model, accurate chromosome segregation is promoted by two distinct
mechanisms: joint molecule stabilization and CO formation. First, Holliday junction bind-
ing by MSH4-MSH5 and other ZMMs provides a semistable intermediate to which MLH3
alone is recruited. We view this as being analogous to the role for stabilizing intermediates
in somatic recombination that could explain observations made in Rahman et al. [83].
Once recruited, MLH3 may displace MSH4-MSH5 and bind stably to Holliday junctions,
protecting them from disassembly by STR (Figure 5B). In support of this idea, studies in
Sordaria and mice have suggested that MSH4-MSH5 foci tend to diminish around early to
mid-pachynema, the same timeframe in which MLH3 foci (early pachynema) and MLH1
foci (mid-pachynema) are observed to form [87,95,96] (Figure 5A). It has also been proposed
that the relative binding affinities of MLH1-MLH3 and MSH4-MSH5 for branched DNA
substrates is consistent with MSH4-MSH5 displacement by MLH1-MLH3 [26,29,30,97,98].
This hypothesis is also consistent with studies in mice suggesting mlh3∆ and nuclease-dead
mlh3 mutants exhibit increased BLM (SGS1 in yeast) foci formation in zygonema [73,99],
an earlier timepoint than when MLH3 is known to function.

If MLH3 is acting as a Holliday junction stabilizer, it would be expected to block
Holliday junction disassembly by STR. Indeed, MLH3 coimmunoprecipitates with SGS1 in
meiotic yeast cells [62], and mlh3∆ mutants show global increases in NCOs [85], possibly
through excessive SGS1-mediated, synthesis-dependent strand annealing. It is possible
this latter observation could be explained by alternate double Holliday junction resolution
pathways involving structure-selective nucleases. However, work by Arter et al. [100]
supports a model in which at least one structure-selective nuclease in budding yeast,
YEN1, when ectopically expressed in pachytene, is capable of resolving ZMM-stabilized
double Holliday junctions exclusively into COs, even in the absence of MLH1-MLH3 [100].
Whether MUS81-MMS4 or SLX1-SLX4 are capable of CO-specific resolution of double
Holliday junctions in budding yeast remains unclear, although fission yeast and C. elegans
rely on these structure-selective nucleases for Class I COs (reviewed in [49]). Together, these
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results are consistent with MLH3 acting to stabilize Holliday junctions. Furthermore, a
recent IP-mass spectrometry screen and MLH3 pull-down experiments failed to detect any
interaction between SGS1 and MLH3 at times just prior to and after CO formation [67,80],
suggesting the SGS1-MLH3 interaction occurs either early in meiotic recombination or
transiently at a later timepoint.

In summation, this model predicts a transient MLH1-independent role for MLH3
in stabilizing early recombination intermediates, thus promoting accurate chromosome
segregation via a mechanism separate from its late role in double Holliday junction res-
olution. Such a model is consistent with studies of MLH2, suggesting it functions with
MLH1 to limit the extent of heteroduplex tract lengths [4]. Deletion of MLH2 leads to in-
creases in spore viability of ZMM mutants zip4∆ and msh4∆ without increasing overall CO
numbers, presumably due to longer heteroduplexes counterbalancing the joint molecule
stabilization lost in the absence of ZMMs [3,4]. The contrasting MI-nondisjunction pheno-
types of MLH1 and MLH3 mutants may thus be explained as follows. In mlh1∆ mutants,
MLH3 is free to displace MSH4-MSH5 and stabilize Holliday junctions, while the absence
of MLH1-MLH2 results in more stable heteroduplexes. Similarly, mlh3-linker mutants
experience only moderate levels of MI-nondisjunction because mlh3-linker mutants are
defective for displacement of MSH4-MSH5 due to defects in Holliday junction binding. In
these mutants, MSH4-MSH5 may remain bound to Holliday junctions, acting to biorient
homologs. Also, the presence of mlh3-linker mutants may sequester a portion of MLH1,
keeping MLH1-MLH2 levels in check. Contrastingly, in the absence of MLH3, a portion
of the MLH1 pool may bind to MLH2, limiting the extent of gene conversion tracts, thus
destabilizing recombination intermediates, all while lacking the pro-Holliday junction
stabilization provided by MLH3, culminating in high meiosis I nondisjunction levels.

5. Conclusions and Future Directions

In this review, we first presented the current state of the literature concerning the
known roles for MLH factors in various aspects DNA metabolism. We then proposed a
model to explain the numerous enigmatic MLH mutant phenotypes spanning over two
decades. Namely, we proposed that MLH3 functions independently from MLH1, acting
early in meiosis to stabilize nascent Holliday junctions, simultaneously promoting CO-
independent homolog stabilization, in addition to directing recombination intermediates
down to the Class I interfering CO pathway. We supported this hypothesis with data
from several model organisms encompassing an amalgamation of cytological, genetic,
and biochemical analyses. Our goal was to encourage research and promote speculation
into rethinking how the MLH proteins are thought to function. As discussed in prior
sections, the recent confirmation that human PMS2 and MLH3 not only function in somatic
homologous recombination, a new role for MLH proteins, but do so independently of
MSH2-MSH6, MSH2-MSH3, and MLH1, begs the question as to whether MLH proteins
possess the ability to homodimerize, heterodimerize with unidentified partners, and per-
form biologically relevant functions via hitherto unexplored mechanisms. We present one
such model that is readily testable. For example, this model predicts physical interactions
with early meiotic factors that could be detectable in vitro or in vivo by immunoblot assays.
Additionally, in vitro biochemistry using purified MLH factors in noncanonical combi-
nations may elucidate new functionality (see [4]). Taken together, these results paint an
exciting and relatively unexplored picture of MLH proteins. We hope this review will
encourage further research exploring noncanonical roles for MLH complexes in somatic as
well as meiotic cells.
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