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INTRODUCTION

The era is approaching when each individual can be mapped to a patient avatar—not a life-sized
3D blue form of the patient filled with physical substance (as in the movie “Avatar”), but a
hologram of the patient that simulates keymedical components. Patient avatars will be composed of
computational models combined with various data types and analytics to formwhatmight be called
SuperModels (Figure 1). These SuperModels (comprehensive virtual representations of the patient,
not fashion models) will be important to help realize visionary precision medicine initiatives that
have recently been announced (Collins and Varmus, 2015; Nature Biotechnology, 2015).

Precision medicine tailors prevention, diagnosis, therapeutics, and prognosis for each patient
(Garay and Gray, 2012; Highnam and Mittelman, 2012; Mirnezami et al., 2012). Related to
precision medicine is systems medicine (Auffray et al., 2009; Capobianco, 2012; Emmert-Streib
and Dehmer, 2013; Wolkenhauer, 2013), which leverages systems biology (Noble, 2008) for clinical
application, with resulting data termed “systems medicine data” (Brown et al., 2015b). Systems
biology studies the behavior of organisms or cells as whole systems, and uses various advances
in biotechnology, including genomics, transcriptomics, proteomics, metabolomics, methylomics,
microbiomics, and elucidation of cellular interaction networks by network biology (Figure 1,
top left panel labeled X). Often, systems medicine data from these various advances can be
modeled and simulated with complementary computer science, mathematics, chemistry, physics,
and engineering concepts in computational biology.

A variety of fields have used computational models as virtual surrogates of specific portions of
patient physiology. These individual models can be considered computational avatars of a subset
of the patient’s organic identity. This is akin to cancer avatars in mice, which involve mouse models
mapped to individual patients, for example, by injection of tumor cells from a particular individual.
These cancer avatars facilitate personalized study of the pathophysiology and response to drugs
of a particular patient’s cancer cells. Similarly, biomathematical or computational cancer avatars
simulate the micro-environment of individualized cancer cells.

Beyond such in silico exemplars, a computational avatar may also be thought of as any finite
representation of a specific portion of the patient, that harnesses computing power. This includes
electronic health records (EHR), patient portals, and a variety of other precision medicine tools.
However, this paper focuses on individual biomathematical models as computational avatars that
can be incorporated into comprehensive patient avatars for use in precision and systems medicine.
The following section describes a non-exhaustive sample of biomathematical models, including
genome-scale metabolic models (GEMs) that use computational approaches to integrate omics
data (Yizhak et al., 2015). These computational avatars can serve as ingredients for SuperModels,
forming the first portion (X→Z) of a positive feedback loop in Figure 1.
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FIGURE 1 | Building SuperModels for precision and systems medicine, with incorporation of computational avatars. Input: A feedforward loop (top left

panel X connects to patient avatar Z both indirectly via bottom left panel Y and also directly, by large blue arrows) is fueled by two disparate paths. In the top left panel

labeled X, various systems medicine data types, along with network biology and emerging computational models (including genome-scale metabolic models, Agren

et al., 2014; Yizhak et al., 2015), provide input for patient representations such as the digital human construct being developed by The Discipulus Project. In the

bottom left panel labeled Y, systems medicine data are integrated into patients’ mobile health (mHealth) technologies and electronic health records (EHR) (Brown et al.,

2015b). mHealth and EHR data are coupled with external knowledge [e.g., from medical societies guidelines and Food and Drug Administration (FDA) approvals] by

cognitive machines such as Watson, and analytics are employed to process multi-omics (integrated personal omics profile; iPOP) and patient similarity algorithms. The

path labeled Y is already in progress with EHR data, independent of digital human constructs described in the path labeled X. Paths X and Y can be bridged by locally

supervised metric learning (LSML) similarity measures and similarity network fusions (SNF), for synergistic creation of SuperModels to produce results that cannot be

obtained from path X or path Y alone. Output: High-yield predictive, preventive, and personalized data indicate patients at low/high risk for disease/adverse effect

development. Individualized therapeutic plans can therefore be devised, also guided by the patient’s likelihood of being a responder or non-responder to specific

medications. Provision of personalized data should be in the context of systems medicine counseling, integrating genetic counseling with information about various

forms of systems medicine data (Brown et al., 2015b). Iteration: The curved gray arrow linking output to input represents using outcome observations to iterate and

refine SuperModels at all stages of development, to guide precision medicine. 1Hood and Flores (2012), 2Brown et al. (2015b), 3Barabási and Oltvai (2004), 4Schuyler

et al. (2011), 5Plotkin et al. (2013), 6Bikson et al. (2012a), 7Brown and Loew (2014), 8Brown et al. (2015a), 9Henderson et al. (2014), 10Tortolina et al. (2012),
11Stamatakos et al. (2010), 12El-Kareh and Secomb (2000), 13Utsler (2015), 14Agren et al. (2014), 15Yizhak et al. (2015), 16The Discipulus Project (2013), 17Kullo

et al. (2013), 18Steinhubl et al. (2015), 19Zhang et al. (2014), 20Chen et al. (2012), 21Savage (2014).

COMPUTATIONAL AVATAR EXEMPLARS

Several biomathematical models focus on understanding
mechanism and prediction of pathophysiology progression, as
well as delivery, efficacy, and adverse effects of therapeutics,
such as deep brain stimulation or chemotherapy. Many
of these computational models can replicate biomedical
and/or electrophysiological properties of brain, cancer, and
heart cells, personalized for each patient. Strategies and
predictions for survival or for safer and more efficacious
and well-timed therapy are studied and influence care of

neurological and cardiovascular disorders and cancer, among
others.

Brain
Computational models of the brain have been developed,
e.g., for amyotrophic lateral sclerosis (ALS). These
models use known familial ALS mutations to predict
functional implications or patient survival, based on
mechanical properties of the mutant proteins that would
be nearly impossible to produce experimentally (Schuyler
et al., 2011; Plotkin et al., 2013). Thus, computational
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power is harnessed to predict survival and function in
ALS.

Customized computational models of transcranial direct
current stimulation (tDCS) have also been created (Bikson
et al., 2012a,b). This non-invasive electrotherapy limits anatomic
and temporal exposure to electricity in specific brain regions,
minimizing side effects that could otherwise be experienced
from pharmacotherapy (Bikson et al., 2012b). The tDCS
computational avatars provide opportunities to individualize
therapy for stroke, Parkinson’s disease, and treatment-resistant
depression, among others (Fregni et al., 2006; Truong et al.,
2013; Tortella et al., 2015). Using these computational avatars to
customize tDCS for patients at extremes of age or those with skull
defects or brain damage could become standard tools to guide
trials and therapy (Bikson et al., 2012a).

Another example of integrating modeling with experimental
observations and clinical findings lies in spinocerebellar ataxia
(SCA). The SCA modeling suite explains, interprets, or predicts
experimental results in mouse models, post-mortem human
brains, and peripheral blood samples from living patients (Brown
and Loew, 2012, 2014). The suite is an example of the utility of
computational systems biology in translational medicine (Brown
et al., 2015a).

Cancer
A number of computational avatars have also been designed for
precision cancer care. These include models for colon cancer
that synthesizesmathematical modeling, omics, other systems
biology approaches, and pharmacologics to produce personalized
molecular imprints aimed at predicting the right diagnostics
and prescriptions (Tortolina et al., 2012; Henderson et al., 2014;
American Cancer Society, 2015). With further study, these could
be used to tailor therapy. The ContraCancrum project has moved
in this direction with clinical trials illustrating the utility of
computational models for lung carcinoma and other cancers
(Stamatakos et al., 2010). Lung cancers account annually for∼15
and∼30% of all new cancer cases and deaths, respectively; colon
cancer accounts for ∼10% of all new cancer cases and deaths
annually (American Cancer Society, 2015). Thus, computational
avatars have tremendous potential for individualizing care of
cancers that account for a great proportion of morbidity and
mortality in adult patients.

Adverse drug effects (ADE) on the heart or other organs limit
the administration of optimal pharmacologics for cancer care
(Vejpongsa and Yeh, 2014). As an example to counteract this,
mathematical models predict the optimal modes of doxorubicin
delivery (El-Kareh and Secomb, 2000) for breast cancer, which
annually accounts for 30 and 15% of all new cancer cases and
deaths, respectively (American Cancer Society, 2015). Consistent
withmodel predictions, liposomal delivery has subsequently been
studied in a number of clinical trials, which have shown superior
toxicity profiles compared to standard non-liposomal delivery
for breast cancer (Lao et al., 2013). Computational avatars can
therefore be used to predict and hopefully prevent ADE in cancer
care.

Additional avatars may focus on pancreatic and hepatocellular
cancer. Recent proteomic results implicated Glypican-1 as an

unparalleled near perfect non-invasive diagnostic and screening
tool detection of early pancreatic cancer (Melo et al., 2015).
Addition of this and other biomarkers and systemsmedicine data
to computational avatars will help guide safe, early, and effective
cancer therapy. For example, personalized computational models
based on proteomics data have predicted potential drugs to treat
hepatocellular cancer, one of which has already been validated
experimentally (Agren et al., 2014).

Heart
Computational avatars have also been composed for the heart.
The cardioid project from the International Business Machines
(IBM) Corporation uses advanced computing to compose
individualized 3D models of the heart (Utsler, 2015). The system
is devised to predict the risk of sudden cardiac death due to
Torsade de pointes or similar arrhythmic complications. These
arrhythmias are another form of cardiotoxicity, in this case
related to prolongation of the QT interval (distance between the
start of the wave labeled “Q” and the end of the wave labeled “T”
on an electrocardiogram), induced by drugs (e.g., antibiotics).
Cardioid is thought to be the world’s most detailed real-time
human heart simulation (Lawrence Livermore National Security,
2015). Cardioid complements prior human heart models, and
expands the capabilities of avatars to geometric point-of-care.
Such an achievement resulted from computational, natural,
and life sciences teamwork among computational biologists,
physicists, and mathematicians.

These examples of computational avatars for the brain,
heart, and cancer provide evidence for established units,
which can 1 day be merged (e.g., with immersive virtual
environment technology for 3D animated photorealistic virtual
representations of the self, Fox et al., 2009) to form SuperModels
for precision and systems medicine.

BUILDING SUPERMODELS

Computational avatars can be integrated with EHR or patient
portals to build SuperModels, merging with clinical information
about past medical history and diet and lifestyle habits, as
well as measurements from wearable sensors, mobile health
(mHealth) technologies (Steinhubl et al., 2015), and telemedicine
(left section of X→Y in Figure 1). Some have termed a
similar concept proposing patient mapping by integration of
computational models with EHR information, and inviting
incorporation of other biotechnological tools, as the “digital
patient,” “virtual patient,” “medical avatar,” or “patient avatar”
(The Discipulus Project, 2013). Digital patient platforms, similar
to Discipulus (The Discipulus Project, 2013), will use 3D
scanning to produce a virtual geometric and physiologic
view of the patient. MRI and CT scan results will guide
reproduction of individualized anatomy, organ structure, and
temporal blood flow. This paper proposes that all of this
information and all of these technologies can ultimately be
amalgamated with knowledge sources (such as medical society
guidelines documents) and analytics to create SuperModels as
the most advanced patient avatars. This forms the second portion
(X→Y→Z) of a positive feedforward loop in Figure 1.
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Systems medicine EHR data can provide input for
natural-language processors, such as Watson (Savage, 2014;
Figure 1, bottom panel labeled Y). Cognitive machines like
Watson assimilate patient information to tailor medical
recommendations, guidelines, and treatment options to the
individual (Savage, 2014). Watson is outfitted with virtual
advisors trained by medical experts, to assist with personalized
risk factor identification and associated recommendations.
Cognitive machines and analytics are also employed to
use machine learning and natural language processing
in patient similarity algorithms that yield a cohort of
patients similar to a target patient, stratified by medical
conditions of most concern to the engaged target patient in
participatory medicine. Integrative personal omics profile
(iPOP) longitudinal analysis can also combine the various omics
data integrated in the EHR to uncover extensive, dynamic
changes over time across healthy and diseased conditions for
the target patient (Chen and Snyder, 2013), and for similar
patients.

Bridging the two paths (labeled X and Y in Figure 1)
to create SuperModels can be achieved with implementation
of methodologies such as locally supervised metric learning
(LSML) similarity measures and similarity network fusions
(SNF). LSML and SNF facilitate personalization and prediction
for risk factor profiles and computational avatars by constructing
networks of patient samples for a variety of available data
types, and efficiently fusing data types into one representative
network that captures the full pathophysiological spectrum,
respectively, while harnessing the power of complementarity
in the data (Wang et al., 2014; Ng et al., 2015). Both LSML
and SNF substantially outperform single data type analysis,
and models created from global datasets that do not address
patient similarity, respectively, while establishing integrative
pathways (Wang et al., 2014; Ng et al., 2015). Synergistically
not additively combining EHR integration, knowledge sources,
and analytics with systems medicine data, network biology,
computational models, and digital human constructs in this
way produce a novel modeling perspective that can be
considered the advent of SuperModels. Emergent properties
of such a powerful combination are the epitome of systems
medicine.

SuperModels can be interrogated to determine whether
an individual might be at low or high risk for developing
serious side effects to certain medications, or whether a patient
is likely to respond—or not respond—to chemotherapy,
for example. SuperModels will therefore in part serve
as a clinical decision support tool for shared decision-
making, supporting patient engagement in participatory
medicine. Participatory medicine, which advocates for patient
input and education in all phases of their individualized

care, is a component of P4 (predictive, preventive,
personalized, and participatory) medicine, which has
been proposed as the clinical face of Systems Medicine
(Hood and Flores, 2012).

CHARTING A COURSE FORWARD

Development of SuperModels will require worldwide
partnerships in academia and industry, for creation, education
(e.g., https://sems.uni-rostock.de/reproducible-and-citable-data-
and-models/, implementation, and troubleshooting challenges.
Accordingly, large interdisciplinary consultation meetings
and online fora like those of the Discipulus project initiative
will become the norm, bringing together clinicians, scientists,
mathematicians, bioengineers, technologists, and patients
(The Discipulus Project, 2013), and may ultimately engage
crowd sourcing. Difficulties, such as assuring accuracy post-
data-processing (Capobianco, 2012) involving (1) merger of
multi-scale noisy biased data sets with small sample sizes
and large amounts of measured data (Wang et al., 2014),
(2) harmonization of whole-body pharmacokinetics and
pharmacodynamics with cellular network and tissue-level
models (Agren et al., 2014) and diverse systems medicine data
types to form digital human constructs (Figure 1, top left
panel labeled X), (3) robust cross-validation of highly complex
model findings including temporal features of more diversified
disease targets (Ng et al., 2015), and (4) intercalation with
analytics (Figure 1, bottom left panel labeled Y), along with
other systems medicine challenges (Capobianco, 2012) that
may be encountered when building SuperModels (Figure 1,
X→Z and Y→Z), will most effectively be addressed through
collaborative efforts. These and other principles, including ones
for efficiency and cost-effectiveness, will be needed to guide
the use of SuperModels in systems medicine (see companion
paper in Frontiers in Genetics, Brown, in review), along
with ethical and other considerations for EHR integration
(Kullo et al., 2013).
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