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Abstract

Endoplasmic-reticulum associated degradation (ERAD) is a major cellular misfolded protein disposal pathway that is well
conserved from yeast to mammals. In yeast, a mutant of carboxypeptidase Y (CPY*) was found to be a luminal ER substrate
and has served as a useful marker to help identify modifiers of the ERAD pathway. Due to its ease of genetic manipulation
and the ability to conduct a genome wide screen for modifiers of molecular pathways, C. elegans has become one of the
preferred metazoans for studying cell biological processes, such as ERAD. However, a marker of ERAD activity comparable to
CPY* has not been developed for this model system. We describe a mutant of pro-cathepsin L fused to YFP that no longer
targets to the lysosome, but is efficiently eliminated by the ERAD pathway. Using this mutant pro-cathepsin L, we found
that components of the mammalian ERAD system that participate in the degradation of ER luminal substrates were
conserved in C. elegans. This transgenic line will facilitate high-throughput genetic or pharmacological screens for ERAD
modifiers using widefield epifluorescence microscopy.
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Introduction

Biological pathways governing protein transcription, synthesis,

folding, modification, trafficking and degradation maintain cellular

protein homeostasis (proteostasis) [1]. Protein degradative path-

ways are particularly important, as they are the definitive step for

removing toxic accumulations of misfolded or aggregated proteins

generated by mutations or environmental stressors. Failure to

eliminate these proteins can trigger cellular dysfunction or death

that is characteristic of several neurodegenerative disorders, the

serpinopathies and some inborn errors of metabolism [1–3].

Soluble or oligomeric misfolded proteins in the ER are degraded

primarily through a multi-step process, ER-associated-degradation

(ERAD; reviewed in [4]). Depending on whether the misfolded

proteins reside in the ER lumen or membrane, different sensors

recognize the aberrant protein structures [4,5] and retro-translo-

cate them from the ER to the cytoplasm, where they are

ubiquitinated and recognized by the proteasome for degradation

[6–8]. Studies in yeast have been instrumental in delineating the

mechanisms and molecular machinery involved in the turnover of

luminal ERAD substrates, with the best characterized example

being a mutated (G255R) version of the yeast vacuolar protease,

carboxypeptidase Y (CPY*) [9–11]. While many of the molecular

components of yeast ERAD are conserved in metazoans,

significant differences exist [10–12]. These differences have

prompted the examination of ERAD in multiple model systems

including C. elegans [13]. However, the C. elegans system has not

been fully exploited due to the absence of well-defined luminal

substrates that permit the visual, biochemical or genetic assessment

of putative ERAD modifier genes.

Thus, the purpose of this study was to generate a fluorescent

luminal ERAD substrate using a C. elegans specific protein. In

mammalian systems, mutations in the prepro-region of lysosomal

papain-like cysteine peptidases induce protein misfolding and

convert them to luminal ERAD substrates that are efficiently

degraded by the ubiquitin-proteasome system (UPS) [14]. In C.

elegans, the best-described lysosomal cysteine peptidase is the

cathepsin L-like protease, CPL-1 [15,16]. We designed a yellow-

fluorescent protein (YFP) tagged version of full-length CPL-1

(CPL-1::YFP), and mutated residues in the prepro-domain. While

the wild-type CPL-1::YFP targeted to lysosomal-like structures, the

mutant form accumulated in the ER upon inhibition of ERAD or

UPS. This sensor for ERAD or UPS inhibition was easily detected

using widefield epifluorescence microscopy and basic biochemical

methods. Taken together, these studies suggest that transgenic

animals expressing the mutated form of CPL-1::YFP will serve as a

useful tool for conducting high-throughput genetic or pharmaco-

logic screens for modifiers of the metazoan ERAD and UPS

pathways.
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Results

Mutations in the prepro-domain of C. elegans CPL-1
prevents trafficking to the endo-lysosomal compartment

Initially, we sought to identify a C. elegans orthologue of yeast

CPY. We identified 6 genes with approximately 30% and 48%

similarity to yeast CPY and its human homologue, cathepsin A,

respectively (Figure S1A). However, none of the genes encoded the

91 amino acid pro-domain of CPY or the 2-kDa internal excision

fragment of cathepsin A that are required for proper folding and

activation, suggesting that the C. elegans proteins may be processed

differently [17]. We cloned one of these wild-type genes

(F13D12.6) and fused it to the N-terminus of YFP, as has been

described for CPY-like or cathepsin A transgenes [18,19].

However, transgenic animals harboring the wild-type transgene,

as well as those with a mutation corresponding to that in CPY*

(G166R in F13D12.6), yielded a diffuse reticular pattern consistent

with localization to the ER, but not the expected localization to

lysosomal structures or dilated ER, respectively (Figure S1B–I).

This finding suggested either F13D12.6 does not have the same

subcellular distribution as CPY and cathepsin A, or the transgene

yielded an aberrant protein that was not targeted to their proper

locations. DNA sequencing of the transgenes did not reveal any

abnormalities within the F13D12.6 genomic regions (not shown)

and an immunoblot revealed a fusion protein of the correct

molecular mass (Figure S1J). There was also no increase in

fluorescence of the mutant protein upon ERAD inhibition, as

would be expected if it were an ERAD substrate (Figure S1K).

Rather than determine whether the expression pattern for wild-

type and mutant F13D12.6 was accurate or artifactual, we turned

our attention to the highly homologous papain-like cysteine

peptidase family. Mutations in any one of three conserved

tryptophan residues in the prepro-domain of cathepsin L-like

lysosomal cysteine peptidases destabilizes the alpha-helical motif

resulting in misfolding and elimination from the ER via ERAD

and the UPS [14]. To determine if the C. elegans cathepsin L-like

protease, CPL-1, could be mutated in a similar fashion, we aligned

the first 60 amino acids of the pro-domain of cpl-1 with those from

the human cathepsin L-like cysteine proteases, cathepsins K, L, S

and V (Figure 1A). This alignment revealed the presence of

conserved tryptophan or bulky hydrophobic residues in the region

essential for the formation of the hydrophobic stack that facilitates

proper folding of the protease (Figure 1A, blue shading) [14]. For

simplicity, we generated a prepro-domain double mutant (W35A

and Y35A) of cpl-1 (Figure 1A, arrowheads), and inserted the

entire wild-type or mutated gene between the promoter of nhx-2

and YFP to yield vectors containing Pnhx-2cpl-1::YFP and Pnhx-2cpl-

1W32A;Y35A::YFP, respectively (Figure 1B). We chose the intestinal-

cell specific nhx-2 promoter [20,21], since intestinal expression is

easy to visualize under low power microscopy and intestinal cells

are a rich biosynthetic source of lysosomal cysteine peptidases

[10,11].

To determine the subcellular localization of CPL-1 by confocal

microscopy, we generated transgenic lines by injecting either the

wild-type or mutant form of the CPL-1 constructs along with the

ER-localization marker, Pnhx-2DsRed::KDEL, and fed them on

plates containing the fluid-phase endolysosomal marker, BSA::A-

lexaFluor647. Wild-type CPL-1::YFP appeared as discrete puncta

within intestinal cells (Figure 1C) and co-localized with the endo-

lysosomal marker BSA::AlexaFluor647, but not with the ER-

retained DsRed::KDEL (Figure 1C–F). In contrast, CPL-

1W32A;Y35A::YFP was distributed in a more reticular pattern

(Figure 1G, inset) with accumulations (Figure 1G, arrowheads)

that co-localized with the ER marker, but not the endo-lysosomal

marker (Figure 1H–J). These data were consistent with that from a

mammalian cell culture system demonstrating that a combination

of the W28A and W31A mutations causes pro-cathepsin S

misfolding, retention within the ER, and loss of endo-lysosomal

targeting [14].

Conceivably, the differences in the subcellular localization

between the wild-type and mutant forms of CPL-1 could be

secondary to differential effects of the transgenes on overall health

and viability of the animals or marked variation in transgene

expression. However, the longevity of the transgenic animals did

not differ from that of the wild-type N2 animals (Figure S2), nor

was there any visual evidence of morphological abnormalities as

assessed by DIC microscopy (not shown).

To determine if the effects of the W32A and Y35A mutations on

CPL-1 were due to quantitative or qualitative (e.g., a truncated or

polymerizing protein) changes in protein expression, whole animal

lysates were analyzed under denaturing and non-denaturing

conditions using PAGE and immunoblotting with anti-GFP/

YFP antisera (Figure 2). Under denaturing conditions, the

appropriate size bands were detected in lysates from Pnhx-2YFP

(,28-kDa), Pnhx-2cpl-1::YFP (,75-kDa), and a control line

expressing human a1-antitrypsin, Pnhx-2sGFP::ATM (,75-kDa)

(Figure 2A) [21]. However, no protein was detected in the lysates

in from the Pnhx-2cpl-1W32A;Y35A::YFP line. This result what not

surprising, as the mutant protein might be rapidly degraded, and

below the limit of detection by immunoblotting. Alternatively, the

cpl-1 containing transgenes might be differentially expressed. To

test this hypothesis, we performed semi-quantitative, RT-PCR on

RNA samples from the transgenic lines (Figure 2E). There

appeared to be no appreciable difference in steady state mRNA

levels (Figure 2E), suggesting that CPL-1W32A;Y35A::YFP was being

rapidly degraded. If rapid degradation was the cause, then

inhibition of the CPL-1W32A;Y35A::YFP elimination pathway

should lead to increased CPL-1W32A;Y35A::YFP accumulation.

This appeared to be the case (Figure 2B) and will be described

further in the next section.

Transgenic line lysates were also subjected to native PAGE to

determine whether the difference between wild-type or mutant

CPL-1 expressing lines resulted from excessive polymer formation.

In comparison to the sGFP::ATM controls, which formed both

monomeric and dimeric species (Figure 2C, arrowhead) [22],

neither CPL-1 protein produced polymers under these lysis

conditions, although the CPL-1W32A;Y35A::YFP band was only

visible after ERAD inhibition (vide infra) (Figure 2C–D). These

studies suggested that both the wild-type and mutant cpl-1

containing transgenes yielded full-length proteins, at comparable

levels, and that their expression had no adverse effects on the

development or survival of the transgenic lines.

CPL-1W32A;Y35A accumulated in the ER upon ERAD
inhibition

Inhibition of the ERAD machinery should lead to further

accumulation of CPL-1W32A;Y35A::YFP if it was a luminal

substrate. To test this hypothesis, we subjected the transgenic

lines and their controls to ERAD(RNAi) by feeding a subset of

bacterial clones from the Ahringer library that express double-

stranded RNAs to different ERAD components (Table 1) [23]. To

decrease inter-assay variability in protein expression associated

with non-integrated transgenes, and to make the assessments of the

RNAi effects more quantitative, we employed the COPAS BioSort

large particle flow cytometer to help set-up the assays and the

ArrayScanVTi to automate image acquisition and data analysis,

respectively (Figure 3) [21]. Also, we generated a second set of

transgenic animals by co-injecting either Pnhx-2cpl-1::YFP or Pnhx-

ERAD Substrate in C. elegans
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2cpl-1W32A;Y35A::YFP with the pharyngeal marker, Pmyo-2mCherry. As

previously described [21], this latter transgene drives mCherry

expression in the pharynx and is used as an internal standard for

the possible changes in CPL-1W32A;Y35A::YFP expression due to

nonspecific RNAi effects. In addition, selective mCherry expres-

sion in the pharynx facilitates the selection of stage-specific

transgenic animals and autofocusing using the BIOSORT and

ArrayScanVTi, respectively [21].

Transgenic animals expressing CPL-1W32A;Y35A::YFP treated

with RNAi’s directed against cdc-48, npl-4, ufd-1, hrd-1 or sel-1

showed significant accumulation of the mutant protein as

measured quantitatively by the ArrayScanVTi (Figure 4A). The

same RNAi’s had no effect on the steady-state levels of CPL-

1::YFP (Figure 4A) or YFP (Figure S3A), suggesting that the RNAi

effects on CPL-1W32A;Y35A::YFP expression were not due to an

unanticipated or indirect effects that generally enhanced CPL-1

mRNA stability or increased nhx-2 promoter activity, respectively.

To control for the ERAD(RNAi) that appeared to have no effect on

CPL-1W32A;Y35A::YFP accumulation, we tested their ability to

activate the unfolded protein response (UPR) using the ire-1

activation sensor, Phsp-4GFP (Figure S3B). Consistent with

published data, all of the ERAD RNAi’s tested, except for hrdl-

1(RNAi), significantly increased GFP expression in transgenic

animals carrying the Phsp-4GFP transgene (Figure S3B) [24]. To

confirm that hrdl-1(RNAi) was active, we performed semi-

quantitative reverse transcriptase PCR and showed that steady-

Figure 1. Mutations in the prepro-domain of CPL (CPL-1W32A;Y35A) cause ER accumulation and prevent trafficking to the lysosome.
(A) Alignment of the primary amino acid sequence from C. elegans (Cel) CPL-1[NP_507199.1] with human (Hsa) cathepsins K [AAH16058.1] (CATK), L
[NP_666023.1] (CATL), S [AAC37592.1] (CATS) and V [BAA25909.1] (CATV) using the ClustalW algorithm. Blue shading indicates the three tryptophan
residues within the human CATL-like prepro-domain that are critical for proper folding [14]. Arrowheads indicate the residues mutated to alanines in
the CPL-1 sequence to generate CPL-1W32A;Y35A::YFP. [ ] denote accession numbers of individual amino acid sequences used in alignments. (B)
Schematic representation of the expression constructs used to express either wild-type or mutant CPL-1::YFP. The asterisks denote location of the
mutated resides within the prepro-domain (green line). The intron locations were not depicted. (C–J) Transgenic animals expressing CPL-1::YFP (C–F)
or CPL-1W32A;Y35A::YFP (G–J) were examined by confocal microscopy and maximum intensity projections are displayed. Both lines were also co-
injected with a DsRed::KDEL transgene to mark the ER (D, H), and were also incubated with BSA::AlexaFluor647 to label the endo-lysosomal
compartment (E, I). CPL-1::YFP showed a punctate distribution within intestinal cells (C) that co-localized with BSA::AlexaFluor647 (E, F), but did not
overlap with DsRed::KDEL (D). This pattern suggested CPL-1::YFP was trafficking correctly to the endolysosomal compartment. In contrast, CPL-
1W32A;Y35A::YFP displayed a fine reticular pattern (G, inset) with a few intracellular inclusions (G, arrowheads) that co-localized with the DsRed::KDEL ER
marker (H and J), but not the BSA::AlexaFluor647 endo-lysosomal marker (I). Insets of single z plane images are included to highlight the distinct
reticular fluorescence pattern displayed by the DsRed::KDEL ER marker and the YFP fluorescence pattern observed in animals expressing CPL-
1W32A;Y35A::YFP. Scale bar represents 10 mm.
doi:10.1371/journal.pone.0040145.g001
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state HRDL-1 mRNA levels were decreased in Pnhx-2cpl-

1W32A;Y35A::YFP animals treated with hrdl-1(RNAi) but not con-

trol(RNAi) (Figure S3C).

Since CPL-1W32A;Y35A::YFP fluorescence increased with ERAD

inhibition, we determined whether ERAD activity accounted for

the inability to detect CPL-1W32A;Y35A::YFP by immunoblotting.

Protein lysates from CPL-1W32A;Y35A::YFP transgenic animals

treated with hrd-1(RNAi) had detectable proteins levels, under both

denaturing and non-denaturing conditions, comparable to those of

the CPL-1::YFP expressing line (Figure 2B, D). These data

suggested that ERAD was responsible for decreasing the steady-

state levels of CPL-1W32A;Y35A::YFP.

To confirm that ERAD inhibition resulted in CPL-

1W32A;Y35A::YFP accumulation within the ER (Figure 4B–P), we

repeated the studies using transgenic animals co-expressing

DsRed::KDEL. Single plane widefield epifluorescence images of

the entire animal (n = 5–10) were obtained using constant image

acquisition settings. Animals treated with vector(RNAi), as a

negative control, showed little accumulation of CPL-

1W32A;Y35A::YFP (Figure 4B) that co-localized with the DsRed::K-

DEL ER marker (Figure 4C–D, arrowhead). GFP(RNAi), reduced

the YFP signal such that it is undetectable under these imaging

conditions (Figure 4E–G). In contrast, there was a substantial

increase in both the intensity and the number of YFP accumu-

lations (arrowheads) that co-localized with the DsRed::KDEL ER

marker when these animals were exposed to cdc-48(RNAi)

(Figure 4H–J), hrd-1(RNAi) (Figure 4K–M) or sel-1(RNAi)

(Figure 4N–P). Taken together, these data suggested that CPL-

1W32A;Y35A accumulated within the ER upon ERAD inhibition.

Furthermore, these data provided direct evidence that components

of the mammalian ERAD pathway, involved in the degradation of

ER luminal substrates, were conserved in C. elegans.

Proteasomal inhibition enhanced CPL-1W32A;Y35A

accumulation
Since proteasomal degradation is the end-point of the ERAD

pathway, its inhibition should result in CPL-1W32A;Y35A::YFP

accumulation. To test this hypothesis, we examined animals after

proteasomal inhibition by both RNAi’s directed at different

proteasomal subunits (Table 1) and chemical inhibitors of

proteasomal catalytic activity. As a positive control for proteaso-

mal activity, we generated a transgenic line carrying the ubiquitin

(UB)-fusion-degradation (UFD) transgene, Pnhx2UB-V::mCherry.

The UB-V::mCherry fusion protein contains a G76V mutation

which blocks de-ubiquitination by de-ubquitinating enzymes

(DUBs) and results in constitutive degradation by the proteasome

[25]. As a negative control, we generated a transgenic line that

expresses UB-M::mCherry (containing a R77M mutation), which

allows for the removal of the ubiquitin moiety by DUBs but

prevents subsequent re-ubiquitination. This mutation prevents

proteasomal degradation and results in constitutive cytoplasmic

expression regardless of proteasomal activity [25]. To ensure

proper transgenic selection, image acquisition and analysis; these

two ubiquitin expression constructs were co-injected separately

with Pmyo-2GFP.

The UFD controls and CPL-1W32A;Y35A::YFP transgenic lines

were exposed to RNAi’s specific for different components of the

19S regulatory particle and the 20S catalytic core for 24 hours

(Figure 5A). Since UB-M::mCherry and UB-V::mCherry, unlike

the CPL-1W32A;Y35A::YFP, were cytosolic proteins with a diffuse

distribution, the analysis algorithms were adjusted to distinguish

the entire intestine above the background threshold so that the

total fluorescence per animal could be determined. Transgenic

animals expressing UB-M::mCherry exposed to vector(RNAi) had

approximately 10-fold higher levels of total intestinal fluorescence

within the intestine compared to animals expressing the UB-

V::mCherry under the same conditions (Figure 5A). Treatment of

the transgenic animals expressing UB-V::mCherry with any one of

the proteasomal RNAi’s increased the total mCherry fluorescence

significantly, but as expected, had no effect on the UB-

M::mCherry expressing animals (Figure 5A). This result suggested

Figure 2. CPL-1 and CPL-1W32A;Y35A protein and mRNA
expression. (A–D) Immunoblots of total protein lysates derived from
wild-type (N2) or transgenic strains that were unexposed (A, C) or
exposed to hrd-1(RNAi) (B, D). Protein lysates, separated by either SDS-
(A–B) or native PAGE (C–D), were immunoblotted with anti-GFP
polyclonal antisera that detects both YFP and GFP. Furthermore, the
membranes from the SDS-PAGE were stripped and re-probed with a-
tubulin monoclonal antibody to control for protein loading. Unlike CPL-
1::YFP, was CPL-1W32A;Y35A::YFP was detected under denaturing (and
native gel) conditions only after ERAD inhibition by hrd-1(RNAi). As
compared to the polymerizing GFP::ATM control (arrowhead), neither
CPL-1 protein appeared to form higher order polymers as detected by
native PAGE. (E) Steady-state CPL-1 mRNA (514 bp) levels. Total RNA
isolated from 350 Pnhx-2cpl-1::YFP;Pmyo-2mCherry or Pnhx-2cpl-
1W32AY35A::YFP;Pmyo-2mCherry transgenic animals, treated with either
vector or hrd-1(RNAi), was assessed by reverse transcriptase (RT) PCR
(RT-PCR). No RT, genomic DNA (gDNA) template and primers for a
housekeeping cDNA, AMA-1, (425 bp) served as controls. Diluted CPL-1
mRNA levels derived from the different transgenic strains were
comparable.
doi:10.1371/journal.pone.0040145.g002
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that knockdown of the selected proteasomal subunits of the

regulatory particle or catalytic core reduced the activity of the

proteasome. Similarly, CPL-1W32A;Y35A::YFP fluorescence was

significantly increased when treated with the same proteasomal

RNAi panel as compared to vector(RNAi) controls (Figure 5A).

While RNAi knockdown prevents new proteasomal subunits

from being synthesized, it does not prevent degradation of

substrates by preexisting, active proteasomal complexes. To

inhibit all proteasomal activity, we utilized the proteasomal

inhibitors bortezomib and MG132. Bortezomib has higher

specificity for the proteasome than MG132, which also inhibits

calpains and lysosomal cysteine proteases [26–28]. In both the

UB-V::mCherry and CPL-1W32A;Y35A::YFP expressing transgenic

lines, treatment with either inhibitor increased the levels of total

fluorescence significantly when compared to the DMSO control

(Figure 5B). As expected, neither of the compounds had an effect

on the steady-state levels of the negative control, UB-M::mCherry

(Figure 5B). Taken together, these data suggested CPL-

1W32A;Y35A::YFP accumulated within the animals upon proteaso-

mal inhibition.

Figure 3. Workflow used to identify changes in CPL-1W32A;Y35A::YFP accumulation after exposure to different RNAi treatments. (A–C)
Synchronized animals were collected in the COPAS Biosort sample cup (A) and passed through a flow cell, where L4 staged animals were gated by a
combination of extinction coefficient and time of flight (TOF) (B). A subset of the gated L4 animals was selected on the basis of red fluorescence and
TOF (sorted region) through the flow cell (C). (D) Selected animals were dispensed onto NGM plates seeded with E. coli expressing double stranded
RNAs. (E) After 48 hours, animals were collected and dispensed into a 384-well optical bottom plate for fluorescence quantification using the
ArrayScan VTi automated microscope and analysis system. (F) The number of animals in each well were counted by using the mCherry head marker
(red) to identify individual animals while the GFP channel was used to identify the number, intensity and size of the CPL-1W32A;Y35A::YFP
accumulations (green). The total area of CPL-1W32A;Y35A::YFP accumulations per worm was calculated by dividing the total area of YFP fluorescence by
the total number of mCherry heads identified in each well. Fold-increases values were determined by normalizing to the vector RNAi in order to
account for day-to-day variations in transgene expression levels. The experiments were performed in triplicate and displayed as an average of the
three trials 6 the standard error of the mean (SEM).
doi:10.1371/journal.pone.0040145.g003
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Autophagy inhibition did not increase CPL-1W32A;Y35A

accumulation
Although our data suggested that CPL-1W32A;Y35A::YFP was a

luminal ERAD substrate, some misfolded proteins are eliminated

by both the autophagic and ERAD pathways [29,30]. To

determine whether autophagy might also play a role in the

elimination of this mutant protein, we exposed CPL-

1W32A;Y35A::YFP expressing animals to RNAi’s specific for several

different genes required for autophagy; bec-1, unc-51, and lgg-1

[31]. Knockdown of these genes did not significantly increase the

accumulation of CPL-1W32A;Y35A::YFP, whereas GFP(RNAi)

reduced the signal to nearly undetectable levels (Figure 6A). To

confirm that the autophagy pathway was inhibited upon exposure

to these RNAi’s, transgenic animals expressing mCherry::LGG-1,

under control of the nhx-2 promoter, were treated with identical

RNAi’s and then starved for 4 hours as previously described ([21]

and Figure S4). Starvation is a potent inducer of autophagosome

formation and results in a change in LGG-1 distribution from

diffuse to punctate, as this protein becomes incorporated into

autophagosomal structures. As shown in the vector control,

mCherry::LGG-1 was visualized as discrete puncta in the posterior

intestine after starvation (Figure S4, inset); whereas mCher-

ry::LGG-1 displayed a more diffuse cytoplasmic expression pattern

in the bec-1(RNAi) and unc-51(RNAi) treated worms. These results

suggested that these RNAi treatments blocked autophagosome

formation. Additionally, treatment with lgg-1(RNAi) suppressed the

expression of mCherry::LGG-1, showing that LGG-1 expression

itself could be down-regulated. Although there was no significant

increase in CPL-1W32A;Y35A::YFP accumulation after autophagy

knockdown, there was a slight increase in YFP fluorescence

compared to control animals. To confirm that the autophagy

pathway was not a major means of CPL-1W32A;Y35A::YFP disposal,

we crossed Pnhx-2cpl-1W32A;Y35A::YFP animals with an unc-51(e369)

knockout strain to yield unc-51(e369);Pnhx-2CPL-1W32AY35A::YFP;P-

myo-2mCherry animals. Two independent lines were analyzed, and

showed no significant differences in the level of CPL-

1W32A;Y35A::YFP, as compared to the controls (Figure 6B). These

data suggested that inhibition of the autophagy pathway had no

detectable effect on the disposal of CPL-1W32A;Y35A::YFP.

Discussion

C. elegans has become one of the preferred model systems to

study cell biological processes due to its genetic tractability and

adaptability to high throughput screening platforms [32]. How-

ever, its usefulness as a model for studying ERAD has been

hindered by the lack of well-characterized luminal substrates that

permit the process to be tracked biochemically, or microscopically

in real-time. Misfolded secretory proteins have been shown to be

ERAD substrates, including papain-like lysosomal cysteine pepti-

dases with prepro-domain mutations [33,34]. Mutations of the

conserved tryptophan residues in the prepro-domain of cathepsin

S results in misfolding and degradation via the ERAD pathway

with a half-life similar to the canonical ERAD substrate, yeast

CPY* [14,35]. Therefore, we determined whether mutated CPL-1

was a luminal ERAD substrate in C. elegans. CPL-1 was selected for

three reasons. First, CPL-1 has high homology to the human

cathepsins K, L, S and V. Second, this protein is ubiquitously

expressed (including intestine) and is known to function in

embryogenesis, yolk protein processing, molting and lysosomal-

dependent necrotic cell death pathway [15,16,36–39]. Third, the

prepro-domain of CPL-1 contains bulky hydrophobic amino acids

(W32 and Y35) at positions identical to those mutated in cathepsin

S [14], suggesting that the conformation of the prepro-domain of

CPL-1 has folding properties similar to those of human cathepsins.

Our studies show that wild-type CPL-1::YFP was targeted to the

endo-lysosomal compartment in intestinal cells. Interestingly, and

as is common for many cathepsins, a significant fraction of the

CPL-1::YFP was also secreted, as evidenced by YFP fluorescence

in the pseudocoelomic space (data not shown), where it was taken

up by oocytes, and subsequently appeared in the eggs (the nhx-2

promoter does not drive embryonic expression) [20,21]. These

results suggested that CPL-1::YFP was transported correctly and

the YFP tag does not perturb delivery to the endo-lysosomal

compartment and the pseudocoelomic space. In contrast, the

W32A;Y35A mutations in the prepro-domain of the CPL-1 (CPL-

Table 1. C. elegans ERAD and UPS genes selected for RNAi.

C. elegans Gene Human Orthologue Function References

ERAD

cdc-48.1 and 48.2 p97/VCP AAA+ ATPase, retro-translocation of misfolded proteins [24,48,49]

npl-4.1 and 4.2 NPL4 binding partner with CDC-48.1 and .2 [24]

ufd-1 UFD1 binding partner with CDC-48.1 and .2 [24,49]

ufd-2 ubiquitination factor E4B E4 ubiquitin conjugation factor [13,50,51]

cup-2 Derlin1 receptor for VCP/p97/cdc-48 [52,53]

sel-11/hrd-1 HRD1/synoviolin ER-membrane resident ubiquitin ligase [13,50]

sel-1 SEL1 member of the HMG-CoA reductase Degradation (HRD) complex [24,53]

hrdl-1 AMFR/gp78 ER-membrane resident ubiquitin ligase [13,50]

UPS

rpn-2 PSMD1/Rpn2 non-ATPase subunit of the 26S proteasome’s 19S regulatory particle [54,55]

rpn-10 Rpn10A non-ATPase subunit of the 26S proteasome [13,54,55]

rpt-5 PSMC3/TBP1 AAA ATPase subunit of the 26S proteasome’s 19S regulatory particle [13,54,55]

pas-4 PSMA2/HC3 proteasome alpha subunit [55]

pbs-2 PSMB7 proteasome beta subunit [55]

doi:10.1371/journal.pone.0040145.t001
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1W32A;Y35A) abolished the ability of CPL-1 to traffic to these

locations. Furthermore, the YFP signal was visible in the ER,

either as a diffuse reticular pattern or within distended cisternae

(Figure 1). This result suggested that the CPL-1W32A;Y35A::YFP

was misfolded and was no longer capable of traversing the classical

secretory pathway. As a consequence of its ER retention, we

hypothesized that CPL-1W32A;Y35A::YFP was being degraded by

ERAD. This notion was supported by RNAi experiments showing

that ERAD inhibition enhanced the accumulation CPL-

1W32A;Y35A::YFP within the ER. Not surprisingly, inhibition of

different ERAD components increased the accumulation CPL-

1W32A;Y35A::YFP to a different extent. These variations reflect the

selective importance of different ERAD components in handling

various substrates, as well as technical features associated with

differences in RNAi efficacy or differential protein half-lives of

ERAD components. Nonetheless, inhibition of the E3 ligase,

HRD-1 and one of its binding partners, SEL-1, were the highest

inducers of CPL-1W32A;Y35A::YFP accumulation, and based on

their homology to their human and yeast counterparts, are likely

to be involved in transporting misfolded luminal proteins such as

CPL-1W32A;Y35A::YFP to the cytosol [40]. Also CDC-48, and its

binding partners, NPL-4 and UFD-1 led to a significant increase

in CPL-1W32A;Y35A::YFP accumulation. CDC-48 and its cofactors

are cytosolic proteins that extract ubiquitinated ERAD substrates

from the ER membrane complexes and delivery their cargo to the

proteasome for degradation [41].

Since the proteasome is the final destination for most soluble

ERAD substrates, we present data consistent with CPL-

1W32A;Y35A::YFP being degraded by the proteasome and not by

autophagy. Inhibition of proteasomal function by RNAi directed

against specific proteasomal subunits or chemical inhibitors also

resulted in a marked accumulation of CPL-1W32A;Y35A::YFP.

Taken together, these findings suggested that CPL-

1W32A;Y35A::YFP was a luminal ERAD substrate (Figure 7).

The canonical ERAD substrate is the mutated yeast vacuolar

protease, CPY* [10]. There are at least six C. elegans proteins that

have varying degrees of homology to yeast CPY based on BLAST

algorithms (WormBase web site, http://www.wormbase.org,

release WS228, 01/20/12), with the most homologous,

F13D12.6, showing the greatest similarity (33.4%) and identity

(19.7%). However, F13D12.6::YFP did not traffic to the endo-

lysosomal compartment. Since C. elegans intestinal cells contain

both lysosomes and lysosomal-related organelles [42], it is

conceivable that F13D12.6 was targeted to a subset of organelles

Figure 4. CPL-1W32A;Y35A::YFP accumulated after knockdown of ERAD components. (A) Either Pnhx-2cpl-1::YFP;Pmyo-2mCherry or Pnhx-2cpl-
1W32AY35A::YFP;Pmyo-2mCherry animals were treated with RNAi and analyzed as described in Figure 3. Statistical analysis of the RNAi treated animals
relative to vector was performed using an unpaired, 2-tailed t-test (unequal variance) (*p,0.05, **p,0.01, ***p,0.001). (B–P) Pnhx-2cpl-
1W32AY35A::YFP;Pmyo-2mCherry;DsRed::KDEL animals were exposed to vector (B–D), GFP (E–G), cdc-48 (H–J), hrd-1 (K–M) or sel-1 (N–P) RNAi for 48 h. and
images were collected using a widefield epifluorescence microscope. The arrowheads indicate accumulations of CPL-1W32A;Y35A, which co-localized
with the ER marker, DsRed::KDEL. Scale bar indicates 100 mm.
doi:10.1371/journal.pone.0040145.g004
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that do not originate or merge with the endo-lysosomal

compartment. Moreover, a G166R mutation within the putative

active site of F13D12.6 (equivalent to the active site mutation of

yeast CPY*) did not cause accumulation within the ER after

ERAD inhibition. These findings suggested that mutant

F13D12.6, as constructed by our laboratory, was not eliminated

by ERAD.

In summary, upon ERAD/UPS inhibition, CPL-

1W32A;Y35A::YFP accumulation was easily discernible by widefield

epifluorescence microscopy. Thus, the animals expressing CPL-

1W32A;Y35A::YFP should facilitate the use of high-throughput

chemical or genome-wide genetic screens to further our under-

standing of the ERAD and UPS pathways.

Materials and Methods

Construction of expression plasmids
All amplifications were performed using the Expand high

fidelity PCR system (Roche Applied Science, Indianapolis, IN).

Restriction enzymes used for cloning procedures were purchased

from New England Biolabs (NEB, Ipswich, MA) unless otherwise

stated.

To generate the Pmyo-2 mCherry construct (pAV1944) (Table

S1), a 717 bp mCherry cDNA was PCR amplified (primer set 1,

Table S2), and the fragment sub-cloned into the NheI and EcoRV

restriction sites of the canonical expression vector, pPD49.26 [43],

to create mCherry_pPD49.26 (pAV1997). A 1.1 kb myo-2

promoter was amplified (primer set 2), and the fragment was

Figure 5. CPL-1W32A;Y35A::YFP accumulation after proteasomal inhibition. UB-M::mCherry, UB-V::mCherry, or CPL-1W32A;Y35A::YFP expressing
transgenic animals were exposed to either a proteasomal RNAi panel (A) or chemical inhibitors (B). Animals were processed as described in Figure 3.
For the UB-M::mCherry and UB-V::mCherry expressing animals, the algorithm was adjusted to detect the entire intestinal fluorescence pattern above
that of the vector(RNAi) control. Total intensity was used in place of total area. Statistical analysis of the RNAi treated animals relative to vector was
performed using an unpaired, 2-tailed t-test (unequal variance) (**p,0.01, ***p,0.001). Both proteasomal RNAi and chemical inhibitors caused a
significant increase in in CPL-1W32A;Y35A::YFP fluorescence.
doi:10.1371/journal.pone.0040145.g005
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ligated into the SphI and XbaI sites to yield the final construct,

pAV1944.

For YFP fusion proteins, an NheI/SacI double digest was

performed on Pnhx-2mCherry (pAV1951) followed by gel purification

to remove mCherry. Next, an 868 bp YFP cDNA containing

synthetic introns was amplified (primer set 3) from pPD133.86 (a

kind gift from Dr. Andrew Fire), and the fragment ligated into the

NheI and SacI restriction sites to form Pnhx-2YFP (pKS2236). Pnhx-

2cpl-1::YFP (pKS2301) was generated by amplifying a 2.6 kb cpl-1

genomic DNA fragment (primer set 4), and ligating the fragment

into the NheI site of Pnhx-2YFP (pKS2236). Pnhx-2cpl-1W32A;Y35A::YFP

(pKS2311) was created by site-directed mutagenesis of those

codons corresponding to amino acids 32 and 35 of Pnhx-2 cpl-1::YFP

using the QuikchangeTM mutagenesis kit (primer set 5) according

to manufacturers instructions (Agilent Technologies, Santa Clara,

CA).

Pnhx-2F13D12.6::YFP (pNG2462) was generated by amplifying a

3.2 kb F13D12.6 genomic DNA fragment (primer set 6) and

ligating the fragment into the NheI site of Pnhx-2YFP (pKS2236).

Pnhx-2F13D12.6G166R::YFP (pNG2470) was generated by site-

directed mutagenesis (primer set 7).

To generate Pnhx-2DsRed::KDEL (pAV1825), the nhx-2 promoter

was amplified (primer set 8) and sub-cloned into the HindIII and

XbaI sites of pPD95.85. The stop codon of GFP was mutated by

QuikchangeTM site-directed mutagenesis to a KasI site (primer set

9). Next, the 675 bp DsRed insert was amplified (primer set 10)

from the pDsRed-Express-C1 vector (Clontech, Mountain View,

CA) with KpnI and KasI sequences at the 59 and 39 ends,

respectively. The reverse primer also contained the codons

corresponding to the ER retention motif, KDEL. The GFP insert

was replaced by ligating the DsRed::KDEL insert into the KpnI

and KasI sites.

To generate the Pnhx-2UB-V::mCherry (pSG2142) construct, the

248 bp ubiquitin sequence was amplified (primer set 11) from the

Punc-47UbA47V::DsRed expression construct [44] with NheI restric-

tion sites at both 59 and 39 ends along with a short linker sequence.

The nhx-2 promoter and amplified ubiquitin sequence were sub-

cloned into the HindIII/XbaI and NheI sites, respectively, of

Figure 6. Autophagy inhibition did not affect steady-state
levels of CPL-1W32A;Y35A::YFP. (A) CPL-1W32A;Y35A::YFP animals were
exposed to an autophagy RNAi panel and analyzed as described in
Figure 3. Statistical analysis of the RNAi treated animals relative to
vector was performed using an unpaired, 2 tailed t-test (unequal
variance). No significant difference was observed. (B) VK1879
(N2;vkEx1879[Pnhx-2cpl-1W32AY35A::YFP;Pmyo-2mCherry]) animals were
crossed with the autophagy-deficient knockout strain unc-51(e369) to
derive unc-51(e369);vkEx1879[Pnhx-2cpl-1W32AY35A::YFP;Pmyo-2mCherry].
Two individual lines (VK1984 and VK1985) were selected and analyzed
as described in Figure 3. Results were compared to those obtained in
the original CPL-1W32A;Y35A::YFP strain. No significant difference in CPL-
1W32A;Y35A::YFP expression was observed in the autophagy deficient
strains.
doi:10.1371/journal.pone.0040145.g006

Figure 7. Schematic representation of CPL-1W32A;Y35A::YFP
degradation by ERAD. Misfolded CPL-1W32A;Y35A::YFP is recognized
and targeted to the hrd-1/sel-1 complex where it is ubiquitinated.
Following polyubiquitination CPL-1W32A;Y35A::YFP is retro-translocated
by the CDC-48NPL-4/UFD-1 complex and degraded by the proteasome.
doi:10.1371/journal.pone.0040145.g007
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mCherry_pPD49.26 (pAV1997). QuikchangeTM site directed

mutagenesis (primer set 12) of the Pnhx-2Ub-V::mCherry (pSG2142)

yielded an intermediate construct, Pnhx-2UB-R::mCherry (pSG2143),

which was not used for this investigation. A second round of

QuikchangeTM site directed mutagenesis (primer set 13) on Pnhx-

2UB-R::mCherry (pSG2143) yielded Pnhx-2UB-M::mCherry

(pSG2144). The Phsp-4GFP (pAV2021) construct was generated

by amplifying the 1.2 kb hsp-4 promoter (primer set 14) from

genomic DNA and ligating the fragment into the HindIII and

XbaI sites of pPD95.77 [43]. The final plasmid constructs (Table

S1) were deposited with Addgene (Cambridge, MA).

C. elegans strains and culture conditions
A complete list of worm strains and their genotype, along with

the figures they correspond to, is given in Table S3 for easy

reference. All injection mixes were made to a final total DNA

concentration of 100 ng/ml using pBluescript SK- (Agilent

Technologies) if required. The strain VK1104 was generated by

co-injecting Pnhx-2YFP and Pmyo-2mCherry with 20 ng/ml and 5 ng/

ml, respectively, into the gonad of young adult N2 hermaphrodites.

Strains VK1256, VK1258, VK1770 and VK1870 were generated

by co-injecting 20 ng/ml of the expression plasmids Pnhx-2cpl-

1::YFP, Pnhx-2 cpl-1W32A;Y35A::YFP, Pnhx-2F13D12.6::YFP and Pnhx-

2F13D12.6G166R::YFP, respectively, with 20 ng/ml Pnhx-2DsRed::K-

DEL. Strain VK1879 was generated by co-injecting the P
nhx-2

cpl-

1W32A;Y35A::YFP plasmid with Pmyo-2mCherry at 20 ng/ml and 5 ng/

ml, respectively. Strains VK1244, VK1243 and VK1241 were

generated by co-injecting 80 ng/ml of the plasmids Pnhx-2Ub-

M::mCherry, Pnhx-2Ub-V::mCherry and Pnhx-2mCherry::lgg-1, respective-

ly, with 5 ng/ml of Pmyo-2GFP. The worm strain VK737 was

generated by co-injecting the Phsp-4GFP and Pmyo-2mCherry plasmids

at 80 ng/ml and 5 ng/ml, respectively. Strain VK689 was

generated as described by Gosai, et al. [21]. The worm strain

VK1984 (unc-51(e369);vkEx1258[Pnhx-2CPL-1W32AY35A::YFP;Pmyo-

2mCherry]) was generated by crossing males from strain VK1258

(N2; vkEx1258[Pnhx-2CPL-1W32AY35A::YFP;Pmyo-2mCherry]) with her-

maphrodites from strain CB369 (unc-51(e369)), which was

obtained from the Caenorhabditis Genetics Center (CGC). Males

were generated by heat shocking at 27uC for 18 hours. Worms

were routinely cultured at 22uC on nematode growth media

(NGM) plates seeded with E. coli strain OP50 unless otherwise

specified. All worm strains generated for this manuscript were

deposited at the Caenorhabditis Genetics Center (CGC) (Table S3).

OP50 preparation
OP50 was prepared as described in [45]. Briefly, a single colony

of OP50 was placed in 3 ml LB broth and incubated at 37uC with

shaking overnight. One ml of this culture was added to 1L of LB

broth and was incubated at 37uC until reaching an OD600 = 0.5.

The bacteria were washed twice with PBS and concentrated to an

OD600 = 10. An equal volume of 50% glycerol was added for long-

term storage at 280uC. After thawing, the bacteria were

concentrated by centrifugation and re-suspended in PBS to an

OD600 = 10.

BSA labeling
BSA::AlexaFluor647 (Invitrogen, Carlsbad, CA) was resus-

pended in PBS then added to liquid NGM cooled to 55uC at a

final concentration of 1 mg/mL immediately prior to pouring the

agar plates. These agar plates were then seeded with OP50, and

,50 transgenic L4 stage animals were transferred onto the plates

and incubated overnight at 22uC in the dark. The following day,

labeled animals were transferred onto regular NGM plates seeded

with OP50 for 4 hours prior to confocal imaging.

RNAi
Vector inserts of each RNAi clone were verified by DNA

sequencing. RNAi was prepared as previously described [46].

Briefly, an overnight culture of HT115 bacteria containing the

RNAi plasmid, was diluted 1 in 50 with LB ampicillin (100 mg/ml)

and IPTG (1.5 mM) and grown with shaking at 37uC to an

OD600 = 0.5. The cultures were concentrated in 3 ml LB

ampicillin broth and used to seed NGM plates containing

1.5 mm IPTG and 100 mg/ml ampicillin. Of note, the cdc-

48(RNAi) and npl-4(RNAi) treatments contained a combination of

both cdc48.1 and cdc-48.2 and npl4.1 and npl4.2 RNAi cultures,

respectively, as previous studies showed that knockdown of both

genes was required to affect ERAD [24]. In these studies,

approximately 60–100 L4 stage animals were grown on RNAi

plates. For ERAD and autophagy RNAi panels, RNAi treatment

was carried out for 48 h with animals being transferred to fresh

RNAi plates after 24 h. For proteasomal RNAi studies, RNAi

treatment was carried out for 24 h.

Proteasomal inhibitor plate preparation
Proteasome inhibitor containing NGM plates were prepared by

adding 3 ml Bortezomib (50 mM in DMSO, LC Laboratories,

Woburn, MA) or 1.2 ml MG132 (50 mM in DMSO, Sigma-

Aldrich, St. Louis, MO) directly to 6 ml NGM media cooled to

50uC at to reach a final concentration of 25 mM and 10 mM,

respectively, prior to seeding with OP50. L4 stage animals (n = 60–

100) were added onto individual drug or control (0.05% DMSO

only) plates. Animals remained on plates for 18–24 h at 22uC
before analysis.

Animal sorting using the COPASTM BIOSORT
Animals were sorted using the COPASTM BIOSORT (Union

Biometrica, Holliston, MA, USA) as previously described [21].

Briefly, transgenic C. elegans lines were washed from NGM plates,

allowed to settle by gravity and washed several times in PBS to

remove large agar particles. The final pellet was resuspended in

approximately 40 ml PBS+0.01% Triton X-100 volume to give a

flow rate of 10–20 animals per second through the flow cell. L4

stage worms were selected using empirically determined size, as

measured by time-of-flight (TOF) through the flow cell, and

coefficient of extinction values, determined using the 488 nm solid

state laser and an extinction photodiode. Sorted L4 animals were

additionally gated based upon the co-injection fluorophore

intensity (GFP, YFP or mCherry) using the same 488 nm solid

state laser and photomultiplier tubes. Gating and sorting

parameters were controlled via the COPAS software.

Imaging of transgenic animals using ArrayScan VTI

Imaging using the ArrayScan VTi (Cellomics, Thermo Fisher,

Pittsburgh, PA, USA) was performed as previously described in [21].

Briefly, 30–35 adult stage worms were transferred to a well of a 384-

well optical bottom plate (Nunc, Thermo Fisher, Rochester, NY,

USA) in 100 ml of PBS, 0.01% Triton X100 and 50 mm sodium

azide (NaN3). Sodium azide was used as an anesthetizing reagent to

ensure the animals were motionless and in a uniform plane. Images

were acquired with the automated ArrayScan VTI HCS Reader

(Cellomics, ThermoFisher, Pittsburgh, PA), which consists of a Carl

Zeiss 200M inverted microscope fitted with a 56 objective and a

0.636coupler; an LED light engine with excitation wavelengths of

485 nm and 549 nm for green and red fluorophores, respectively; a

Hamamatsu ORCA-ER CCD camera; and ArrayScan BioApplica-

tions software to simultaneously acquire and analyze images. To

acquire images, the autofocus parameters were set to the head
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marker, either the TRITC channel (Em 590 nm) for Pmyo-2mCherry

or the FITC channel (Em 535 nm) for Pmyo-2GFP containing strains.

After autofocusing, the ArrayScan software was programmed to

capture images in both FITC and TRITC channels. In order for the

ArrayScan VTi to distinguish between the head and the intestine,

worm strains with Pmyo-2mCherry expressed GFP or YFP containing

proteins in the intestine, and Pmyo-2GFP containing strains expressed

mCherry. The ArrayScan VTi SpotDetector BioApplication simul-

taneously analyzed the fluorescence in both channels above an

empirically determined threshold, counting both Pmyo-2 head marker

(number of worms) and intestinal fluorescence. To determine the

threshold, several wells with both high and low transgene expression

levels were manually selected to ensure proper focus, camera

exposure and spot detection threshold settings. For those transgenic

worms exhibiting discreet ER accumulations within the intestine (e.g.

Pnhx-2 CPL-1W32A;Y35A::YFP), the threshold was higher to determine

those objects (spots) above background intestinal autofluorescence,

and the spot total area was determined across the entire well. For

transgenic lines that exhibited diffuse cytoplasmic expression across

the entire intestine (e.g. Phsp-4GFP), the threshold was lowered to

detect the entire intestine, and spot total intensity was used to

compare transgene expression in different animals. In order to

normalize for the number of animals detected in each well, the spot

total area or spot total intensity parameters were divided by the

number of head objects detected in the head marker channel.

Statistical analysis
All studies were repeated for at least three trials (n = 3) unless

otherwise noted. With the exception of the proteasomal studies, for

each experimental trial, the data was normalized to the baseline

controls (vector(RNAi) or N2 genetic background) and represented

as 1. For these treatments, the data was expressed as a fold-change

from vector control. Due to increased variability in the proteasomal

studies, the data was expressed as total fluorescence intensity per

animal. For these assays, animals for each treatment were

transferred from three identically treated plates to three wells in

a 384 well plate. Approximately 40–60 animals were cultured per

plate. For each of the three wells, spot total intensity was divided

by the number of heads to provide spot total intensity per animal.

This process was repeated two additional times, which provided

nine spot total intensity/animal measurements (n = 9). Graphs

were reported as an average of the trials and the standard

deviation was calculated and plotted to generate error bars. The

experiments were tested for statistical significance as compared to

control animals using an unpaired, 2-tailed, unequal variance t-test

(p,0.05).

Microscopic imaging
To prepare animals for imaging, 6 ml of 50 mM NaN3 in PBS

was transferred to the middle of a 35 mm coverglass bottom dish

(MatTek, Ashland, MA). Five to fifteen adult stage animals were

transferred to the sodium azide solution and covered with a

12 mm circular coverslip.

Confocal images were taken with a Nikon LiveScan SFC

confocal microscope with 488, 561 and 647 nm excitation lasers

using a 6061.4 NA oil Apochromat objective over a 20 micron Z-

range at 0.6 micron Z-step and a pinhole size of 60 micrometers.

Images were displayed as 2D maximum intensity projections,

rendered and analyzed using NIS Elements software.

Widefield images were collected using an automated Nikon Ti

Eclipse microscope with a single Z-plane using a 206 objective

and ASI motorized stage. Epifluorescence was captured using

FITC (Ex 488 nm; Em 512 nm) and TRITC (Ex 568 nm, Em

620 nm) filter sets (Chroma). Images were captured using a

Coolsnap HQ2 CCD camera (Photometrics). Exposure settings

remained constant throughout the image capture and between

transgenic strains. Images were rendered and analyzed using NIS

Elements software.

Lifespan analysis
Lifespan analysis studies were performed at 20uC as previously

described [47]. Briefly, 25 L4 stage transgenic animals (N2 Bristol,

CPL-1::YFP, and CPL-1W32A;Y35A:YFP) were added to NGM

plates seeded with OP50 (day 0), and were transferred daily onto

new seeded plates for the duration of adult life. The total number

of observations equals the number of animals that were scored as

dead plus the total number of animals that were censored in the

experimental group because they had moved off the plate or were

bagged. In these studies, p values were calculated using the log-

rank test in the PrismH (GraphPad Software, La Jolla, CA, USA)

statistical software package.

Immunoblotting
Denaturing Conditions. For each strain used, ,500 adult

animals were collected into a 1.5 ml microfuge tube containing

0.5 ml PBS. Animals were washed with PBS a total of 3 times to

remove any remaining bacteria. Animals were pelleted using a

tabletop microfuge and the supernatant was removed. Animals

were solubilized by adding 100 ml of 5X Laemmli Buffer

containing 0.1% SDS and 5% b-mercaptoethanol to each pellet.

Animal pellets in sample buffer were then subjected to 3 bursts of

sonication for 10 s each and were boiled for 10 min. Samples were

then loaded onto a CriterionTM TGX Any KD precast gel (Bio-

Rad, Hercules, CA, USA). Electrophoresis and transfer to

nitrocellulose (Bio-Rad) was performed using the CriterionTM

Western blotting system (Bio-Rad). Membranes were then

incubated for 2 hours with anti-GFP polyclonal antibody (Sigma),

or anti-tubulin monoclonal antibody (Sigma). Membranes were

then washed for a total of 1 h in TBS+0.01% (v/v) Triton-X 100

before they were incubated for 1 h in either bovine anti-rabbit- or

bovine anti-mouse-HRP (Santa Cruz Biotechnology, Santa Cruz,

CA, USA) conjugated secondary antibody. HRP-reactive bands

were detected using Super SignalH West Pico chemiluminescent

substrate (Thermo Fisher Scientific, Pierce, Rockford, IL, USA),

and membranes were exposed to Blue Ultra autorad film (ISC

BioExpress, Kaysville, UT, USA). The relative molecular mass of

immunoreactive bands was assessed using Precision Plus Protein

Standards (Bio-Rad). Membranes were stripped in Western

Stripping Buffer containing 750 mm glycine (pH 2.0), 1% Tween

20 and 0.1% SDS.

Native Conditions. Immunoblotting procedure was carried

out as described above with slight modification. Animal pellets

were resuspended in 100 ml of PBS containing a protease inhibitor

cocktail (Complete mini-tablets; Roche, Indianapolis, IN, USA).

Samples were then briefly sonicated for 3 s bursts on ice. This was

repeated until breakdown of worm cuticle was observed. Following

sonication, samples were centrifuged as above and the supernatant

was transferred to a new tube. Five microliters of undiluted sample

combined with 20 ml of Native sample buffer (Bio-Rad) were

loaded onto a CriterionTM TGX Any KD precast gel (Bio-Rad).

Electrophoresis was performed using Tris/Glycine buffer contain-

ing 25 mM Tris and 192 mM Glycine.

Semi-quantitative RT-PCR
Approximately 350–500 transgenic animals were collected in

PBS and pelleted from each of the RNAi plates. Pellets were then

resuspended in 100 ml of PBS and 400 ml of Trizol reagent

(Invitrogen). Animals were lysed by freeze thaw, an additional
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200 ml of Trizol reagent and vigorous shaking at 22uC. After the

addition of 140 ml of chloroform, samples were centrifuged at

12,0006 g at 4uC for 15 minutes. The aqueous phase was

removed and transferred to a new RNAse free 1.5 ml microfuge

tube and an equal volume of 70% ethanol was added. Total RNA

was isolated using the RNAeasy kit (Qiagen, Valencia, CA)

according to supplier’s specifications. The cDNA was made using

the SuperScriptH III first strand synthesis supermix for qRT-PCR

kit (Invitrogen) along with no reverse transcriptase negative

controls. CPL-1, HRD-1, HRDL-1 and AMA-1 cDNAs were

amplified using the PhusionH high fidelity PCR kit (NEB) from a

10-fold serial dilution of cDNA (from 1:1 to 1:10,000) for each

given RNAi treatment. Primer sets 15, 16, 17 and 18 were used to

amplify HRD-1, HRDL-1, AMA-1 and CPL-1, respectively.

Supporting Information

Figure S1 A yeast carboxypeptidase Y/cathepsin A-like
fusion gene, F13D12.6::YFP did not traffic to the endo-
lysosomal compartment and its mutant did not accu-
mulate in the ER. (A) Amino acid alignment of yeast CPY

[EDV11788.1], human cathepsin A [CAI20250.1], and six C.

elegans homologues (identified by BLAST) using the ClustalW

algorithm. Accession numbers for aligned potential C. elegans CPY

homologues are as follows: F13D12.6 [CAA88947.1], C08H9.1

[CAA91143.1], K10B2.2a [CCD66392.1], F41C3.5

[CCD65861.1], F32A5.3 [CCD66273.1], and Y40D12A.2

[CCD64385.1]. Blue shading/highlighting is pre-pro domain,

the green box is the excision peptide and red boxes are catalytic

triad residues. (B–I) Transgenic animals expressing F13D12::YFP

(B–E) or F13D12.6G166R::YFP (F–I) were examined by confocal

microscopy. Both lines were co-injected with a DsRed::KDEL

transgene to mark the ER (C, G), and were incubated with

BSA::AlexaFluor647 to label the endo-lysosomal compartment (D,

H). Both F13D12.6::YFP and F13D12.6G166R::YFP demonstrated

a fine reticular pattern within intestinal cells that co-localized with

DsRed::KDEL (E, I). The wild-type protein did not co-localize

with BSA::AlexaFluor647, suggesting that this protein did not

traffic to the endo-lysosomal compartment. Scale bar represents

10 mm. (J) Immunoblot of protein lysates from two different

transgenic strains expressing F13D12.6G166R::YFP. Blot probed

with anti-GFP/YFP antisera. Mr fusion protein = 77-kDa. (K) The

mutant protein, CPL-1W32A;Y35A::YFP, but not

F13D12.6G166R::YFP, accumulated in the ER after ERAD

knockdown using cdc-48(RNAi), hrd-1(RNAi) or sel-2(RNAi);

suggesting that the latter mutant protein was not an ERAD

substrate under these experimental conditions.

(TIF)

Figure S2 Expression of CPL-1W32A;Y35A::YFP does not
affect C. elegans lifespan. Kaplan-Meier survival curves were

generated for N2 (blue), Pnhx-2cpl-1::YFP (green), or Pnhx-2cpl-

1W32A;Y35A::YFP (red) animals to determine if animal longevity

was affected by expression of either transgene. Individual strains

had mean survival times of 300 h (N2), 360 h (CPL-1::YFP), and

312 h (CPL-1W32A;Y35A::YFP). Statistical significance compared to

control was assessed by log-rank test, which indicated no statistical

difference between strains (N2 vs. CPL-1::YFP, p = 0.4; N2 vs.

CPL-1W32A;Y35A, p = 0.7). Assays were performed at 20uC and the

total number of observations counted were equal to the number of

animals that died plus the number of censored animals.

(TIF)

Figure S3 Controls for ERAD RNAi effectiveness. (A) Pnhx-

2YFP or (B) Phsp-4GFP animals were exposed to the ERAD RNAi

panel for 48 h and processed as described in Figure 3. The

algorithm was adjusted to detect the entire intestinal fluorescence

pattern above that of the vector(RNAi) control. Total intensity per

animal was used in place of total area. Statistical analysis of the

RNAi treated animals relative to vector was performed using an

unpaired, 2-tailed t-test (unequal variance) (*p,0.05). No statistical

difference in total YFP fluorescence was observed for all tested

RNAi’s, suggesting RNAi treatment did not alter levels of

transgene expression by activating the nhx-2 promoter (A). All

RNAi’s tested significantly raised Phsp-4GFP expression levels

except for hrdl-1(RNAi) as previously described [13], indicating the

UPR activation by RNAi treatment (B). (C) Effectiveness of hrdl-

1(RNAi) was demonstrated by showing knockdown of steady-state

HRDL-1 mRNA levels by semi-quantitative RT-PCR. Total

RNA was isolated from CPL-1W32A;Y35A animals treated with

either vector, hrd-1, or hrdl-1 RNAi. RT-PCR (+/2RT) reactions

were performed on a 10-fold serial dilution of cDNA’s from each

RNAi condition to amplify HRD-1, HRDL-1, or AMA-1. HRDL-

1 cDNA was not detected after the hrdl-1(RNAi). AMA-1 and

genomic (g) DNA served as RT and amplification controls,

respectively.

(TIF)

Figure S4 Autophagy RNAi controls. mCherry::LGG-1

expressing animals were exposed to an autophagy RNAi panel

for 48 hours and starved for 4 hours to induce autophagy. Images

of 5–10 animals were collected using a widefield epifluorescence

microscopy. In vector(RNAi) animals the mCherry::LGG-1 expres-

sion profile shifted from a diffuse to a more punctate distribution,

indicating autophagosome formation, while treatment with lgg-

1(RNAi) successfully reduced the mCherry::LGG-1 fluorescence to

below detectable levels. unc-51(RNAi) or bec-1(RNAi) also prevented

puncta formation, indicating suppression of autophagosome

formation.

(TIF)

Table S1 Transgene List.

(DOCX)

Table S2 PCR primer pairs for transgene construction.

(DOCX)

Table S3 C. elegans strain list.

(DOCX)
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