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    Introduction 
 Integrin activation, the rapid transition from a low to a high af-

fi nity state for ligand, regulates the numerous cellular responses 

consequent to integrin engagement by extracellular matrix pro-

teins or counter-receptors on other cells ( Hynes, 2002 ). This 

transformation is tightly controlled by the integrin cytoplasmic 

tails (CTs) ( Qin et al., 2004 ;  Ma et al., 2007 ). Mutational and 

structural analyses suggest that the  �  3  CT can be divided two 

regions, and both infl uence integrin activation. The membrane-

proximal region of the  �  3  CT is primarily  � -helix, which inter-

acts with the membrane-proximal helix of the  �  subunit through 

several electrostatic and hydrophobic bonds ( Vinogradova 

et al., 2002 ). Unclasping of the complex is a critical event in 

integrin activation ( Hughes et al., 1996 ;  Kim et al., 2003 ;  Ma 

et al., 2006 ). The membrane-distal region of the  �  3  CT contains 

two NXXY turn motifs, NPLY 747  and NITY 759 , which are sepa-

rated by a short helix containing a T/S cluster, the TS 752 T region 

( Fig. 1 A ). The head domain of talin (talin-H) docks at the 

NPLY 747  motif through its F 3  domain and also interacts with the 

membrane-proximal region, perturbing the membrane clasp and 

leading to at least partial integrin activation ( Vinogradova et al., 

2002 ;  Tadokoro et al., 2003 ;  Wegener et al., 2007 ). The T/S 

cluster and the NITY motif are also critical for integrin activa-

tion ( Chen et al., 1994 ;  O ’ Toole et al., 1995 ;  Xi et al., 2003 ;  Ma 

et al., 2006 ). However, the mechanisms underlying their effects 

remain unresolved. In this study, we found that kindlin-2, a 

widely distributed PTB domain protein, interacts with the C ter-

minus of  �  3  CT at the TS 752 T and NITY 759  motifs and markedly 

enhances talin-induced integrin activation. Thus, kindlin-2 is 

identifi ed as a coactivator of integrins. 

 Results and discussion 
 To address the functional signifi cance of the membrane-distal re-

gion of the  �  3  CT, we considered whether it might interact with 

intracellular regulator(s). A CHO cell line stably expressing  �  IIb  �  3  

was transfected with cDNAs encoding for wild-type or mutated 

 �  3  CT based on the rationale that these expressed constructs 

would compete for integrin binding partners. A similar strategy 

had been used previously to screen the  �  CT binding partners es-

sential for integrin activation ( Fenczik et al., 1997 ). In our stud-

ies, these  �  3  CT were expressed as chimeric constructs containing 

the extracellular domain of PSGL-1 so that expression levels of 

the various  �  3  CT could be verifi ed. As assessed by fl ow cytome-

try (FACS), PSGL-1 expression differed by less than 10%. The 

effects of the various  �  3  CT on  �  IIb  �  3 -mediated cell spreading on 

immobilized fi brinogen were evaluated. Compared with cells ex-

pressing PSGL-1 alone, expression of the wild-type  �  3 CT chi-

mera totally abolished  �  IIb  �  3 -mediated cell spreading ( Fig. 1 B ). 

As a specifi city control, Y 747 A mutation, which would interfere 

with talin binding, resulted in a loss of inhibitory activity. Other 

mutations in the membrane-distal region in  �  3  CT chimera, S 752 P 

and Y 759 A, beyond the talin interactive sites and which perturb 

I
ntegrin activation is essential for dynamically linking 

the extracellular environment and cytoskeletal/signal-

ing networks. Activation is controlled by integrins ’  

short cytoplasmic tails (CTs). It is widely accepted that the 

head domain of talin (talin-H) can mediate integrin acti-

vation by binding to two sites in integrin  �  ’ s CT; in integrin 

 �  3  this is an NPLY 747  motif and the membrane-proximal 

region. Here, we show that the C-terminal region of inte-

grin  �  3  CT, composed of a conserved TS 752 T region and 

NITY 759  motif, supports integrin activation by binding to a 

cytosolic binding partner, kindlin-2, a widely distributed 

PTB domain protein. Co-transfection of kindlin-2 with 

talin-H results in a synergistic enhancement of integrin  �  IIb  �  3  

activation. Furthermore, siRNA knockdown of endog-

enous kindlin-2 impairs talin-induced  �  IIb  �  3  activation in 

transfected CHO cells and blunts  �  v  �  3 -mediated adhesion 

and migration of endothelial cells. Our results thus iden-

tify kindlin-2 as a novel regulator of integrin activation; it 

functions as a coactivator.

 Kindlin-2 (Mig-2): a co-activator of  �  3  integrins 
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 A reasonable synthesis of the data in  Fig. 1 (B and C)  is 

that the membrane-distal region of the  �  3  CT regulates integrin 

activation and does so by interacting with a cytoplasmic binding 

partner that cooperates with talin but binds to distinct sites. 

Molecules reported to bind to the membrane-distal conservative 

regions of  �  3  CT include fi lamin, which binds to the T/S cluster, 

and  �  3 -endonexin, which binds to the NITY 759  motif. Both have 

been suggested as regulators of integrin activation (fi lamin, 

a negative regulator, and  �  3 -endonexin, a positive regulator) 

( Eigenthaler et al., 1997 ;  Kiema et al., 2006 ). To assess their 

roles in integrin activation, fi lamin A Ig-like domain 21 (FLNa21, 

the  �  CT binding region) or  �  3 -endonexin was transfected or 

cotransfected together with talin-H into  �  IIb  �  3 -CHO cells. Neither 

modulated talin-induced integrin activation or directly mediated 

integrin activation ( Fig. 2, A and B;  and Fig. S1 A, available at 

http://www.jcb.org/cgi/content/full/jcb.200710196/DC1), thus 

excluding them as the hypothetical coactivator of integrins. 

It should be noted that these data are not inconsistent with the 

proposed role of fi lamin A as a negative regulator of integrin 

activation ( Kiema et al., 2006 ); suppressive effects of FLNa21 

may not be evident in the presence of high talin-H levels. 

 Recently, we identifi ed another  �  3  CT binding protein, 

kindlin-2 ( Shi et al., 2007 ), one of a three-member kindlin family 

that are characterized by bearing a FERM domain ( Wick et al., 

1994 ;  Siegel et al., 2003 ;  Weinstein et al., 2003 ;  Ussar et al., 2006 ). 

key structural features in this region, the short helix and the turn 

motif, respectively, also led to loss of competitive activity. This 

loss was not observed with Y 747 F, S 752 A, or Y 759 F substitutions, 

which would sustain the secondary structural features of the 

membrane-distal region. 

 Cell spreading is a complex response and we sought to 

confi rm the role of membrane-distal residues in integrin activa-

tion more directly.  �  IIb  �  3  containing a point mutation of R 995 D 

in  �  IIb  or D 723 R in  �  3,  which disrupts a salt bridge formed by R 995  

and D 723 , is a particularly sensitive reporter of talin-H – induced 

activation in a CHO cell system as assessed with the ligand mi-

metic mAb, PAC1 ( Hughes et al., 1996 ;  Tadokoro et al., 2003 ; 

 Ma et al., 2006 ). Disrupting either of the two NXXY turn motifs, 

NPLY 747  or NITY 759 , with a Y 747 A or a Y 759 A mutation dramati-

cally impairs integrin activation caused by R 995 D ( Fig. 1 C ). 

However, conservative substitutions that should be structurally 

silent, Y 747 F or Y 759 F, have no signifi cant effect on integrin acti-

vation. Consistent with previous data, disruption of the short 

helix between two NXXY motifs with the naturally occurring 

S 752 P ( Chen et al., 1992, 1994 ) suppresses integrin activation 

whereas the S 752 A substitution, which maintains the helix ( Ma 

et al., 2006 ), does not affect activation. Although the above de-

scription focuses on the  �  3  CT, most of the key sequences are 

shared by other integrin  �  subunits ( Fig. 1 A ), and the potential 

to be activated extends to multiple integrin subfamilies. 

 Figure 1.    Sequences of the membrane-distal region of  �  3  CT have essential roles in integrin  �  IIb  �  3  activation.  (A) Alignment of integrin  �  CT sequences, 
highlighting (red) the conserved regions, the two NXXY/F motifs and one T/S cluster. (B) Suppression of integrin  �  IIb  �  3 -mediated cell spreading by 
expressed  �  3  CT depends on conserved sequences in its membrane-distal region. After transient transfection with plasmids encoding the indicated 
 �  3  CT-containing chimera ( �  3  CT/PSGL-1), adhesion of the  �  IIb  �  3 -CHO cells to fi brinogen was examined. The adherent cells were fi xed and stained with 
the anti-PSGL-1 mAb, KPL-1, for visualization by fl uorescence microscopy (10 ×  objective). Bar, 20  μ m. (C) Conserved residues in the membrane-distal 
region support  �  IIb  �  3  activation. Plasmids encoding  �  IIb  and  �  3  or its mutants were transiently transfected to CHO cells. The transfected cells were stained 
with 2G12 to assess  �  IIb  �  3  expression or PAC1 to assess  �  IIb  �  3  activation. FACS was used to measure the mean fl uorescence intensity (MFI) of 2G12 or 
PAC1 binding, and relative MFI of PAC1 binding was normalized to integrin expression levels based on 2G12 staining ( Ma et al., 2006 ). The error bars 
represent means  ±  SD of three independent experiments.   
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umbilical vein endothelial cells (HUVECs). As shown in  Fig. 3 A , 

wild-type  �  3  CT interacts with kindlin-2 but GST alone did not, 

ascribing specifi city to the interactions. The Y 747 A mutation ab-

rogates talin-H but not kindin-2 binding to  �  3  CT. In contrast, 

the S 752 P and Y 759 A mutations still support talin-H binding but 

dramatically reduce kindlin-2 association ( Fig. 3 A ). Thus, the 

binding requirements for talin-H and kindlin-2 on the  �  3  CT are 

distinct and both bind to sites known to regulate integrin activa-

tion. Consistent with our observations ( Fig. 2 A  and Fig. S1 A), 

overexpression of FLNa21 or  �  3 -endonexin, two C-terminal bind-

ing proteins of  �  3  CT, failed to suppress endogenous kindlin-2 

binding to  �  3  CT in CHO cells (Fig. S1 B), indicating a privi-

leged interaction of kindlin-2 with the  �  3  CT among these 

binding partners. As a point of emphasis, endogenous kindlin-2 

coprecipitates with endogenous  �  3  integrin subunit in both 

 �  IIb  �  3 -CHO cells and HUVECs (Fig. S2, available at http://

www.jcb.org/cgi/content/full/jcb.200710196/DC1). 

 Peptides corresponding to Y 747 -T 762  or a variant peptide 

containing the S 752 P and Y 759 A substitutions were synthesized 

( Fig. 3 B ). When added as competitors (200  μ M), wild-type 

Y 747 -T 762  peptide inhibited kindlin-2 coprecipitation with the 

Kindlin-2 contributes to the maturation of focal adhesions 

during cell shape changes through recruitment of migfi lin and 

fi lamin ( Tu et al., 2003 ). Targeted disruption of the kindlin-2 

gene results in embryonic lethality in mice and causes multi-

ple, severe abnormalities in zebrafi sh ( Dowling et al., 2008 ). 

Distinct from talin, its interaction site on  �  3  CT is not dependent 

on the NPLY 747  motif ( Shi et al., 2007 ). When expressed in 

 �  IIb  �  3 -CHO cells, kindlin-2 induces statistically signifi cant but 

very weak integrin activation compared with talin-H ( Shi et al., 

2007 ). To consider the role of kindlin-2 a coactivator with talin-H, 

both were transfected into  �  IIb  �  3 -CHO cells. As shown in  Fig. 2 

(C and D) , kindlin-2 dramatically enhanced talin-H – mediated 

 �  IIb  �  3  activation. This enhancement was not simply additive but 

represented functional synergism. We assessed the expression 

levels in different transfectants by Western blots to exclude that 

coexpression of kindlin-2 enhanced talin-H expression or vise-

versa; expression of talin-H in single and double transfectants 

was similar ( Fig. 2 E ). 

 To further assess the role of kindlin-2 as a coactivator, 

GST-fused  �  3  CT proteins were used to coprecipitate endoge-

neous kindlin-2 in lysates of CHO cells, platelets, and human 

 Figure 2.    Kindlin-2 enhances talin-induced integrin 
 �  IIb  �  3  activation.  EGFP-fused  �  3  CT binding proteins were 
transiently transfected into  �  IIb  �  3 -CHO cells. Their effects on 
 �  IIb  �  3  activation were evaluated by PAC1 binding (A and D) 
and expression levels were measured by Western blot-
ting with anti-GFP antibody (B and E). Representative 
FACS histograms of PAC1 binding to talin-H and/or 
kindin-2 (kind-2) positive cells (C). Error bars (A and D) 
represent means  ±  SD ( n  = 3). *, P  <  0.05; **, P  <  0.01 
(versus vector).   
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kindlin-2 into several fragments, and their  �  3  CT-binding capac-

ities were evaluated by pull-down assays ( Fig. 4 B ). Deletion of 

the N-terminal region of kindlin-2, at N217 or at E345, the border 

of the PH domain insertion, ablated interaction with the  �  3  CT. 

In addition, truncation of kindlin-2 to delete the second part 

of its F 2  and F 3  subdomains also disrupted  �  3  CT interaction 

( Fig. 4 B ). These deletions were more disruptive than the QW 615  

mutation. However, with deletion of PH domain alone, the mutant 

GST- �  3  CT ( Fig. 3 C ); the inhibition was  � 70% by densitometry. 

A lower concentration of peptide (100  μ M) was still inhibitory 

but produced only 50% inhibition (unpublished data), suggesting 

a dose-dependent inhibitory effect. Introduction of S 752 P and 

Y 759 A mutations into the peptide totally abolished its competitive 

activity ( Fig. 3 C ). As control, both peptides had no effect on 

talin-H association with the GST- �  3  CT. It is noteworthy that intro-

duction of similar peptides into endothelial cells ( Liu et al., 1996 ) 

and platelets ( Hers et al., 2000 ) signifi cantly perturbed  �  v  �  3  and 

 �  IIb  �  3  mediated responses, respectively. Thus, our results may 

provide a molecular explanation for these prior observations. 

 Like talin-H, kindlin-2 contains a FERM domain; its F 2  

subdomain is bisected by a PH domain, but its F 3  (PTB) sub-

domain is intact ( Fig. 4 A ). Our previous experiments had shown 

that a QW 615 /AA mutation in F 3 , a site predicted by molecular 

modeling to be involved in  �  CT engagement, did, in fact, dis-

rupt its association with  �  CT ( Shi et al., 2007 ). We segmented 

 Figure 3.    Distinct binding sites for kindlin-2 and talin in  �  3  CT.  (A) Lysates 
of CHO cells, HUVECs, or out-dated platelets were incubated with GST 
or GST-fused  �  3  CT bearing the indicated mutations in the presence of 
glutathione-Sepharose. After washing, the precipitates were analyzed by 
SDS-PAGE. The loading of the GST proteins was assessed by Coomassie 
blue staining. The associated kindlin-2 or talin-H was detected in Western 
blots with anti-kindlin-2 or anti-talin-H. (B) Amino acid sequences of  �  3  CT 
C-terminal peptide corresponding to Y 747 -T 762  and a mutant peptide with 
two loss-of-function mutations, S 752 P and Y 759 A. (C) The pull-down assay 
was performed in the presence of indicated peptides. The infl uence of 
these peptides on kindlin-2 or talin-H binding to  �  3  CT was evaluated by 
SDS-PAGE and Western blotting.   

 Figure 4.    Both the N and C terminus of kindlin-2 are required for  �  3  CT 
association and support of talin-induced integrin activation.  (A) Organiza-
tion of predicated domains of kindlin-2 protein. The FERM domain is shown 
in yellow, in which the F 2  subdomain is split by the PH domain. Deletion 
mutations from N terminus ( � N) or C terminus ( � C) are indicated. (B) The 
lysates of CHO cells transfected with EGFP-kindlin-2 with indicated muta-
tions were used for pull-down assays. After incubating with GST fusion  �  3  
CT (wild-type) and glutathione-Sepharose, kindlin-2 protein bound to the 
 �  3  CT was evaluated by SDS-PAGE and Western blotting using anti-GFP 
antibody. Kindlin-2 expression levels in lysates are also shown. (C) CHO 
cells expressing  �  IIb  �  3  were transiently transfected with empty EGFP vector 
or cDNA encoding the indicated proteins. Binding of PAC1 to the different 
transfectants was assessed by FACS and relative MFI of PAC1 binding 
were calculated as described in Materials and methods. Error bars repre-
sent means  ±  SD ( n  = 3). **, P  <  0.01 (versus talin-H).   
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appears to depend on binding of kindlin-2 through both its N- and 

C-terminal F 3  (PTB) domains. As to why the C-terminal F 3  (PTB) 

of kindlin-2 recognizes the NITY 759  rather than the NPLY 747  re-

gion of  �  3  CT will require high resolution structures. 

 The colocalization of  �  3  integrin and kindlin-2 was also 

tested in living cells. We found they dynamically associate with 

each other in HUVECs during  �  3  integrin mediated cell spread-

ing on the  �  3  ligand ( Fig. 5 A ). At the early stage of spreading 

(30 min),  �  3  (green) and kindlin-2 (red) colocalized in the lamelli-

podia at the edges of spreading cells ( Fig. 5 A , top). Over time, 

both  �  3  integrin and kindlin-2 moved into focal adhesion sites 

( Fig. 5 A , bottom, 60 min). The merged images in  Fig. 5 A  (right) 

kindlin-2 still retained its capacity to bind the  �  3  CT. The effects 

of these mutants on the coactivator activity of kindlin-2 were 

tested. When cotransfected with talin-H, deletion of either the 

N- or C-terminal region of kindlin-2 resulted in loss of coactiva-

tor activity ( Fig. 4 C ). The mutant with its PH domain deletion 

still retained some coactivator activity, although it was less po-

tent than intact kindlin-2. Also, the QW 615  mutant lacked coacti-

vator activity, verifying that this site is involved not only in 

binding but also in coactivator function. We cannot exclude that 

some of these mutations may affect global folding of kindlin-2. 

However, it should be noted that FERM subdomains tend to fold 

independently into functional units. Thus, coactivator activity 

 Figure 5.    Endogenous kindlin-2 supports  �  3  
integrin function in cells.  (A) Subcellular local-
izations of kindlin-2 and  �  3  integrin. HUVECs 
spread on fi brinogen for 30 or 60 min were 
stained with the anti-kindlin-2 mAb and anti- �  3  
subunit polyclonal antibody followed by Alexa-
Fluor 568 anti – mouse IgG and AlexaFluor 488 
anti – rabbit IgG. Bar, 10  μ m. (B) RNAi sup-
pression of kindlin-2 expression in CHO cells. 
Expression of kindlin-2 in parental CHO cells 
(non-T), kindlin-2 siRNA (SiKind-2), or control 
RNA (SiControl) transfectants was analyzed 
by Western blotting with kindlin-2 or actin anti-
bodies. (C) CHO cells expressing  �  IIb  �  3  were 
transiently transfected with vector or talin-H, 
together with control RNAs (SiControl) or 
siRNAs targeting kindlin-2 (SiKind-2). The bind-
ing of PAC1 to the different transfectants was 
assessed by FACS and MFI of PAC1 binding 
was calculated. The error bars are means  ±  SD 
( n  = 3). (D) RNAi suppression of kindlin-2 ex-
pression in HUVECs. (E and F) Non-transfected 
(Non-T) or HUVECs transfected with control 
RNAs (SiControl) or targeted siRNAs for Kind-
lin-2 (SiKind-2) were used in adhesion assays 
(E) or migration assays (F). The adherent or mi-
grated cells were fi xed, stained, and counted 
(10 ×  objective). The error bars are means  ±  SD 
of three independent experiments. (G) HUVECs 
transfected with control RNAs (SiControl) or 
targeted siRNAs for kindlin-2 (SiKind-2) were 
stimulated with PMA, and adhesion to fi brino-
gen was measured. (H) Kindlin-2 as an inte-
grin coactivator. Integrin activation depends 
on interaction of talin-H with the NPLY 747  motif 
and the membrane-proximal clasping region. 
Kindlin-2 facilitates activation by associating 
with the C-terminal regions of  �  3  CT, involving 
the TS 752 T and NITY 759  motifs.   
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 In summary, we found that kindlin-2 is a coactivator of 

talin in supporting  �  3  integrin activation. As such, kindlin-2 is 

the fi rst of the postulated coactivators of integrins ( Ma et al., 

2007 ) to be identified. Our data support a model ( Fig. 5 H ) 

in which kindlin-2 binds to the C terminus of  �  3  CT beyond 

of the talin-binding sites. Functionally, kindlin-2 synergisti-

cally enhances talin-induced integrin activation. Kindlin-2 

may associate with membrane via its PH domain, an inter-

action commonly associated with these domains, and interacts 

with  �  3  CT via its N terminus and C-terminal PTB domain. 

Anchoring  �  3  CT by kindlin-2 could reduce the fl exibility of 

 �  3  CT in the cytosol, positioning it more favorably for inter-

action with talin and might also displace other  �  3  CT binding 

partners. Due to the variable expression of kindlin-2 in different 

tissues and cells, e.g., its levels are quite low in human plate-

lets versus HUVECs (Fig. S3 B), one must consider the possi-

bilities that kindlin-2 may exert a  “ catalytic ”  effect on integrin 

activation, where one molecule coactivates multiple integ-

rins, or whether this coactivator activity of kindlin-2 is shared 

or compensated by other kindlin family members or by other 

integrin binding partners. 

 Materials and methods 
 Plasmid construction and mutagenesis 
 The cDNA of human  �  IIb  and  �  3  subunits were inserted into the mammalian 
expression vector pcDNA3.1 (Invitrogen). The mouse talin head domain 
(1 – 429 amino acids), human kindlin-2,  �  3 -endonexin, and fi lamin A Ig-like 
domain 21 (2235 – 2330 amino acids) were cloned into pEGFP vectors 
(Clontech Laboratories, Inc.). For the construct of GST-tagged  �  3  cytoplas-
mic tail, the fragment of  �  3  tail (716 – 762 amino acids) was amplifi ed by 
PCR and inserted into pGST-parallel-1 vector ( Sheffi eld et al., 1999 ). The 
PSGL-1/ �  3  chimera was constructed in pcDNA3.1 vector in which N termi-
nus (1 – 91 amino acids) of human PSGL-1 was fused onto C terminus 
(468 – 762 amino acids) of human  �  3  subunit. All the indicated mutations were 
introduced into the respective constructs using QuikChange site-directed 
mutagenesis kit (Stratagene) and confi rmed by gene sequencing. 

 Integrin  �  IIb  �  3  activation assay 
 The integrin  �  IIb  �  3  activation was evaluated with PAC1, a mAb which spe-
cifi cally recognizes active  �  IIb  �  3 . For testing how the membrane-distal 
regions of  �  3  CT regulate  �  IIb  �  3  activation, the  �  3  subunit bearing different 
mutations was cotransfected with  �  IIb  subunit, with or without R 995 D muta-
tion, into CHO-K1 cells using Lipofectamine 2000 (Invitrogen). 24 h after 
transfection, the cells were collected and PAC1 binding was assessed as 
described previously ( Ma et al., 2006 ). In brief, PAC1 binding was fi rst 
normalized by  �  IIb  �  3  expression level on the cell surfaces measured by 
mAb 2G12, which is against  �  IIb  �  3  complex independent of activation sta-
tus. The values of normalized PAC1 binding on different transfectants were 
compared to determine relative integrin activation, defi ning the basal acti-
vation of wild-type  �  IIb  �  3  as 1.0. 

 For determining the regulatory roles of different  �  3 -binding partners 
in  �  IIb  �  3  activation, individual EGFP-fused candidate binding partners or 
combinations of binding partners were transfected into CHO cells stably 
expressing wild-type  �  IIb  �  3  ( �  IIb  �  3 -CHO). PAC1 binding to the different 
transfectants was analyzed by fl ow cytometry, gating only on the EGFP-
positive cells. Mean fl uorescence intensities (MFI) of PAC1 binding were 
normalized based on the basal level of PAC1 binding to cells transfected 
with the EGFP vector alone to obtain relative MFI values. 

 Cell spreading 
 Monomeric PSGL-1 (mPSGL-1) or PSGL-1/ �  3  chimera (PSGL1N- �  3 C) was 
transfected into  �  IIb  �  3 -CHO cells. The mPSGL-1 was obtained by substitu-
tion of a single extracellular cysteine at the junction of the transmembrane 
domain with A to disturb the disulfi de bond essential for PSGL-1 homodimer 
formation ( McEver and Cummings, 1997 ). The transiently transfected cells 
were allowed to adhere and spread on immobilized fi brinogen in Laboratory-
Tek II chambers (Nalge Nunc International). After incubation at 37 ° C for 2 h, 

verify the colocalization of kindlin-2 and  �  3  integrin.  �  3  integrin 

and talin also colocalize in spreading HUVECs with a similar 

pattern (Fig. S3 A, available at http://www.jcb.org/cgi/content/full/

jcb.200710196/DC1). These observations place talin and kindlin-2 

together, consistent with their cooperativity in function. 

 To determine if endogenous kindlin-2 supports  �  3  integrin 

function, RNA-mediated interference experiments were per-

formed. Small interfering RNAs targeting kindlin-2 (siKind-2) 

or irrelevant RNAs as control (siControl) were introduced into 

 �  IIb  �  3 -CHO cells, and kindlin-2 expression levels were analyzed 

by Western blot. Transfection of siKind-2 but not siControl ef-

fectively inhibited the expression of kindlin-2 ( Fig. 5 B ). The de-

crease in kindlin-2 protein expression was 70% by densitometry. 

Neither the siKind-2 nor the siControl changed actin expression, 

establishing selectivity of the siKind-2 on kindlin-2 expression. 

Talin-H can induce  �  IIb  �  3  activation in transfected  �  IIb  �  3 -CHO 

cells as shown by others ( Tadokoro et al., 2003 ) and in this study. 

However, talin-H – mediated integrin activation was signifi cantly 

blunted when kindlin-2 levels were reduced with siKind-2 but 

not siControl ( Fig. 5 C ), indicating that endogenous kindlin-2 

supports talin-H – induced  �  IIb  �  3  activation in these cells. 

 We also tested the function of kindlin-2 knock-down in 

cells that express an integrin naturally. HUVECs express and use 

 �  v  �  3  to mediate cell adhesion and migration on fi brinogen or 

vitronectin ( Plow et al., 2000 ). Endogenous kindlin-2 could be 

knocked down in HUVEC using siRNA ( Fig. 5 D ), and the defi -

ciency of kindlin-2 dramatically suppressed HUVEC adhesion 

on the  �  3  integrin ligands, fi brinogen or vitronectin ( Fig. 5 E ). 

In addition, knockdown of kindlin-2 in HUVECs signifi cantly 

inhibited VEGF-induced cell migration ( Fig. 5 F ). Under the con-

ditions used, VEGF induced HUVEC migration on fi brinogen or 

vitronectin is dependent on  �  v  �  3  activation ( Byzova et al., 2000 ), 

and there is little cell proliferation ( <  50% increase) in serum-

free medium (unpublished data). Interestingly, we previously 

found that overexpression of kindlin-2 also inhibited migration 

for some cancer cells ( Shi et al., 2007 ). These two distinct obser-

vations suggest that the supportive role of kindlin-2 in integrin 

activation might be cell type and/or integrin specifi c or depends 

on specifi c experimental conditions such as ligand concentration 

( Huttenlocher et al., 1996 ;  Palecek et al., 1997 ). Furthermore, 

knocking down kindlin-2 signifi cantly suppressed PMA-induced 

HUVEC adhesion on fi brinogen ( Fig. 5 G ), which is also an  �  v  �  3  

activation-dependent process. In concert, these results suggest 

that kindlin-2 plays an important role in supporting  �  3  integrin 

functions dependent on activation. 

 Nonetheless, kindlin-2 is unlikely to be a direct activator 

of integrin; overexpression of kindlin-2 alone only had a mild 

effect on integrin activation compared with talin-H ( Fig. 2 D ). 

Even though kindlin-2 also bears a FERM-like domain as does 

talin-H, the binding sites of kindlin-2 on  �  3  CT are solely local-

ized at its C terminus beyond of the talin-H recognition sites 

( Fig. 3 ), which allows kindlin-2 and talin to bind to the  �  3  CT 

together. This possibility has been established by the synergistic 

role of talin-H and kindlin-2 in integrin activation ( Fig. 2, C and D ) 

and further verifi ed by the fi nding that knockdown of endog-

enous kindlin-2 signifi cantly suppressed talin-H – induced integrin 

activation ( Fig. 5, B and C ). 
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expression in human platelets. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200710196/DC1. 
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