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Precision medicine for cancer affords a new way for the most accurate and effective treatment to each individual cancer. Given the
high time-evolving intertumor and intratumor heterogeneity features of personal medicine, there are still several obstacles
hindering its diagnosis and treatment in clinical practice regardless of extensive exploration on it over the past years. )is paper is
to investigate radiogenomics methods in the literature for precision medicine for cancer focusing on the heterogeneity analysis of
tumors. Based on integrative analysis of multimodal (parametric) imaging and molecular data in bulk tumors, a comprehensive
analysis and discussion involving the characterization of tumor heterogeneity in imaging andmolecular expression are conducted.
)ese investigations are intended to (i) fully excavate the multidimensional spatial, temporal, and semantic related information
regarding high-dimensional breast magnetic resonance imaging data, with integration of the highly specific structured data of
genomics and combination of the diagnosis and cognitive process of doctors, and (ii) establish a radiogenomics data repre-
sentation model based on multidimensional consistency analysis with multilevel spatial-temporal correlations.

1. Introduction

Tumor heterogeneity, one of the main characteristics of
malignant tumors, poses great challenges to its accurate
diagnosis and treatment, which is also manifested by
multiple genotypes and multiple gene expression patterns in
the same tumor cells [1]. )e same tumor presents distinctly
different therapeutic effects and prognosis in different in-
dividuals, and even tumor cells in the same individual
present varied characteristics though with the same genome
[2]. As shown in Figure 1, tumor heterogeneity is manifested
in both space and time. In terms of space, the combined
effects of molecular variation and tumor microenvironment
lead to differences in tumor regions [3], which can be
classified as follows: (i) intertumor heterogeneity, that is,
differences between tumors in different patients; (ii) intra-
tumor heterogeneity, that is, completely different or even
opposite patterns of the expression patterns of cells in
different tumor regions, which may result in the changes in

structure and differential responses to therapeutic drugs [4].
In terms of time, tumor is a dynamic system, and tumor cells
evolve over time with multiple variations and temporal
heterogeneity, which requires the reproducible detection in
time. However, current genomics technology is static and
can only reflect the information of a point (snapshot) on the
time axis. Current molecular profiling analysis on locally
extracted tumor tissues at a single time point reflects only a
small part of the information of the entire tumor in both the
spatial and temporal dimensions and fails to fully analyze the
characteristics of the tumor. Quantitative description of
tumor heterogeneity may lead to one-sided or even erro-
neous diagnosis, affecting the treatment options, and leading
to drug resistance and disease recurrence in patients.

Genome analysis technology attempts to solve the
problem of tissue sampling and analysis under tumor het-
erogeneity, such as the multiregion sampling strategy for
spatial heterogeneity, and the micro-cutting of different
tumor tissues for the isolation of small tissue fragments.
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DNA of these fragments has been analyzed [6]. However,
this method requires precise localization of the tumor area
during sampling to ensure the sampling genes obtained
coming from tumor cells, which greatly limits the success
rate of such a method. Longitudinal sampling attempts to
solve the problem of temporal heterogeneity. Pathological
sections are obtained at different stages of tumor treatment
to track the variation of tumor-related genes and accurately
analyze tumor heterogeneity [7–9]. However, the longitu-
dinal sampling method requires multiple acquisition of
patient tissue samples, and the invasive nature of this
method terribly limits its feasibility in clinical practice. In
short, the heterogeneity of tumors brings considerable
challenges to precise diagnosis and treatment. Merely relying
on linear, invasive, and single-time-point genomics tech-
nology cannot well meet the needs of precise clinical di-
agnosis and treatment, making it necessary to explore a
three-dimensional, noninvasive, and reproducible method.

Broadly speaking, tumors are made of evolved and
heterogeneous populations of cells that are resistant to
matched targeting therapy. )us, it is not enough reliable to
evaluate effects of tumor treatment and diagnosis only from
the perspective of tumor abnormality [10, 11]. Tumor ge-
nome analysis has been the gold-standard technique for
molecular mapping [12, 13]. Nevertheless, the study on
genomic heterogeneity has revealed that individual tumor
may be clonally independent without shared driver gene
alterations [14]. )ere is a proof-of-concept study demon-
strating that morphological heterogeneity reflects structural
and functional divergence. Moreover, there is a close link
betweenmorphological phenotypes and stromal and cancer-
cell-related features that allow prediction of the morpho-
logical pattern [15]. Furthermore, a better understanding of
the molecular background is conducive to preventing ad-
verse drug reactions for defined patient groups [16, 17].

However, drug therapymatched to the molecular target does
not necessarily produce positive results [18, 19]. )is is
affected by multiple factors such as tumor microenviron-
ment and tumor heterogeneity. In summary, the foregoing
findings demonstrate that the genetically, morphologically,
phenotypically, and topologically distinct primary cancers
can not only be present in an individual patient but also are
of great significance to personalized medicine approaches, as
they can limit therapeutic efficacy, and they are resistant to
therapy.

)is paper was aimed at reviewing the methods in lit-
erature regarding the precise diagnosis and prognosis pre-
diction of neoadjuvant chemotherapy for tumors, using
breast MRIs, for example. Taking tumor heterogeneity as the
core issue, the deep learning-based radiogenomics analysis
of breast tumor heterogeneity was studied, and the rela-
tionship between the imaging characteristics of heteroge-
neous tumors and molecular expression features was
correspondingly explored as well. At the same time, geo-
metric algebra was applied to design a framework for an-
alyzing dynamic contrast enhanced MRI radiogenomics,
and fully mining the rich spatial images, spatial signals, and
semantic features in breast multidimensional magnetic
resonance imaging. According to the heterogeneity of dif-
ferent tumors, an individualized model of neoadjuvant
chemotherapy efficacy prediction was established by com-
bining MRI information, molecular typing information, and
clinical information of patients suffering from breast cancer,
which provided scientific guidance for accurate diagnosis,
treatment, and prognosis of patients, improved the survival
rate of tumor patients, enhanced the life quality of patients
after surgery, and achieved effective and rational utilization
of medical resources.

)e remainder of the paper is structured as follows:
Section 2 discusses challenges in the analysis of tumor
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Figure 1: Intertumoral, intratumoral, and time related (temporal) heterogeneity of tumors (from Burrell et al., Nature, 2014 [5]).
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heterogeneity using radiogenomic approaches; the main
framework for radiogenomics analysis in literature is pre-
sented in Section 3, where the mathematical models applied
for tumor diagnosis and the evaluation of tumor treatment
and prognosis performance via multiomics are presented;
Section 4 addresses outlook and future work, where a
multilevel deep learning model named BiGRU-RNN is
proposed for predicting the efficacy of neoadjuvant che-
motherapy using radiogenomics. It is represented by in-
troducing geometric algebra and enables the
multidimensional unified analysis of dynamic contrast en-
hanced MRI radiogenomics; finally, Section 5 summarizes
the most significant parts in each section in a simplified
manner.

2. Challenges in the Analysis of Tumor
Heterogeneity Using
Radiogenomic Approaches

In biomedical analysis, tumor heterogeneity characteristics
and multiple physiological tumor characteristics are not
combined, and multimodal (parametric) imaging technol-
ogy is not widely used [20]. Various “spectrum” analyses of
images from different perspectives describing these physi-
ological characteristics have led to the one-sidedness and
singularity of the research. In addition, current radio-
genomics analysis on tumor heterogeneity assumes that the
voxel of each tumor image presents a single specific tissue
characteristic. However, tumors are highly heterogeneous.
Current resolution of clinical diagnostic images is rather
finite, and the observed signal at a certain position (voxel) of
the tumor may be a mixture and superposition of compo-
nents of different characteristics [21, 22]. From the per-
spective of signal processing, tumor image heterogeneity is
manifested as a multivariate (component) mixed signal
processing problem. In this regard, a lot of preliminary
researchers work on the DCE-MRI subcomponent de-
composition [23, 24], the corresponding molecular infor-
mation decomposition [25, 26], and an unsupervised convex
analysis analyzing the components of different tissue
characteristics of heterogeneous tumors [6]. )ese re-
searches afford a further understanding of the physiology
and molecular characteristics of tumors.

At present, this method is only applied for two-di-
mensional analysis of DCE-MRIs [27–29], and there is no
further development of heterogeneous analysis of tumors
based on three-dimensional multi-modal MRIs [30–32].)e
radiogenomics issues such as the correlation between dif-
ferent subcomponents after decomposition and the appli-
cation of tumor diagnosis and treatment also need further
exploration. Additionally, current heterogeneity analysis
and subregion/subcomponent decomposition research
mainly focus on the tumor itself, ignoring the fact that tumor
does not exist in isolation, which constantly exchanges in-
formation with the surrounding substance and microenvi-
ronment during the growing process, and is also affected by
the surrounding substance. Tumor cells can reshape the
microenvironment, and the changed microenvironment can

further affect the behavior and status of tumor cells, leading
to tumor progression and metastasis. )erefore, the for-
mation of tumor heterogeneity is the result of the joint
action of the tumor body and its surrounding substance.
Currently, heterogeneity analysis is mostly limited to the
structure and function of the tumor itself, and there is few
literatures reporting the heterogeneity of tumor stroma
[33, 34].

In recent years, there have been several researches
concerning the radiomics research of tumor stroma. For
example, King et al. found that the increase in the dynamic
enhancement rate of fibroglandular mammary glands was
associated with higher mammary cancer morbidity [35],
who divided the body into several band-shaped regions
according to the distance from the tumor and investigated
the relationship between these regions and the disease-free
survival of breast cancer [36]. However, the analysis of
tumor heterogeneity in these studies was still preliminary,
qualitative, or semiquantitative analysis. No systematic work
has been performed to quantitatively analyze the relation-
ship between the tumor and the surrounding substance or
analyze the heterogeneity of the substance. In addition, the
analysis of tumor heterogeneity in radiogenomics research at
this stage generally focuses on image feature analysis. )e
collected gene molecular information is assumed to be
homogeneous by default, but in fact, the tissue collected in
molecular expression analysis may be a mixture of tissues
with different “content” and different characteristics [37].
Besides, current radiogenomics research does not analyze
the heterogeneity of the tumor itself, resulting in the
inaccuracy of the associated study, and even the appearance
of “false relationships.” Previous research was conducted in
terms of signal subcomponent decomposition analysis, bi-
ological verification research on gene expression values of
different tissue characteristics (human brain, liver, and
lung), and unsupervised identification of mixed tissue
characteristics [31, 32]. )e gene expression signal of het-
erogeneous tumors has not been further analyzed.)erefore,
the research of radiogenomics based on the decomposition
of gene information is urgently required.

3. Methodology of Radiogenomics in Literature

As a noninvasive modality, the multidimensional radio-
genomics analysis based on Magnetic Resonance Imaging
(MRI) has become a special field of study on the tumor
grading. )e field of radiogenomics has been advanced
substantially by novel MR imaging sequences that reflect
underlying oncogenic processes. MRI-based radiogenomics
combines a mass of quantitative data extracted from mul-
tidimensional MR images with individual genomic pheno-
types and builds a prediction model through deep learning,
which aims to make a diagnosis for patients, offer guidance
for therapeutic strategies, and make an evaluation on clinical
outcomes [38]. Additionally, some issues existing in radi-
ogenomic analysis are specified, and corresponding solu-
tions from prior works are provided [39]. Illustratively, the
abundance of immune and stromal cells in the Tumor
Microenvironment (TME) indicates the levels of
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inflammation, angiogenesis, and desmoplasia. It has been
proven that radiomics, an approach of extracting quanti-
tative features from radiological imaging to characterize
diseases, can predict molecular classification, cancer re-
currence risk, etc. However, the ability of radiomics to
predict the abundance of various cells in the TME remains
unknown. Arefan et al. [40] carried out studies by applying a
radiogenomics approach and building machine learning
models to capture one-to-one relationships between
radiomic features from Dynamic-Contrast Enhanced
Magnetic Resonance Imaging (DCE-MRI) and cell abun-
dance of gene expression data and then predict the infil-
tration of multiple cells in breast cancer lesions. It is
concluded that radiogenomics contributes to computer-
aided diagnosis, treatment, and prognostic prediction for
patients with tumors in a routine clinical setting.

3.1. Tumor Diagnosis Research Based on Radiogenomics.
Radiogenomics, as an important application, reveals and
reflects the molecular pathological characteristics of tumor
tissues, such as dynamic enhancement characteristics for
tumor and mammary-gland tissue [33, 34] and breast
asymmetry characteristics [34] in distinguishing benign and
malignant tumors using noninvasive and dynamic imaging
technology.

Tumor molecular classification is an important index in
clinical diagnosis. In several studies, quantitative image
features, such as the dynamic enhancement ratio of the
lesion to the background area, gray-scale histogram fea-
tures, and 66texture, are used to predict these molecular
indicators [37, 41]. It has been reported that there are 90
extracted image features, including the morphology, dy-
namic enhancement, and bilateral asymmetry of breast
cancer tumors and their background regions, all of which
are used to distinguish four molecular subtypes of breast
cancer [42]. In recent years, radiomics features, including
tumor volume, shape, edge morphology, and dynamic
characteristics, have also been used to predict the ex-
pression of gene chips for clinical diagnosis, such as
MammaPrint, Oncotype DX, and PAM50 gene arrays
[43–45]. Additionally, some researchers have studied the
MR image characteristics of breast cancer in the TCIA
database and the molecular information such as miRNA,
gene somatic mutation, protein expression, and copy
number variation of these patients in the corresponding
TCGA database. It has been found that there are several
genetic signaling pathways, gene mutation sites, and image
feature modules significantly related to gene expression
modules [46]. )e above-mentioned study in image group
characteristics and gene expression correlation is to explore
the imaging biomarkers of tumor molecular characteristics,
thus providing services for clinical diagnosis [47].

3.2. Tumor Treatment and Prognosis Research Based on Im-
aging Group Feature Analysis. Currently, a large amount of
research regarding radiogenomics focuses on exploring the
relationship between imaging group and molecular features.

Some work bypasses the association between imaging and
molecular information and directly uses imaging features to
predict treatment results.

It has been investigated that the imaging phenotype of
the tumor can be used to provide information on the
outcome of tumor treatment, such as chemotherapy efficacy
and prognosis. Fan et al. extracted 156 image features of
breast tumors and background regions using DCE-MRIs
and selected several distinguishing heterogeneous features
reflecting gray-scale unevenness, such as kurtosis and
skewness, to predict the effectiveness of NAC for breast
cancer [48]. Huang et al. extracted the gray-scale texture
features of colorectal cancer images to predict lymph node
metastasis (disease-free survival) before surgery [49]. Some
researchers used cluster analysis to divide the imaged tumor
into different regions according to the dynamic enhance-
ment mode, analyzed the differences in the texture char-
acteristics of these regions before and after chemotherapy,
and predicted the efficacy of chemotherapy using the de-
tected features [26], proving that the imaging characteristics
of different tumor areas could be used to predict the efficacy
of NAC. Additionally, key tumor genes were detected and
identified by analyzing the differences in the network
structure of the tumor genome before and after treatment,
combined with the analysis of the tumor volume growth
pattern of MRIs in terms of its longitudinal time, to predict
the treatment response of tumors [50].

With the use of perfusion magnetic resonance (MR)
imaging, Wu et al. characterized intratumoral spatial
heterogeneity and studied the tumor homogeneity to
predicate the recurrence-free survival (RFS) of the patients
with breast cancer [51]. Figure 2 proposed a two-stage
intratumor partition framework, including stage I: indi-
vidual level cluster; and stage II: population level cluster.
Primarily, at a personal level, every tumor is exceedingly
segmented via superpixels using four kinetic features, that
is, percentage and signal enhancement ratios, as well as the
wash-in and wash-out slopes, according to DCE-MRIs
[52–54]; secondly, at the population level, a consensus
cluster can be used to aggregate and uniformly mark all
superpixels from the entire population. Additionally, it is
possible to establish the congruent relationship between
tumor subregions across patients among the given pop-
ulation. Breast cancer is constituted by several subregions
with different spatial features, and the intratumoral spatial
heterogeneity is characterized and quantified via the de-
fined multi-regional spatial interaction (MSI) matrix. As a
distinct independent prognostic factor, imaging hetero-
geneity is beyond those traditional predictive risk factors;
similar radiogenomics is also used for predicting NAC
efficacy [50, 55–57], prognosis [26, 48], survival period
[58], distant metastasis [59], etc. However, most tumor
treatments based on radiogenomics regimen only focus on
describing and analyzing the overall gray-scale unevenness
(texture, etc.) of imaged tumors [43], and the influence for
diagnosis and treatment is rarely analyzed and measured in
terms of the subregions (components) of heterogeneous
tumors [44].
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3.3. Tumor Treatment and Prognosis Research Based on
Multiomics Approaches. Apart from the mentioned analysis
of imaging group features, some researchers have also
attempted to establish a multiomics approach for tumor
diagnosis and treatment by combining image features and
molecular features. For example, it was found that imaging
methods exhibited different prediction results for patients
with different molecular subtypes of breast cancer. Specif-
ically, HER2-positive breast cancer was found to have a
higher accuracy rate for its NAC treatment, while human
epidermal growth factor receptor 2 (HER2) and triple-
negative breast cancer (TNBC) had a lower accuracy rate
[60], since patients with HER2-NBC and TNBC types
presented high heterogeneity. During the establishment of
tumor diagnosis and treatment models, intrinsic molecular
characteristics shall be combined (HER2, etc.) to increase
prediction accuracy. Sutton et al. found in the study of
predicting breast cancer molecular subtypes based on image
features that the accuracy of the model was significantly
improved after adding clinical data and pathological data,
including age of patients, tumor volume, tumor pathological
grade, and accumulation of lymph node [61].

It was revealed that imaged tumor features and patient
symptoms could be complementary, and the combination of
the two could improve the accuracy of the prediction model.
Although researchers have made considerable efforts on
tumor diagnosis and treatment based on the analysis of
clinical and molecular pathology information and image
characteristics, there are few results in the research of
precision diagnosis and treatment models combining the
two features, and the methods and technologies in this area
shall be studied and resolved. Besides, repeatability and
reproducibility are the two relatively major problems [62]
regarding radiogenomics analysis. )e former refers to the
consistency of multiple measurements under the same

environment and experimental conditions, while the latter
denotes that of grouped image features in different locations,
imaging parameters, and experimental subjects. Solutions to
these two problems, especially the latter, are the key to the
radiogenomics diagnosis and treatment model, which re-
quires the combination of theory and practice. Although
some scholars have made exploratory attempts in this
regard, such as the use of validation sets to analyze the
consistency of radiogenomics [63], there are still few basic
methods of radiogenomics, especially tumor heterogeneity
analysis, radiogenomics study, and evaluation of the ap-
plication of scientific methods and models in clinical tumor
diagnosis and treatment.

Tumor heterogeneity poses challenges to the precise
diagnosis and treatment of breast tumors. Its systematic
analysis provides extensive information for the character-
ization of breast tumors, and effective application of this
information is of great significance to improve the accuracy
of breast cancer diagnosis and treatment. Fan et al. [48]
explored the heterogeneity of tumors by analyzing the
subclones with a mass of gene modifications and functional
effects, which offered a deeper understanding of the method
to identify the bioactivity of certain subclones with a radi-
ogenomic analysis, and predicted the prognosis non-
invasively and clinically.

Besides, a modelling framework was proposed by Fan
et al. [48], as shown in Figure 3, where multiscale intratumor
heterogeneity was modelled, and the radiogenomic analysis
was carried out regarding 1310 patients suffering from breast
cancer on 5 datasets of 3 data groups. )is modelling
framework consisted of three phases. Firstly (Phase 1), a
nonsupervision deconvolution analysis on gene expression
profiles was adopted to achieve genomic subclones, in-
cluding prognostic genomic signatures; secondly (Phase 2),
radiogenomic genomic characterization was established by
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means of mapping radiomic features onto compositions of
prognostic subclones in an independent dataset containing
the suited imaging and gene expression data from each
tumor; thirdly (Phase 3), the predicated value of the rec-
ognized radiogenomic signatures was further investigated
using another two independent datasets containing imaging
and survival data. )e findings provided a noninvasive and
reproducible method to be used to identify tumor genomic
subclones and their underlying biological clinical functions.

Table 1 is designed to intuitively classify and introduce
the mentioned radiogenomics techniques and approaches in
literature for diagnosis, treatment, and prognosis research.

4. Outlook and Future Work

Based on the radiogenomics techniques, this section aims to
develop novel multidimensional mining algorithms, fo-
cusing on the key core issue of tumor heterogeneity. )e
proposed algorithms will lead to the identification of tumor
patterns in complex geometric spaces. )rough the analysis
of multimodal images and molecular information reflecting

different functional characteristics of tumors, we aim (1) to
deeply mine the spatial, temporal, and semantic features of
breast multidimensional images across scales; (2) to reveal
the relationship between the overall and regional imaging
phenotypes of tumors and recognize their joint functional
characteristics with gene expression together with molecular
typing; (3) to provide new intelligent solutions for breast
tumor clinical diagnosis and neoadjuvant chemotherapy
efficacy prediction, which can effectively assist doctors to
make correct treatment decisions and improve patients’
health.

4.1. Temporal-Spatial Consistent Correlation Model Based on
MRI Radiogenomics. According to different description
methods for tumor heterogeneity, the analysis on tumor
radiogenomic correlation is to be carried out at three levels,
that is, analysis of the whole tumor region, tumor subre-
gions, and tumor subcomponents; regarding a single time
point; and longitudinal time axis. Different levels of tumor
heterogeneity can be mapped using geometry algebraic
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decomposition in relation to the multidimensional image
space, image subspaces in different directions corresponding
to the same dimensional image vector, and the cross-di-
mensional image signal vector features in different
directions.

It is a crucial basis for accurate analysis of radiogenomics
to realize the rapid and automatic parameter extraction of
unstructured breast radiomics data and the effective fusion
of unstructured feature vectors with diagnostic value found
in structured data.

Based on the theory of geometric algebra, tumor images
with different structures are transformed from complex
geometric objects to straightforward geometries like dots,
lines, and polygons that can be directly expressed in Eu-
clidean space, so as to realize the hierarchical decomposition
of the complex geometric data of breast tumors. Appropriate
image segmentation and deep clustering methods should be
adopted to analyze multiple geometric vectors in different
dimensions. )e final aim is to achieve deep learning and
feature extraction of tumor heterogeneity based on multi-
dimensional uniformity analysis in a multivector space and
achieve the transition from unstructured imaging to
structured genomics data.

As discussed in [64], it is easy to extend a scalar product
to Clifford or geometric product to explain errors caused by
patient movement, extract nonlinear features from images,
or clarify observed scaling changes across the dimensions of
a tumor, as illustrated in Figure 4.

4.2. Deep Association Learning between MRI Radiomics and
Genomics. )ere are three parts proposed below for further
realization of the deep association learning between MRI
radiomics and genomics, as illustrated in Figure 5.

4.2.1. Global Heterogeneity Analysis via the Correlation be-
tween Image and Molecular Features. Weak supervision can
facilitate the acquisition of the datasets marked manually.
Weak supervision learning enables the application of in-
expensive weak labels, and such labels can be exploited to
build a powerful prediction model.)e overall heterogeneity

of tumors can be measured, analyzed, and classified using
weakly supervised learning [66–69] of imaged tumors.
Weakly supervised spatial clustering can be used to sort the
decomposed subregions according to the value of the cluster
center position.

Taking DCE-MRI as an example, the clustering results of
the initial enhancement speed and the later decline speed of
the enhancement curve can be sorted out to obtain several (i)
“omics” features, and this process for all tumor images (j)
can be sorted out to obtain an i× j matrix, so that feature
calculation and classification research can be performed on
the same time signal dimension.

Meanwhile, in view of the characteristics of biomedical
functions reflected in tumor images, it is proposed to study
the correlation based on multimodal (parametric) image
features and molecular analysis features. In order to com-
prehensively analyze the heterogeneity of different func-
tional characteristics of tumors, image registration [70–73] is
performed for calculating different functional images of
tumors, including DCE-MRI and DWI, to obtain multiple
“dimensions,” which means that each pixel point corre-
sponds to dynamic characteristics, diffusion characteristics,
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Table 1: is designed to intuitively classify and introduce thementioned radiogenomics techniques and approaches in literature for diagnosis,
treatment, and prognosis research. )e bold text is the categories of radiogenomics techniques for tumor heterogeneity.

Genome sampling analysis technology
for tumor heterogeneity Gene expression modules [46]. Tumor treatment and prognosis research

Multi-region sampling strategy [6] Imaging phenotype of the tumor [48, 49] Predicting NAC efficacy [50, 55–57]

Micro-cutting of tumor tissues [6] Imaging characteristics of different tumor
areas [26] Survival period [58], distant metastasis [59]

Longitudinal sampling [7–9] Key tumor genes [27] Predicate the recurrence-free survival (RFS) [48]
Radiogenomic approaches for tumor
heterogeneity

Molecular information decomposition
[25, 26], Multiomics approaches [61]

DCE-MRI subcomponent
decomposition [26, 27] Unsupervised convex analysis [6] Intratumor heterogeneity

Unsupervised identification of mixed
tissue characteristics [34, 35].

Radiomics research for tumor
heterogeneity Multiscale intratumor heterogeneity [48]

Tumor molecular classification [40–42] Dynamic enhancement rate of
fibroglandular mammary glands [33–35]

Perfusion magnetic resonance (MR) imaging via a
two-stage intratumor partition framework [51]
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etc. Such characteristic can be further used to calculate high-
dimensional characteristics of imaged tumor heterogeneity
and their correlation with molecular fractal characteristics.

4.2.2. Correlation between Heterogeneous Image and Mo-
lecular Features via Subdomain Decomposition. To fully
analyze the correlation between heterogeneous image features
and molecular features, the mixed images and gene molecular
expression signals are suggested to be decomposed separately.
)is practice is to realize high- and multidimensional vector
analysis in an integral space, also the multidimensional
subspace region analysis, and spatial-temporal consistency
analysis of heterogeneous subcomponents. )e goal is to
establish correlation models at different levels and achieve
more accurate relationship to highlight key entities for the
image or signal processes and the relationship between
multiple entities (spatial-temporal) in multidimensional
vector space or subspace.

Simultaneously, the gene expression data can be ana-
lyzed using subpathways, submodules, and enrichment
methods, thereby dividing them into several representative
pathways, marked modules, and gene clusters. )e ex-
pression signal is expected to break down according to
different tissue and cell characteristics using the signal de-
composition method, which will in turn constitute a “convex
hull,” each containing some “marked” genes [74].

In order to study the correlation between characteristic
components in terms of different tissues, the correlation

between the subregions (components) of the tumor
heterogeneity should be analyzed and sorted by the spatial-
temporal consistency-based algorithm after the
decomposition of the image group and gene expression data,
as shown in Figure 5. Taking the dynamic enhanced image as
an example, it is supposed that there are three subcompo-
nents with different tissue features sorted into three levels
according to the enhancement curve of each subcomponent
after decomposition, that is, fast blood flow, medium blood
flow, and slow flow velocity.

Each sample is decomposed into these three types of
subcomponents, and then the radiogenomic association of
each subcomponent (fast, medium, and slow) is analyzed
separately for all samples. Unlike traditional analysis
methods, the attention-based deep learning network aims to
study and analyze the correspondence between high-di-
mensional image vectors and gene expression subcompo-
nents and try to obtain more accurate map of relationships
based on the relationship between “pure” subcomponents
with the directions of themselves.

4.2.3. Bidirectional %reshold Recurrent Neural Network
(BiGRU-RNN) Model. )e effective embedding of radio-
mics and genomics information plays a key role in estab-
lishing spatial-temporal consistent model of radiogenomics.
)e genomics information of breast multi-dimensional
dynamic imaging is intricate, including image sequence
information, and time series information, both unstructured
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data of magnetic resonance imaging and structured vector of
genomics. )e design of gated loop unit with memory
mechanism is important not only for timing information,
but also for the memory and integration of image and ge-
nomics information.

)erefore, the two-way activation embedding method of
the gated cyclic unit is designed based on the lightweight Bi-
GRU, and the activation gate is introduced to process the
genomics data of breast cancer patients with individual
differences. )e AuGRU model enables effective fusion of
the genome sequence-related output and tumor heteroge-
neity analysis via radiogenomics, along with molecular
typing for classification.

Additionally, it is of importance to design a bidirectional
threshold recurrent neural network (BiGRU-RNN) model
based on memory and attention mechanism, which high-
lights tissue-level radiomics feature input and molecular
typing feature vector and encodes the contextual interaction
mechanism of the genomics feature vector of tumor. Such a
model plays a key role in carrying out the effective corre-
lation of the spatiotemporal features of dynamic images and
constructing a joint representation model of image data and
genomics data. )e schematic diagram summarizing the
proposed attention-based BiGRU-RNN network model is
shown in Figure 6.

5. Discussion

Radiogenomics characteristics reveal multiscale intra-
tumoral heterogeneity concerning biological functions and
survival in breast cancer. )ese studies performed diagnosis
and treatment analysis by measuring the characteristics of
overall tumor heterogeneity. For example, the research
group of Huang et al. used 132 texture features of CT images
to forecast the Disease-Free Survival (DFS) of non–small cell
lung cancer (NSCLC) [49], and Goh et al. used fractal di-
mension features to diagnose and analyze colorectal cancer

[75]. However, the heterogeneity features extracted by these
methods are basically a measure of the degree of overall
tumor heterogeneity (inhomogeneity) based on the gray-
scale of tumor images, which fails to reflect the basic facts
that heterogeneous tumors are composed of tissues with
different characteristics. Biomedical analysis of tumors
shows that different spatial regions may exhibit changed
physiological characteristics [76], leading to specific regions
corresponding to different cancer treatment responses,
molecular subtypes [77], etc. In order to analyze the het-
erogeneity of subfunction regions, Diehn et al. selected two
regions with high dynamic enhancement rate and low en-
hancement rate in DCE-MRIs in gliomas. )e hypoxia gene
expression values of these two tissue regions also showed
corresponding high expression values and low expression
values; that is, the tumor heterogeneous expression regions
are significantly related to imaging characteristics [78]. )e
first international study explored the correlation between
tumor imaging regional features and molecular features.
However, the study only detected the heterogeneity between
different tumor regions through imaging methods but failed
to achieve precise positioning and quantitatively describe the
distribution and characteristics of the heterogeneous
regions.

In order to accurately locate and describe the imaging
heterogeneity of tumor subregions, researchers around the
world have made some preliminary attempts to describe the
heterogeneity of different tissue characteristics using dif-
ferent imaging modalities [63, 77, 79]. Tumor heterogeneity
analysis must first define “content” from the perspective of
the image and assign different “attribute” at each voxel to
tissue characteristics in the image. For instance, DCE-MRIs
measure the status of tumor blood flow and blood vessels;
diffusion-weighted images reflect the diffusion and per-
meability of tumor water molecules; perfusion images
measure tumor vascular proliferation, etc. [80] In this way,
different tumor tissue characteristics and pathological

W1 W2 Wn
Tumor diagnosis and

response prediction to NAC

So�max Layer

AuGRU cell

Radiogenomic feature fusionS

AuGRU

Joint learning

Bidirectional
Gated Recurrent

Unit (BiGRU)

Convolution weight vector

Attention layer + multilayer perceptual neural network

M(ug, uat, uw1) M(ug, uat, uw2) M(ug, uat, uw2)

hn

ug
Ug

uat

Whh

z

r

Vat
Uatδ

UW

OUT

δ

uw1ugug uat uw2uat uw1

Vath2Vath1Vat

φ

GRU+ GRU+

GRU- GRU-

GRU+

GRU-

Figure 6: BiGRU-RNN network model based on attention. Symbols w1, . . . , wn  are input parameters in relation to MRI radiomics, and
the output vectors uw  and uat  regard the hidden layer vector h1, . . . , hn  and the radiomics feature vector Vat through the multilayer
perceptual network. Similarity matrix δ contains the similarities between the genomics vector ug and output attention weight vector ψ:
namely, the ultimate output of radiogenomics eigenvector is achieved in accordance with the concealed layer vector h1, . . . , hn  and
AuGRU weight vector δ. Radiogenomic feature fusion is conduced as an AuGRU cell.

Computational Intelligence and Neuroscience 9



characteristics can be reflected through a variety of imaging
techniques from different perspectives. Taking DCE-MRI as
an example, it is reported that DCE-MRIs can be divided
into several different representative feature regions
according to a certain threshold, and texture features are
calculated in these regions to measure the heterogeneity
degree of these regions [77, 81, 82]. An increasing number of
sophisticated methods cluster similar dynamic enhancement
patterns [13, 83, 84] and describe the heterogeneity of
vascular characteristics in tumor spaces through DCE-MRIs.
But technically, the current stage of tumor heterogeneity
analysis is still in its infancy.

As mentioned previously, malignant tumor has become
one of the most common diseases harmful to human health,
whose precise diagnosis and treatment are studied inter-
nationally, but remains unsettled. )is paper focused on the
precise diagnosis and prognosis prediction of neoadjuvant
chemotherapy for cancer disease. Centering the tumor
heterogeneity, this paper investigated radiogenomic
methods for tumor heterogeneity analysis based on machine
learning and explored the relationship between the imaging
characteristics and molecular expression characteristics of
heterogeneous tumors. A multidimensional MRI radio-
genomics data analysis framework was designed based on
geometric algebraic representation model to comprehen-
sively explore the rich spatial images, spatial signals, and
semantic features in multidimensional multimode MRIs.
Besides, a spatial-temporal representation model was
designed by focusing on both local and the global feature
spaces in different hierarchy, and diversified self-attention
mechanisms were implemented. Regarding the heteroge-
neity of different tumors, this paper proposed an individ-
ualized radiogenomic model combining the information
about tumor imaging, molecular classification, and tumor
clinical treatment for predicting the curative effect of neo-
adjuvant chemotherapy. It provides scientific guidance for
accurate diagnosis, treatment, and prognosis of breast tumor
patients, for the purpose of improving the cure rate of the
patients with tumor, enhancing the well-being of patients
after surgery, and using medical resources effectively and
reasonably.

6. Conclusions

Tumor heterogeneity is a determinant playing a key role in
therapeutic effect and is scarcely known from the perspective
of molecular [85]. )is paper aims to review the leading
research on MRI radiogenomics methods based on the
research frontiers in the fields of artificial intelligence and
machine learning and focuses on the key core issue of tumor
heterogeneity. By analyzing multimodal MR images and
molecular information, it is expected to afford methods that
can reflect the different functional heterogeneities of tumors.
)is paper provides a new framework related to temporal-
spatial consistent correlation model based on MRI radio-
genomics and offers novel intelligent solutions for tumor
clinical diagnosis and curative effect prediction in aspects of
neoadjuvant chemotherapy, aiming to effectively assist
doctors in making correct treatment decisions and improve

patients’ survival rate and well-being. Two contributions are
represented in this paper: (1) an in-depth exploration is
conducted for the cross-scale spatial, temporal, and semantic
features of multidimensional MR images to be analyzed to
reveal the spatial and temporal heterogeneity of tumors with
geometric algebra onto radiogenomic methods and achieve
correlation analysis from the local functional area to the
global semantic space; (2) a novel bidirectional Gated Re-
current Unit (GRU) recurrent neural network (BiGRU-
RNN) model is proposed to establish a multidimensional
consistent deep learning of tumor heterogeneity with in-
tegrating MR imaging parameters and gene expression and
predict the curative effect of tumor neoadjuvant
chemotherapy.
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[21] E. Van Cutsem, C. H. Köhne, E. Hitre et al., “Cetuximab and
chemotherapy as initial treatment for metastatic colorectal
cancer,” New England Journal of Medicine, vol. 360, no. 14,
pp. 1408–1417, 2009.

[22] R. Dienstmann, D. Serpico, J. Rodon et al., “Molecular pro-
filing of patients with colorectal cancer and matched targeted
therapy in phase I clinical trials,” Molecular Cancer %era-
peutics, vol. 11, no. 9, pp. 2062–2071, 2012.

[23] L. De Mattos-Arruda, M. Oliveira, A. Navarro, M. Vilaro,
P. Nuciforo, and A. Vivancos, “Molecular profiling of ad-
vanced breast cancer patients and benefit obtained from
matched targeted therapy in early phase clinical trials,” in
Proceedings of the European Cancer CongressAmsterdam,
Netherlands, 2013.

[24] A. R. Padhani and K. A. Miles, “Multiparametric imaging of
tumor response to therapy,” Radiology, vol. 256, no. 2,
pp. 348–364, 2010.

[25] M. R. Junttila and F. J. de Sauvage, “Influence of tumour
micro-environment heterogeneity on therapeutic response,”
Nature, vol. 501, no. 7467, pp. 346–354, 2013.

[26] A. Kreso, C. A. O’Brien, P. van Galen et al., “Variable clonal
repopulation dynamics influence chemotherapy response in
colorectal cancer,” Science, vol. 339, no. 6119, pp. 543–548,
2013.

[27] L. Chen, P. L. Choyke, N. Wang et al., “Unsupervised
deconvolution of dynamic imaging reveals intratumor vas-
cular heterogeneity and repopulation dynamics,” PLoS One,
vol. 9, no. 11, Article ID e112143, 2014.

[28] L. Chen, P. L. Choyke, and T. H. Chan, “Tissue-specific
compartmental analysis for dynamic contrast-enhanced MR
imaging of complex tumors,” IEEE Transactions on Medical
Imaging, vol. 30, no. 12, pp. 2044–2058, 2011.

[29] N.Wang, T. Gong, R. Clarke et al., “UNDO: a Bioconductor R
package for unsupervised deconvolution of mixed gene ex-
pressions in tumor samples,” Bioinformatics, vol. 31, no. 1,
pp. 137–139, 2015.

[30] N. Wang, E. P. Hoffman, L. Chen et al., “Mathematical
modelling of transcriptional heterogeneity identifies novel
markers and subpopulations in complex tissues,” Scientific
Reports, vol. 6, no. 1, Article ID 18909, 2016.

[31] L. Sun, J. He, X.-X. Yin et al., “An image segmentation
framework for extracting tumors from breast Magnetic
Resonance Images,” Journal of Innovative Optical Health
Sciences, vol. 11, no. 4, Article ID 1850014, 2018.

[32] D. Pandey, X. Yin, H. Wang et al., “Automatic and fast
segmentation of breast region-of-interest (ROI) and density
in MRIs,” Heliyon, vol. 4, no. 12, Article ID e01042, 2018.

[33] X. X. Yin, S. Hadjiloucas, Y. Zhang, M. Y. Su, Y. Miao, and
D. Abbott, “Pattern identification of biomedical images with
time series: contrasting THz pulse imaging with DCE-MRIs,”
Artificial Intelligence in Medicine, vol. 67, pp. 1–23, 2016.

[34] X.-X. Yin, S. Hadjiloucas, J. H. Chen, Y. Zhang, J.-L. Wu, and
M.-Y. Su, “Tensor based multichannel reconstruction for
breast tumours identification from DCE-MRIs,” PLoS One,
vol. 12, no. 3, Article ID e0172111, 2017.

[35] X.-X. Yin, B. W.-H. Ng, K. Ramamohanarao, A. Baghai-
Wadji, and D. Abbott, “Exploiting sparsity and low-rank
structure for the recovery of multi-slice breast MRIs with
reduced sampling error,”Medical, & Biological Engineering &
Computing, vol. 50, no. 9, pp. 991–1000, 2012.

[36] X.-X. Yin, B. W.-H. Ng, Q. Yang, A. Pitman,
K. Ramamohanarao, and D. Abbott, “Anatomical landmark
localization in breast dynamic contrast enhanced MR im-
aging,” Medical, & Biological Engineering & Computing,
vol. 50, no. 1, pp. 91–101, 2012.

[37] S. DeCordova, A. Shastri, A. G. Tsolaki et al., “Molecular
heterogeneity and immunosuppressive microenvironment in
glioblastoma,” Frontiers in Immunology, no. 1402, p. 11, 2020.

[38] A. Habib, N. Jovanovich, M. Hoppe et al., “MRI-based
radiomics and radiogenomics in the management of low-
grade gliomas: evaluating the evidence for a paradigm shift,”
Journal of Clinical Medicine, vol. 10, no. 7, p. 1411, 2021.

[39] L. Shui, H. Ren, X. Yang et al., “)e era of radiogenomics in
precision medicine: an emerging approach to support diag-
nosis, treatment decisions, and prognostication in oncology,”
Frontiers in Oncology, vol. 10, Article ID 570465, 2020.

[40] D. Arefan, R. M. Hausler, J. H. Sumkin, M. Sun, and S. Wu,
“Predicting cell invasion in breast tumor microenvironment
from radiological imaging phenotypes,” BMC Cancer, vol. 21,
no. 1, 2021.

[41] Q. Yang, L. Li, J. Zhang, G. Shao, and B. Zheng, “A com-
puterized global MR image feature analysis scheme to assist
diagnosis of breast cancer: a preliminary assessment,” Eu-
ropean Journal of Radiology, vol. 83, no. 7, pp. 1086–1091,
2014.

[42] Q. Yang, L. Li, J. Zhang, G. Shao, and B Zheng, “A new
quantitative image analysis method for improving breast
cancer diagnosis using DCE-MRI examinations,” Medical
Physics, vol. 42, no. 1, pp. 103–109, 2014.

[43] A. Karahaliou, K. Vassiou, N. S. Arikidis, S. Skiadopoulos,
T. Kanavou, and L. Costaridou, “Assessing heterogeneity of
lesion enhancement kinetics in dynamic contrast-enhanced
MRI for breast cancer diagnosis,” British Journal of Radiology,
vol. 83, no. 988, pp. 296–309, 2010.

[44] U. Preim, S. Glaßer, B. Preim, F. Fischbach, and J. Ricke,
“Computer-aided diagnosis in breast DCE-MRI-

Computational Intelligence and Neuroscience 11



quantification of the heterogeneity of breast lesions,” Euro-
pean Journal of Radiology, vol. 81, no. 7, pp. 1532–1538, 2012.

[45] H. Li, Y. Zhu, E. S. Burnside et al., “MR Imaging radiomics
signatures for predicting the risk of breast cancer recurrence
as given by research versions of mammaPrint, oncotype DX,
and PAM50 gene assays,” Radiology, vol. 281, no. 2,
pp. 382–391, 2016.

[46] L. J. Grimm, J. Zhang, and M. A. Mazurowski, “Computa-
tional approach to radiogenomics of breast cancer: luminal A
and luminal B molecular subtypes are associated with imaging
features on routine breast MRI extracted using computer
vision algorithms,” Journal of Magnetic Resonance Imaging,
vol. 42, no. 4, pp. 902–907, 2015.

[47] M. A. Mazurowski, J. Zhang, L. J. Grimm, S. C. Yoon, and
J. I. Silber, “Radiogenomic analysis of breast cancer: luminal B
molecular subtype is associated with enhancement dynamics
at MR imaging,” Radiology, vol. 273, no. 2, pp. 365–372, 2014.

[48] M. Fan, G. Wu, H. Cheng, J. Zhang, G. Shao, and L. Li,
“Radiomic analysis of DCE-MRI for prediction of response to
neoadjuvant chemotherapy in breast cancer patients,” Eu-
ropean Journal of Radiology, vol. 94, 2017.

[49] Y. Huang, Z. Liu, L. He et al., “Radiomics signature: a po-
tential biomarker for the prediction of disease-free survival in
early-stage (I or II) non-small cell lung cancer,” Radiology,
vol. 281, no. 3, pp. 947–957, 2016.

[50] A. Ashraf, B. Gaonkar, C. Mies et al., “Breast DCE-MRI ki-
netic heterogeneity tumor markers: preliminary associations
with neoadjuvant chemotherapy response,” Translational
Oncology, vol. 8, no. 3, pp. 154–162, 2015.

[51] J. Wu, G. Cao, X. Sun et al., “Intratumoral spatial hetero-
geneity at perfusion MR imaging predicts recurrence-free
survival in locally advanced breast cancer treated with neo-
adjuvant chemotherapy,” Radiology, vol. 288, pp. 26–35, 2018.

[52] N. Bhooshan, M. L. Giger, S. A. Jansen, H. Li, L. Lan, and
G. M. Newstead, “Cancerous breast lesions on dynamic
contrast-enhanced MR images: computerized characteriza-
tion for image-based prognostic markers,” Radiology, vol. 254,
no. 3, pp. 680–690, 2010.

[53] N. Hylton, “Dynamic contrast-enhanced magnetic resonance
imaging as an imaging biomarker,” Journal of Clinical On-
cology, vol. 24, no. 20, pp. 3293–3298, 2006.

[54] T. E. Yankeelov and J. C. Gore, “Dynamic contrast enhanced
magnetic resonance imaging in oncology: theory, data ac-
quisition, analysis, and examples,” Current Medical Imaging
Reviews, vol. 3, no. 2, pp. 91–107, 2007.

[55] X. Li, H. Kang, L. R. Arlinghaus et al., “Analyzing spatial
heterogeneity in DCE- and DW-MRI parametric maps to
optimize prediction of pathologic response to neoadjuvant
chemotherapy in breast cancer,” Translational Oncology,
vol. 7, no. 1, pp. 14–22, 2014.

[56] X. Li, L. R. Arlinghaus, G. D. Ayers et al., “DCE-MRI analysis
methods for predicting the response of breast cancer to
neoadjuvant chemotherapy: pilot study findings,” Magnetic
Resonance in Medicine, vol. 71, no. 4, pp. 1592–1602, 2014.

[57] J. R. Teruel, M. G. Heldahl, P. E. Goa et al., “Dynamic
contrast-enhanced MRI texture analysis for pretreatment
prediction of clinical and pathological response to neo-
adjuvant chemotherapy in patients with locally advanced
breast cancer,” NMR in Biomedicine, vol. 27, no. 8,
pp. 887–896, 2014.

[58] D. A. Gutman, L. A. D. Cooper, S. N. Hwang et al., “MR
imaging predictors of molecular profile and survival: multi-
institutional study of the TCGA glioblastoma data set,” Ra-
diology, vol. 267, no. 2, pp. 560–569, 2013.

[59] T. P. Coroller, P. Grossmann, Y. Hou et al., “CT-based
radiomic signature predicts distant metastasis in lung ade-
nocarcinoma,” Radiotherapy & Oncology, vol. 114, no. 3,
pp. 345–350, 2015.

[60] J. H. Chen, S. Bahri, R. S. Mehta et al., “Breast cancer:
evaluation of response to neoadjuvant chemotherapy with
3.0-T MR imaging,” Radiology, vol. 261, no. 3, pp. 735–743,
2011.

[61] E. J. Sutton, B. Z. Dashevsky, J. H. Oh et al., “Breast cancer
molecular subtype classifier that incorporates MRI features,”
Journal of Magnetic Resonance Imaging, vol. 44, no. 1,
pp. 122–129, 2016.

[62] J. P. O’Connor, “Cancer heterogeneity and imaging,” Semi-
nars in Cell & Developmental Biology, vol. 64. , 2016 In Press.

[63] J. Wu, Y. Cui, X. Sun et al., “Unsupervised clustering of
quantitative image phenotypes reveals breast cancer subtypes
with distinct prognoses and molecular pathways,” Clinical
Cancer Research: An Official Journal of the American Asso-
ciation for Cancer Research, vol. 23, no. 13, pp. 3334–3342. In
Press, 2017.

[64] X.-X. Yin, S. Hadjiloucas, Y. Zhang, and Z. Tian, “MRI
radiogenomics for intelligent diagnosis of breast tumors and
accurate prediction of neoadjuvant chemotherapy responses-
a review,” Computer Methods and Programs in Biomedicine,
vol. 214, Article ID 106510, 2022.

[65] X.-X. Yin, L. Yin, and S. Hadjiloucas, “Pattern classification
approaches for breastcancer identification via MRI: state-of-
the-art and vision for the future,” Applied Sciences, vol. 10,
no. 20, p. 7201, 2020.

[66] Z.-Z. Zhou, “A brief introduction to weakly supervised
learning,” National Science Review, vol. 5, no. 1, pp. 44–53,
2018.

[67] S. Shikha, H. Bharat, K. Prathamesh, M. Justna, and
G. Harsha, “Weakly supervised learning for categorization of
medical inquiries for customer service effectiveness,” Fron-
tiers in Research Metrics and Analytics, vol. 6, 2021.

[68] D.W. Sajila andM.Md. Shaad, “Conditional-GAN based data
augmentation for deep learning task classifier improvement
using fNIRS data,” Frontiers in Big Data, vol. 4, 2021.

[69] L. Torresani, “Weakly supervised learning,” in Computer
Vision, K. Ikeuchi, Ed., Springer, Boston, MA, USA, 2014.

[70] F. Oliveira and J. Tavares, “Medical image registration: a
review,” Computer Methods in Biomechanics and Biomedical
Engineering, vol. 17, pp. 73–93, 2014.

[71] J. B. Antoine Maintz and M. A. Viergever, “A survey of
medical image registration,” Medical Image Analysis, vol. 2,
no. 1, pp. 1–36, 1988.

[72] F. El-Zahraa Ahmed El-Gamal, M. Elmogy, and A. Atwan,
“Current trends in medical image registration and fusion,”
Egyptian Informatics Journal, vol. 17, no. 1, pp. 99–124, 2016.

[73] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes,
“Medical image registration,” Physics in Medicine and Biology,
vol. 46, pp. R1–R45, 2001.

[74] S. Mohammadi, V. Ravindra, D. F. Gleich, and A. Gramav, “A
geometric approach to characterize the functional identity of
single cells,” Nature Communications, vol. 9, no. 1, p. 1516,
2018.

[75] V. Goh, B. Sanghera, D. M. Wellsted, J. Sundin, and
S Halligan, “Assessment of the spatial pattern of colorectal
tumour perfusion estimated at perfusion CT using two-di-
mensional fractal analysis,” European Radiology, vol. 19, no. 6,
pp. 1358–1365, 2009.

12 Computational Intelligence and Neuroscience



[76] R. J. Gillies, P. E. Kinahan, and H. Hricak, “Radiomics: images
are more than pictures, they are data,” Radiology, vol. 278,
no. 2, pp. 563–577, 2016.

[77] R. A. Gatenby, O. Grove, and R. J. Gillies, “Quantitative
imaging in cancer evolution and ecology,” Radiology, vol. 269,
no. 1, pp. 8–14, 2013.

[78] M. Diehn, C. Nardini, D. S. Wang et al., “Identification of
noninvasive imaging surrogates for brain tumor gene-ex-
pression modules,” Proceedings of the National Academy of
Sciences, vol. 105, no. 13, pp. 5213–5218, 2008.

[79] O. Grove, A. E. Berglund, M. B. Schabath et al., “Quantitative
computed tomographic descriptors associate tumor shape
complexity and intratumor heterogeneity with prognosis in
lung adenocarcinoma,” PLoS One, vol. 10, no. 3, Article ID
e0118261, 2015.

[80] S. H. Kim, H. S. Lee, B. J. Kang et al., “Dynamic contrast-
enhanced MRI perfusion parameters as imaging biomarkers
of angiogenesis,” PLoS One, vol. 11, no. 12, Article ID
e0168632, 2016.

[81] A. R. Padhani, “MRI for assessing antivascular cancer
treatments,” British Journal of Radiology, vol. 76, no. suppl_1,
pp. S60–S80, 2003.

[82] B. Chaudhury, M. Zhou, D. B. Goldgof et al., “Heterogeneity
in intratumoral regions with rapid gadolinium washout
correlates with estrogen receptor status and nodal metastasis,”
Journal of Magnetic Resonance Imaging, vol. 42, no. 5,
pp. 1421–1430, 2015.

[83] X.-X. Yin, L. Yin, and S. Hadjiloucas, “Pattern classification
approaches for breastcancer identification via MRI: state-of-
the-art and vision for the future,” Applied Sciences, vol. 10,
no. 20, 2020.

[84] XX. Yin, Y. Zhang, J. Cao, JL. Wu, and S. Hadjiloucas,
“Exploring the complementarity of THz pulse imaging and
DCE-MRIs: toward a unified multi-channel classification and
a deep learning framework,” Computer Methods and Pro-
grams in Biomedicine, vol. 137, pp. 87–114, 2017.

[85] K. H. Allison and G. W. Sledge, “Heterogeneity and cancer,”
Oncology, vol. 28, no. 9, pp. 772–778, 2014.

Computational Intelligence and Neuroscience 13


