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Despite a history dating back to the 1800s, using Clostridium bacteria to treat
cancer has not advanced beyond the observation that they can colonise and partially
destroy solid tumours. Progress has been hampered by their inability to eradicate
the viable portion of tumours, and an instinctive anxiety around injecting patients
with a bacterium whose close relatives cause tetanus and botulism. However, recent
advances in techniques to genetically engineer Clostridium species gives cause to
revisit this concept. This paper illustrates these developments through the attenuation of
C. sporogenes to enhance its clinical safety, and through the expression and secretion
of an immunotherapeutic. An 8.6 kb sequence, corresponding to a haemolysin operon,
was deleted from the genome and replaced with a short non-coding sequence. The
resultant phenotype of this strain, named C. sporogenes-NT, showed a reduction of
haemolysis to levels similar to the probiotic strain, C. butyricum M588. Comparison
to the parental strain showed no change in growth or sporulation. Following injection
of tumour-bearing mice with purified spores of the attenuated strain, high levels of
germination were detected in all tumours. Very low levels of spores and vegetative
cells were detected in the spleen and lymph nodes. The new strain was transformed
with four different murine IL-2-expressing plasmids, differentiated by promoter and
signal peptide sequences. Biologically active mIL-2, recovered from the extracellular
fraction of bacterial cultures, was shown to stimulate proliferation of T cells. With
this investigation we propose a new, safer candidate for intratumoral delivery of
cancer immunotherapeutics.

Keywords: streptolysin S, haemolysis, Clostridium, secretion, cytokine, spore, cancer

INTRODUCTION

Clostridium sporogenes has been an important species in the field of experimental oncology for
over 50 years, due to its ability to colonise solid tumours (Gericke and Engelbart, 1964; Heap
et al., 2014). The hypoxic and necrotic environment of these tumours is ideal for the germination
and growth of proteolytic Clostridium species, such as C. sporogenes. Intravenously injected spores
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germinate and proliferate exclusively in the hypoxic/necrotic
environment of tumour xenografts, while vegetative cells are not
detected in non-tumour-bearing control animals (Mowday et al.,
2016). Injected spores are very well tolerated in rodent models,
indicating low immunogenicity (Theys et al., 2001). While
colonisation of tumours can lead to destruction of the necrotic
portion of solid tumours, the potency of C. sporogenes alone
appears to be inadequate for complete elimination of tumours.
The absolute requirement of anoxic conditions, essential for
initial colonization, may also explain why the proliferating
Clostridium in the centre of a solid tumour are unable to
attack the oxygenated fraction of the tumour, which constitutes
the viable, proliferating portion of the cancer. A therapeutic
agent, secreted by a recombinant C. sporogenes from the
anoxic centre of a tumour, could overcome this limitation if
it is able to diffuse to the living portion of the tumour and
exert its effect.

Progress in understanding the biology of Clostridium species,
and the concomitant development of genetic tools and genetic
transformation, has enabled researchers to exploit this genus
in the industrial and medical settings. Clostridium Directed
Enzyme Prodrug Therapy (CDEPT) is an illustration of these
developments (Mowday et al., 2021). CDEPT exploits the
tumour-specific germination of an engineered C. sporogenes,
which expresses a prodrug-converting enzyme from the bacterial
chromosome to activate a systemically administered prodrug.
Significant therapeutic effect was achieved in a mouse xenograft
model (Heap et al., 2014).

C. sporogenes is also an important species for the food
industry, where it is utilised as a surrogate for proteolytic
Clostridium botulinum to test the efficacy of thermal processing
(Brown et al., 2012). This sterilisation technique aims to destroy
microbes, including spores, present in the food. Survival of
C. botulinum is a concern due to its ability to germinate and
produce the botulinum neurotoxin in anaerobic environments.
At the nucleotide level, C. sporogenes shares 93.4% sequence
identity with proteolytic C. botulinum (group 1), just short
of the threshold for classing them as the same species (95%)
(Weigand et al., 2015). The near identical phenotype without
the risk of exposure to botulinum toxin makes this species
an ideal surrogate. Inevitably, the significant similarity between
these species has led to the misdiagnosis of pathogenic clostridia
as C. sporogenes (Lindstrom et al., 1999). A pubmed search
with the query “Clostridium sporogenes[title]” reveals five clinical
reports in the last 30 years purporting C. sporogenes as the
causative agent of infection. Validation of these cases is not
possible due to use of inadequate methods or insufficient detail
of diagnostics reported.

C. sporogenes is ubiquitous in the natural environment, and
there is a growing weight of evidence to support the notion
that this species is a beneficial member of the human gut
microbiome. Studies in mice demonstrate its ability to produce a
potent antioxidant and to modulate IgA-related immune cells via
production of branched short chain fatty acids (SCFAs) (Wikoff
et al., 2009; Dodd et al., 2017; Guo et al., 2019). Despite the
good press, the presence of a nine gene cluster in C. sporogenes
ATCC 15579 with high sequence similarity to the Streptolysin S

(SLS) operon of Streptococcus pyogenes is a significant hurdle to
its therapeutic use (Gonzalez et al., 2010).

We hypothesised that C. sporogenes NCIMB 10696 could
be attenuated by deletion of the SLS operon without loss
of the beneficial properties of the parental strain. The
resultant strain would be safer for clinical and industrial
use. To test this hypothesis, we deleted the SLS operon
from this strain using CRISPR-Cas9, and conducted a
comparative phenotype analysis with the parental strain.
We have named this strain C. sporogenes-NT (non-toxic).
In addition, we tested the new strain’s ability to express
and secrete the murine cytokine, interleukin-2 (IL-2). This
cytokine is the ideal candidate for intratumoral expression,
due to its very high ED50 when given intravenously
and the frequent occurrence of adverse events in patients
(Buchbinder et al., 2019).

MATERIALS AND METHODS

Bacterial Strains, Growth Conditions and
Cell Lines
Details of all bacterial strains used in this study are listed
in Supplementary Table 1. C. sporogenes NCIMB 10696 wild
type strain was purchased from the NCIMB culture collection,
received in a lyophilized state, and processed in accordance
with NCIMB specifications. Two Escherichia coli strains (10-
beta and S17-1) were used as the cloning and conjugative donor
strains, respectively.

Growth of C. sporogenes strains was carried out under
anaerobic conditions in an anaerobic cabinet (model MG1000
Mark II, Don Whitley Scientific Ltd.; 80% N2, 10% CO2,
10% H2) at 37◦C. C. sporogenes was grown in a bovine-free
version of TY media, labelled “Peptone Yeast Thioglycolate”
(PYT), supplemented with D-cycloserine (250 µg/ml), and
thiamphenicol (15 µg/ml) where appropriate. The CTLL-2
indicator cell line (93042610, ECACC) was cultivated according
to the manufacturer’s instructions.

Plasmid Construction and Isolation of
C. sporogenes-NT Knockout Strain
Details of all vectors and oligonucleotides used in this study
are listed in Supplementary Tables 1, 2. The pMTL82121
vector was digested with restriction enzymes NotI/AscI and the
∼5 kb fragment was used as the backbone for the CRISPR-
Cas9 gene editing plasmids (pPME-101-g1 and pPME-101-
g2). The construction proceeded as previously reported (Heap
et al., 2009; Ingle et al., 2019). The cas9 gene was amplified
from S. pyogenes genomic DNA using primers with upstream
cloning sites (BsaI/NotI). Expression of the cas9 gene and the
gRNA was achieved using the thl and araE gene promoters
from Clostridium acetobutylicum, respectively, in a divergent
arrangement. The 20-nt targeting sequences (guide 1 and guide
2) were designed using the CRISPR Guide RNA Design tool at
the Benchling (2019) website. The gRNA DNA fragment was
created using a conserved reverse primer (corresponding to the
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3′ of the gRNA handle and terminator) and a forward primer
containing the targeting sequence at the 5′ and the beginning of
the gRNA handle at the 3′. Complementary sequences between
these primers enabled the creation of a product in a template-free
“primer dimer” reaction.

The SLS homologue was located in the C. sporogenes NCIMB
10696 genome by blastn alignment, using the equivalent genes
in C. sporogenes ATCC 15579 as a query (Gonzalez et al.,
2010). Sequences of approximately 700 bp long upstream and
downstream of the operon were designated as left homology
arm (LHA) and right homology arm (RHA), respectively. These
were amplified from genomic DNA using Phusion

R©

high fidelity
polymerase, according to the manufacturer’s protocol [M0531,
New England Biolabs (NEB)]. A synthetic “bookmark” sequence
(BM1) was placed between the homology arms. This was created
by dividing the sequence between the LHA reverse and RHA
forward primer tails with upstream BsaI restriction sites.

Ligated plasmids were transformed by heat shock into
E. coli 10-beta and plated on LB plates supplemented with
chloramphenicol. Resultant colonies were PCR-screened
for correct assembly and subsequent plasmid samples were
confirmed by Sanger sequencing.

Deletion of the haemolysin operon was achieved using the
CRISPR-Cas9 genome editing tool (Ingle et al., 2019) and
schematically illustrated in Figure 1A. Constructed knockout
vectors (pPME-101-g1 and pPME-101-g2) were heat shock
transformed into E. coli S17-1 for conjugation to C. sporogenes-
WT. Conjugation was carried out as previously described (Heap
et al., 2009). Transconjugants were screened by colony PCR
using primers that flank the SLS-like operon genome locus. The
CRISPR-Cas9 vector was removed from knockout mutants by
subculturing in non-selective liquid cultures (24 h) followed by
patch plating to selective and non-selective plates to observe
loss of chloramphenicol resistance. Plasmid loss was further
confirmed by PCR using primers specific for the plasmid-based
catP gene (data not shown). Resultant positive clones were sent
for sequencing. The haemolytic KO strain has been named
C. sporogenes-NT.

Construction of C. sporogenes-NT
Secreting Murine IL2
To construct plasmids harbouring murine IL-2 secretory
variants, the DNA sequence of mIL-2 gene was manually codon
optimised according to the known codon usage preference of
C. sporogenes and based on the reported sequence (UniProtKB:
P04351). The FLAG-tag sequence (DYKDDDDK) was added
at the C-terminal end of the mIL-2 gene. Five DNA fragments:
FLAG-tagged recombinant mIL-2, and four Clostridium-derived
promoter-signal sequences were commercially synthesized
(IDT) with sites recognized by type IIS restriction enzymes
(Supplementary Table 3).

To generate four mIL2 secretion variants, the promoter-
signal sequence fragments and murine IL-2 were linearly ligated
at BsaI sites, followed by insertion to modified pMTL82121
E. coli-Clostridia shuttle plasmid (named pATB1C) at NotI
and XhoI sites. A total of four secretion plasmids containing

FLAG-tagged, codon optimised murine IL2 and combinations
of promoter (Pfdx or Pptb) and signal sequences (eglA or
nprM3) were constructed (Supplementary Table 1). Plasmids
were transferred to C. sporogenes-NT by conjugation from an
E. coli donor as described previously (Heap et al., 2012). Resultant
transconjugants were confirmed by colony PCR using primers
specified in Supplementary Table 2 and by Sanger sequencing
(Eurofins Genomics).

Preparation of Pure Spore Suspensions
C. sporogenes strains were revived on agar plates and inoculated
into 10 ml of growth media. The following day, the overnight
cultures were inoculated into 500 ml of fresh media and cultivated
under anaerobic conditions for six days. On day seven, cultures
were removed from anaerobic cabinet and exposed to oxygen
and room temperature for further 24 h. Next, spore-vegetative
cell suspensions were centrifuged (10,000 x g, 20◦C) for 30 min.
Resultant pellets were washed two times with PBS and once with
70% (v/v) ethanol. The final pellet was resuspended in 10 ml
PBS, heat treated at 80◦C for 20 min to inactivate remaining
viable vegetative cells and cooled down. The washed spore-debris
suspensions were subjected to a density-gradient purification
using HistodenzTM (D2158, Sigma-Aldrich) according to the
method of Setlow with minor modifications (Setlow, 2019;
Supplementary Material). Spore purification was determined
by counting phase bright spores and phase dark cells using a
haemocytometer under a light microscope (minimum 200 bodies
per purification). Spores still enclosed in the mother cell were
counted as impurities.

Phenotype Analysis of C. sporogenes
Strains
Growth and Endospore Formation
The ability of C. sporogenes-NT spores to return to vegetative
growth was evaluated by measuring the change in OD600
over a period of 24 h. Overnight cultures were inoculated
into a fresh PYT media (1:100) and incubated at 37◦C under
anaerobic conditions.

A sporulation assay was carried out to measure and compare
the ability of the C. sporogenes strains to form endospores.
Growth media was inoculated with overnight cultures and
incubated for 4 h. Following this incubation, fresh sterile broth
was inoculated with the 4 h cultures (1:100) and incubated for
120 h. To determine spore titres, samples were taken every
24 h for five days and were heated at 80◦C for 20 min to
inactivate vegetative cells. Heat-treated samples were serially
diluted and plated under anaerobic conditions. After 24 h
incubation, colonies were counted, and CFU/ml was calculated
to determine sporulation efficiency. A spo0A mutant, in which
the master regulator of sporulation has been deleted, was
used as a negative control for colony formation after heat
treatment.

Measuring Haemolysis
C. sporogenes wild type and knockout strains were assayed for
haemolysis by two methods. Plate assays were carried out using
columbia sheep blood agar plates (PB0123, Oxoid) according
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FIGURE 1 | Schematic representation of CRISPR-Cas9 mediated integration and PCR analysis of SLS operon deletion in C. sporogenes-NT strain. (A) The genome
editing vectors (pPME-101-g1/g2) containing spCas9, guide RNAs and an editing template for homologous recombination at the target chromosomal locus and
integration of a BM1 “bookmark” sequence. Open triangles represent indicative alignment of screening primers as presented in Supplementary Table 2. (B) Gel
electrophoresis showing a PCR screen of pPME-101-g1/g2 transconjugant colonies. Top image: Deletion of the operon detected in colonies subjected to a
chromosome/bookmark-specific PCR reaction. Bottom image: Subsequent confirmation of SLS operon deletion in five selected clones. “M” denotes DNA marker,
“dH2O” water template and “WT” C. sporogenes WT control.
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to the ASM haemolysis protocol (Buxton, 2005). In addition,
a liquid assay was conducted according to a published method
(Totten et al., 1995). Briefly, 200 µl PBS-washed cultures were
incubated in a 96-well plate with 20 µl washed whole sheep or
horse blood for one hour. The plates were then centrifuged (200
x g, 10 min) and the supernatants transferred to a new sterile
96-well plate. Release of haemoglobin from lysed red blood cells
(RBCs) was measured at OD540. Incubation with ultrapure water
was used to determine complete lysis and with PBS to determine
background lysis. In both assays, C. butyricum MIYAIRI 588
(CBM 588) and S. pyogenes were used as negative and positive
haemolysin controls, respectively.

In vivo Colonisation Study
All animal experiments were performed in accordance with
local institutional guidelines for animal welfare and were
approved by the Animal Ethical Committee of the University
of Maastricht (AVD1070020173367, Maastricht, Netherlands).
Exponentially growing CT26 mouse colon carcinoma cells (Mus
musculus, ATCC CRL-2638TM) syngeneic to the Balb/c mice
were cultured in Roswell Park Memorial Institute (RPMI)
(Lonza) supplemented with 10% fetal calf serum (FCS) in a
humidified 5% CO2 chamber at 37◦C. To induce tumours,
approximately 8-week-old immunocompetent Balb/c OlaHsd
mice (10) were subcutaneously injected with CT26 tumour cells
(2× 106), resuspended in basement membrane matrigel (354234,
BD Biosciences). When tumour volumes reached 200 mm3

(determined by measurement of three orthogonal axes with
vernier calipers), treated animals (8) were given 1 × 106 purified
spores, administered intravenously in the lateral tail vein. Control
animals (2) were injected with PBS. Seventy-two hours after spore
administration, animals were sacrificed and tumours, spleens and
lymph nodes were excised.

Ex vivo Sample Processing
Blood was collected in 10% heparin sodium (5000 I.U./ml, Leo
Laboratories Ltd.) and plasma was separated by centrifugation
(1600 x g, 4◦C, 5 min). Red blood cells were removed from the
remaining cell suspension using a RBC lysis buffer (00-4333-57,
eBioscience). Single cell suspensions of lymph nodes, spleens and
tumours were obtained using a gentleMACS dissociator (130-
093-237, Miltenyi Biotec B.V.) and filtered through a 70 µm-pore
cell strainer (542070, Greiner Bio-one).

The presence of spores and vegetative cells of C. sporogenes-
NT in each tissue was determined by dilution plating on selective
media. For total colony forming unit (CFU) counts, single cell
suspensions were serially diluted in pre-reduced PBS to 10−7. For
each dilution, three 20 µl spots were dispensed on to pre-reduced
agar plates. The plates were incubated for 24 h and then observed
for single colony growth and counted. Dilution plating was also
conducted on heat-treated samples (80◦C, 20 min) to quantify
spores present. Vegetative cells were quantified by deducting
heat-treated counts from non-heat-treated counts. Counts of
spores and vegetative cells in tumours were divided by equivalent
counts in the same weight of other tissues to give a ratio of
the localisation in each tissue. Using bookmark-specific primers,

colony PCR was conducted to confirm that the observed CFUs
were the C. sporogenes-NT.

Detection of Recombinant mIL-2
The secretion of mIL-2 protein in C. sporogenes-NT-XmIL2F
variants was confirmed by Western blotting in DOC-TCA
precipitated fractions of culture supernatants using anti-FLAG
antibody according to the related literature and manufacturer’s
recommendations (Schwarz et al., 2007).

The levels of mIL-2 secreted from C. sporogenes-NT in
7 h culture supernatants were determined by cytokine specific
ELISA assay (BMS601, Invitrogen) in accordance with the
manufacturer’s instructions. The results were recorded in a
microplate reader (BMG Labtech SPECTROstar Omega) and
calculated based on recombinant mIL2 standard.

The biological activity of the secreted cytokine was determined
in a lymphocyte proliferation assay using the CTLL-2 T cell
line. Seven-hour subcultures of mIL2-expressing C. sporogenes-
NT were centrifuged (10,000 x g, 10 min), filtered (0.45 µm
syringe filter) and the sterile supernatants retained. Supernatant-
stimulated CTLL-2 proliferation was measured using the MTT
assay according to published methods (Soman et al., 2009) and
described in detail in Supplementary Materials. The standard
curve was prepared using purified recombinant mIL2 (212-12,
Peprotech). Absorbance was recorded in a microplate reader
(BMG Labtech SPECTROstar Omega).

Biological Replicates and Statistical Analyses
All data presented in this manuscript represent the results of at
least three independent experiments. Statistical evaluations
were performed with GraphPad Prism 8 software (San
Diego, CA, United States). For the ELISA and lymphocyte
proliferation assay, data was analysed using unpaired t-test
to compare C. sporogenes-WT with each mIL2 variant. To
compare haemolysis in C. sporogenes-WT and C. sporogenes-NT,
data was analysed using two-way ANOVA with Dunnett’s
multiple comparison test. Values of p < 0.05, p < 0.01,
p < 0.001 were considered significant (∗), highly significant
(∗∗), or extremely significant (∗∗∗) respectively. Data represent
means± standard deviation (SD).

RESULTS

Deletion of the SLS Homologue Causes a
Significant Reduction in Haemolysis
The identification of streptolysin S in the genome of C. sporogenes
NCIMB 10696 highlighted a potential risk of using this species
as an intratumoral delivery vehicle. We sought to determine
whether deletion of this virulence factor affected this strain’s
haemolysis capability. Two CRISPR-Cas9 vectors were created
with the aim of deleting the SLS operon, distinguished by the
presence of two different targeting sequences, guide 1 (g1)
and guide 2 (g2) (Figure 1A). Following conjugation, eight
colonies for each vector were screened by PCR for chromosomal
recombination. For the vector with g1, deletion was detected
in five out eight transconjugants (Figure 1B). Deletion of the
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operon at the SLS locus was confirmed by Sanger sequencing. For
transconjugants harbouring the vector with g2, the WT sequence
was detected at the SLS locus, indicating that chromosomal
recombination had not occurred.

Neither CspWT nor CspNT strains of C. sporogenes displayed
strong beta-haemolysis at 24 or 48 h after streaking on
blood plates, in contrast to the positive control, S. pyogenes
(Figure 2A). A validated liquid assay with horse and sheep
blood was employed to quantify haemolysis (Figure 2B). In our
experiments, horse blood was more sensitive to haemolysis than
that of sheep. Significant differences could not be detected in
sheep blood. In horse blood, differences between 4-h cultures
of each strain were difficult to distinguish, and differences were
not statistically significant. At 8 h, the difference in haemolysis
between CspWT and CspNT was most pronounced (CspWT
2.5% ± 0.27 SD; CspNT 0.76% ± 0.23 SD). At this time
point CspNT haemolysis was not higher than that of the non-
haemolytic control, Cbut-M588 (p = 0.371). At 24 h, CspWT
haemolysis remained elevated (0.94% ± 0.09 SD) while for
CspNT it was comparable to Cbut-M588. At both 8 and 24 h,
the difference between CspWT and CspNT was statistically
significant (p < 0.05).

Following the announcement of a first in human (FIH) study
utilising C. novyi-NT, we sought to benchmark C. sporogenes-
NT to compare haemolysis. Growth of C. novyi-NT and
C. sporogenes-NT on sheep blood was observed. In contrast
to C. sporogenes-NT, C. novyi-NT caused significant beta-
haemolysis (Figure 2A). Sequence similarity to the SLS operon
could not be detected in the C. novyi-NT genome when using
protein (tblastn) or DNA (blastn) as queries.

The ability to form spores is a characteristic feature of
C. sporogenes. We sought to determine whether C. sporogenes-
NT displayed the same growth and sporulation phenotype as
that of the parental strain. The new C. sporogenes-NT strain
grew and formed spores at the same rate and to a comparable
final titre as the wild type (Figures 3A and 3B). Our data
demonstrates that deletion of the SLS operon has no significant
impact on growth and germination efficiency over a 24 h period
or sporulation over 120 h.

C. sporogenes-NT Colonises Tumours in
Experimental Animals
The ability of C. sporogenes NCIMB 10696 to colonise solid
tumours has been demonstrated previously (Heap et al., 2014;
Mowday et al., 2021). We sought to determine whether deletion
of the SLS operon has an effect on this ability. The CT26 murine
colon carcinoma cell line is highly immunogenic. Cells were
implanted subcutaneously to allow easy measurement of growing
tumours. Tumours were formed in all ten mice injected with
CT26 cells. Tumour-bearing animals were sacrificed 72 h after
systemic administration of C. sporogenes-NT spores (eight) or
PBS (two). An overview of the in vivo experiment is presented
in Figure 4A.

The presence of spores and vegetative cells in tumours,
spleens, lymph nodes and blood was determined (Figure 4B
and Supplementary Table 4). Neither spores nor vegetative

cells were detected in any tissues from control animals that
were injected with PBS instead of spores, or in the blood
of spore injected animals. In the tumours of spore-injected
animals, spore counts ranged from 1.1 × 105 – 1.7 × 106

per ml. Vegetative cell counts were higher at 1 × 106 –
2.2 × 107 per ml. In the spleens of spore-injected animals,
average counts of bacteria were 4,000 and 26,000 times lower
than in the equivalent weight of tumour tissue, respectively.
For lymph nodes, spores and vegetative cells were 62,000
and 81,000 times lower, respectively. Ratios were determined
as outlined in the methods section. For all excised tissues,
plate colonies were confirmed to be C. sporogenes-NT by
PCR using bookmark-specific primers (Supplementary Table 2,
data not shown).

C. sporogenes-NT Secretes Biologically
Active Murine IL-2 Cytokine
We tested the ability of C. sporogenes-NT to express and
secrete a heterologous protein, exemplified using mIL-2.
This cytokine has a short half-life and requires intravenous
administration at high doses for clinical efficacy, resulting
in adverse events in a high proportion of patients. Four
pATB1C-XmIL2 plasmids with different promoter-signal
sequence combinations were conjugated into C. sporogenes-
NT and verified by colony PCR (Figures 5A–C) and Sanger
sequencing. The impact of these variants on expression and
secretion of mIL-2 was assessed. Testing multiple expression
variants increased the chance of cloning a functional mIL-
2 secreting strain without mutation or growth inhibiting
host toxicity.

Western blot analysis was used to determine the presence of
FLAG-tagged protein in the intra- and extra-cellular fractions
of recombinant C. sporogenes-NT cultures. mIL-2 was detected
in the supernatants of all C. sporogenes-NT variants and
was absent in the cellular fraction of three out of four
variants, indicating effective and complete secretion (Figure 5D).
A small quantity of tagged protein was detected in the cellular
fraction of variant p6. These results indicate that nrpM3 is an
efficient secretion peptide. For both nprM3 and eglA signal
peptides, variants utilising the Pfdx promoter showed the highest
expression levels.

Secreted mIL-2 levels in 7-h cultures were quantified in an
mIL-2 ELISA. Maximum mIL-2 levels were detected in variant
p6 (240 ng/ml, C. sporogenes-NT-p6mIL2F), while the lowest
levels were detected in variant p8 (2.9 ng/ml, C. sporogenes-NT-
p5mIL2F) (Figure 6A). Next, we sought to confirm that the
secreted product was biologically active. The murine cytotoxic
T cell line CTLL-2 is dependent on pro-inflammatory cytokines
for viability. By stimulating the growth of these cells in the
presence of IL-2 standards or bacterial culture supernatant,
the biological activity of secreted mIL-2 can be quantified.
Supernatants from late-exponential (7 h) cultures of wild-type
and mIL-2 expressing C. sporogenes-NT, were applied to washed
CTLL-2 cells and incubated for 48 h. The MTT assay was used
to quantify T cell proliferation. The final spectrophotometric
detection confirmed that mIL-2 levels of 602 ng/ml (3010
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FIGURE 2 | Analysis of haemolytic activity. (A) Five strains were streaked on two Columbia Blood Agar plates (5% sheep blood BD Bioscience) and incubated under
anaerobic conditions for 48 h. The strains were: Cbut-M558: C. butyricum MIYAIRI 585 (negative control), Csp-20565: S. pyogenes DSM 20565 (positive control),
CspNT: C. sporogenes-NT, CspWT: C. sporogenes-WT and C. novyi-NT. (B) Quantitative analysis of haemolysis in two liquid blood assays (using sheep and horse
blood). Samples from liquid cultures were assayed at 4, 8, and 24 h. Haemolysis is presented as a percentage of total lysis (blood incubated with ultrapure water).
Assayed strains: Cbut-M558: C. butyricum MIYAIRI 588; CspNT: C. sporogenes-NT; CspWT: C. sporogenes-WT; Spy-20565: S. pyogenes DSM 20565.

U/ml) were measured for “p6”, the most potent recombinant
Clostridium variant (C. sporogenes-NT-p6mIL2F), dropping to
65.7 ng/ml (328 U/ml) in variant “p8” (Figure 6B). These results
indicate that mIL-2 expressed by recombinant C. sporogenes-NT

is efficiently secreted and folds into a native conformation. All
results confirmed that haemolysin-free C. sporogenes-NT strain
is a suitable vehicle for the secretion of proteins, such as mIL-
2 cytokine.
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FIGURE 3 | Growth and development of heat resistant colony forming units of C. sporogenes-NT (blue) and C. sporogenes-WT (black) strains. (A) Growth of
Clostridium strains was measured as a direct increase in absorbance at 600 nm throughout the course of 24 h bacterial incubation in bovine free medium (PYT). The
symbols represent the average of three independent experiments, and error bars indicate the standard errors of the means. (B) Heat-treated bacterial samples
(80◦C, 20 min) were plated in serial dilution on PYT agar plates and enumerated following 24 h incubation. Bars represent the number of CFU (colony forming unit)
per ml of Clostridium culture. The data represent the average of three independent experiments and error bars indicate the standard error of the mean. The
sporulation-deficient Clostridium sporogenes-NT1spo0A mutant was used as a negative control to rule out experimental error. The detection limit for colony counts
was 50 CFU/ml.

DISCUSSION

Haemolysis is a defining feature of many bacterial infections,
including necrotising enterocolitis (Clostridium perfringens),
haemolytic–uremic syndrome (Escherichia coli) and listeriosis
(Listeria monocytogenes). Clinical laboratories routinely
determine haemolysis by streaking patient specimens on
blood agar plates. A strain is considered beta-haemolytic
(displays “true haemolysis”) if it produces a clearing of the red
pigment conferred by the blood (Madigan, 2012).

Publication of the genome sequences of C. sporogenes ATCC
15579 and a closely related Group 1 C. botulinum revealed
an SLS homologue, which confers a haemolytic phenotype in
S. pyogenes (Sebaihia et al., 2007). A subsequent study of this
homologue concluded that the genes were functionally equivalent
to those of S. pyogenes (Gonzalez et al., 2010). This was
demonstrated by the independent deletion of four S. pyogenes
M1 SLS genes (sagA-D) followed by complementation with
the equivalent genes from C. botulinum. Complementation of
sagA and sagD strains restored WT levels of haemolysis, while
sagB complementation failed to restore haemolysis and sagC
partially restored haemolysis. In contrast to our own results for
C. sporogenes NCIMB 10696, this paper reports that C. sporogenes
ATCC 15579 exhibits strong beta-haemolysis in blood plate
assays. This suggests there is considerable variation in haemolysis
between strains of C. sporogenes.

We studied the effect of the SLS homologue in C. sporogenes
NCIMB 10696. An 8.6 kb region of the chromosome,
corresponding to the SLS operon, was deleted. To accurately
quantify haemolysis, we developed a liquid assay that proved
considerably more sensitive than the conventional blood
plate assay. This method enabled us to detect and quantify
the effect of the SLS gene products, and the reduction

of haemolysis following operon deletion. This decrease was
statistically significant in horse but not in sheep blood. For
blood agar cultures in clinical laboratories, sheep blood is
commonly used in North America, while horse blood is
more common in Europe. We were unable to find relevant
studies in the literature that compare haemolysis in the blood
of these two animals. Both sources are considered reliable
for the detection of haemolysis (Jorgensen et al., 2015).
Growth and sporulation were not affected by deletion of the
SLS operon.

The ability of Clostridium species, including wild type
C. sporogenes NCIMB 10696, to colonise hypoxic/necrotic
tumours is well documented (Zhou et al., 2018). The most
advanced example of this is a recently reported first-in-
human (FIH) study using C. novyi-NT for treatment of
treatment-refractory solid tumours (Janku et al., 2020). C. novyi-
NT differs from its wild-type parental strain due to the
absence of the alpha toxin. In preclinical studies it was
determined that intratumoral injection was the best method
of administration, due to dose-limiting toxicities observed
following intravenous administration. Following intratumoural
injection with C. novyi-NT, elevated cytokines as well as
local and systemic tumour antigen-specific T cell responses
were observed in patients that showed signs of germination.
This response was not seen when signs of germination were
absent. Three of the 24 patients experienced dose-limiting
toxicities, including sepsis and gangrene. The results of the
C. novyi-NT FIH study have demonstrated the feasibility
of intratumoural Clostridium treatment and has justified
further clinical studies (NCT03435952). Intravenous delivery of
C. sporogenes secreting clinically approved immunotherapeutics
is conceptually different. This method does not rely on the innate
tumorolytic ability of the bacteria, rather it is a means to deliver
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FIGURE 4 | In vivo colonisation study and recovery of bacteria from mouse tissues. (A) Immunocompetent Balb/c mice (ten) were subcutaneously injected with
CT26 tumour cells (2 × 106). When tumour volumes reached approximately 200 mm3 eight treated animals were given 1 × 106 purified C. sporogenes-NT spores.
Two control animals were injected with PBS. 72 h after administration of spores, animals were sacrificed and tumours, spleens and lymph nodes were excised and
subjected to cell counts. (B) The presence of spores and vegetative cells of C. sporogenes-NT in each tissue (tumour, black circles; spleen, open triangles; lymph
nodes, inverted black triangles) was determined by dilution plating on selective media and expressed as colony forming unit (CFU).

therapeutics. In addition, the less invasive nature of the treatment
could be advantageous.

We sought to determine the impact of deleting the SLS-
like operon on the ability of C. sporogenes to colonise
hypoxic/necrotic tumours in mice. In animals injected with
C. sporogenes-NT spores, very high levels of spores and vegetative
cells were detected in tumours compared to other healthy
tissues (≥ 4000-fold). On average, 90% of the bacteria existed
in the metabolically active vegetative form, indicating that the
tumour environment promoted germination of the injected
spores. Spores and vegetative cells were detected at very low
levels in the spleen and lymph nodes. Neither of these tissue
types are anoxic and, therefore, are unlikely to support growth of
obligately anaerobic bacteria. Detection of spores and vegetative
cells in these tissues may be due to accumulation from the initial
injection or due to leakage from the tumour. These organs filter
the blood and lymphatic system, respectively, so they are likely
to concentrate any foreign bacteria present in these systems.

Our results are consistent with a previous study of Clostridium
localisation following intravenous administration (Lambin et al.,
1998; Diaz et al., 2005).

C. sporogenes-NT could be exploited to increase the
concentration of an immunotherapeutic at the tumour site
without exposing healthy tissues, avoiding the adverse effects
caused by systemic delivery. While commercial production of
recombinant proteins has become commonplace, adapting these
principles for therapeutic delivery raises a number of challenges.
The therapeutic must be expressed and secreted from the
bacteria before folding correctly to form the functional product.
In addition, it must be delivered at levels at or above the effective
dose, a function of expression, secretion, protein degradation
and proliferation of the bacteria.

Interleukin-2 was one of the earliest immunotherapy
treatments, but the significant disadvantages associated with
systemic IL-2 treatment have led to more sophisticated
versions, capable of targeting the cancer (Rekers et al., 2018;
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FIGURE 5 | Design and confirmation of C. sporogenes-NT-XmIL2F variants. (A) Schematic illustration of expression vector pATB1C-XmIL2F. The codon optimised
and FLAG-tagged murine IL-2 gene was ligated at the BsaI site with relevant promoter and signal sequence variants (Supplementary Table 3) and inserted into
pMTL82121 vector at the NotI/XhoI sites. Open triangles indicate alignment of screening primers: M13-R and mIL2F-XhoI-R. (B) Four mIL2 expression modules
consist of Pfdx or Pptb promoter (yellow box) followed by eglA or nprM3 signal sequence (blue box). The FLAG-tagged murine IL-2 gene (grey box) was ligated
downstream of a relevant signal sequence. The arrow indicates the signal sequence cleavage site. (C) Colony PCR screening of C. sporogenes-NT transconjugants
harbouring four variants of plasmid-based mIL-2 gene. For each variant a total of three independent clones have been obtained. Plasmid-based mIL-2 strains were
denoted p5, p6, p8 and p9 (Supplementary Table 1), “CspNT” denotes C. sporogenes-NT control, “P” denotes C. sporogenes-NT-pATB1C (empty vector), water
(dH20), M: DNA marker. (D) Visualisation of Western immunoblot analysis performed on C. sporogenes-NT-XmIL2F cell lysates and supernatant fractions following
the incubation with FLAG-tag antibody. “C” denotes FLAG-tag positive control, “M” denotes protein marker. FLAG-tagged murine IL-2 protein has been visualised on
the nitrocellulose membranes with TMB-Blotting 1-Step Solution and corresponds to the size of 18.2 kDa.

Lieverse et al., 2020). Approved for treatment of renal cell
carcinoma and metastatic melanoma, IL-2 is a potent T cell
activator (Amin and White, 2014; Payne et al., 2014). Despite
preferentially inducing the expansion of immune-suppressing

regulatory T cells (Tregs), IL-2 can produce significant clinical
responses when administered systemically at high doses (600,000
IU/kg every 8 h) (McDermott et al., 2005). However, objective
clinical response is only seen in 15-20% of patients, and
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FIGURE 6 | Validation of C. sporogenes-NT variants harbouring plasmid-based mIL-2 in the quantitative and functional assays. (A) Results of commercial ELISA test
indicating the quantities of mIL-2 cytokine present in the supernatants of four C. sporogenes-NT-XmIL2F variants following 7-h growth in PYT media. (B) Results of
colorimetric MTT functional assay following the incubation of CTLL-2 T-cells in the presence of 7-h culture supernatants of C. sporogenes-NT-XmIL2F variants.
Recombinant murine IL2 was used to prepare mIL-2 standard curve. BDL, below detectable levels. Plasmid-based mIL-2 strains were denoted p5, p6, p8, and p9
(Supplementary Table 1), “CspNT” denotes C. sporogenes-NT control, “P” denotes C. sporogenes-NT-pATB1C (empty vector).

immune-related adverse effects (irAEs) are a significant issue that
can be treatment limiting (Buchbinder et al., 2019). Attempts to
reduce toxicity by using lower doses of IL-2 results in a significant
drop in therapeutic effect, due to the dominant effect of Tregs
(Ahmadzadeh and Rosenberg, 2006). The high dose requirement
and the risks of systemic toxicity make IL-2 an excellent test case
for an intratumoral delivery system.

A panel of IL-2 expressing C. sporogenes-NT strains were
created using different combinations of native promoters
(two) and secretion peptide sequences (two). Expression of
recombinant proteins using a single strong promoter carries a
risk of failure, due to the potential toxicity to the host bacteria.
This can manifest as growth inhibition and the emergence of
more competitive mutant variants. Toxicity has been reported for
recombinant expression of IL-2 (Mahmoudi Azar et al., 2013).
To mitigate this risk, the mIL-2 coding sequence was cloned
with two promoters, representing high and low expression. In
our own experience, Pfdx is consistantly strong in any genetic
context, while Pptb produces significantly lower expression. This
is in agreement with other studies (Brunt et al., 2014; Pyne
et al., 2014). Secretion from Gram-positive bacteria can be
achieved by addition of a secretion peptide to the N terminus
of the protein, encoded upstream of the coding sequence. Signal
peptides can be functionally interchangeable between species,
however the efficiency of protein secretion is strongly determined
by these leader sequences. In the context of mIL-2, the native
nprM3 precursor greatly improved the efficiency of secretion
over that of eglA from Clostridium saccharolyticum. High-
level expression combined with inefficient secretion can lead
to recombinant product accumulation as inclusion bodies, and
corresponding host toxicity (Horga et al., 2018; Li and Rinas,
2020). The performance of signal peptides is coding sequence
dependent, and predicting the secretion efficiency based on
peptide sequence is not possible (Freudl, 2018). Identifying a
range of secretion peptides that perform well in different contexts

will facilitate future recombinant protein secretion. In this study,
peak mIL-2 production was achieved in strains that utilised
the Pfdx-nprM3 promoter/secretion peptide combination. In
this construct, a small quantity of tagged protein was detected
in the cellular fraction of cultures. This could be a result of
contamination of the cell pellet by residual supernatant prior to
protein precipitation. Another possibility is that the rate of gene
expression with the Pfdx promoter exceeds the rate of secretion,
leading to an accumulation of mIL-2 in the cytoplasm. In a T
cell proliferation assay, culture supernatants of this strain showed
biological activity equivalent to 602 ng/ml (3010 U/ml) while
ELISA experiments indicated 240 ng/ml (1200 U/ml). The highly
proteolytic nature of C. sporogenes is likely to reduce the level
of secreted mIL-2 measured in laboratory batch cultures. In vivo
experiments will provide an insight into the different dynamics
of protein production and degradation inside a solid tumour.
Prior to this research, secretion of recombinant rat IL-2 was
demonstrated in C. acetobutylicum, a saccharolytic species from
the same Clostridium cluster I. This study reported production
of 800 ng/mL active cytokine, although this was measured at a
significantly higher culture density (Barbé et al., 2005).

This paper reports a safer version of the well-studied cancer
delivery vector, C. sporogenes, by reduction of toxicity through
chromosomal gene editing. Our experiments revealed that C.
sporogenes NCIMB 10696 was only weakly haemolytic, but the
irrefutable presence of the streptolysin S homologue in the
genome sequence could undermine confidence of regulatory
bodies and patients. Deletion of a significant region of the
genome (approx. 8.6kb) did not influence the attenuated strain’s
ability to colonise solid tumours.

The new strain was transformed with mIL-2 expression
vectors. Using a native gene promoter, significant quantities of
mIL-2 were detected in the extracellular fraction of cultures. To
improve the performance of this approach, the next step is to
optimise recombinant gene expression and secretion, as well as
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expand the repertoire of therapeutic agents. Further optimisation
will minimise the metabolic burden and potential toxic effect
on the host bacteria while maximising dose and, by extension,
therapeutic effect. In addition, chromosomal integration of
optimised expression cassettes will be essential to ensure genetic
stability and to eliminate the risk of horizontal gene transfer.
Genetically engineered C. sporogenes-NT poses an elegant and
highly adaptable solution to the challenge of precise delivery of
anti-cancer agents.
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