
Ultra high speed SPECT bone imaging 
enabled by a deep learning enhancement 
method: a proof of concept
Boyang Pan1†, Na Qi2†, Qingyuan Meng2†, Jiachen Wang1, Siyue Peng1, Chengxiao Qi1, Nan‑Jie Gong3*    and 
Jun Zhao2* 

Abstract 

Background:  To generate high-quality bone scan SPECT images from only 1/7 scan 
time SPECT images using deep learning-based enhancement method.

Materials and methods:  Normal-dose (925–1110 MBq) clinical technetium 
99 m-methyl diphosphonate (99mTc-MDP) SPECT/CT images and corresponding 
SPECT/CT images with 1/7 scan time from 20 adult patients with bone disease and a 
phantom were collected to develop a lesion-attention weighted U2-Net (Qin et al. in 
Pattern Recognit 106:107404, 2020), which produces high-quality SPECT images from 
fast SPECT/CT images. The quality of synthesized SPECT images from different deep 
learning models was compared using PSNR and SSIM. Clinic evaluation on 5-point 
Likert scale (5 = excellent) was performed by two experienced nuclear physicians. Aver‑
age score and Wilcoxon test were constructed to assess the image quality of 1/7 SPECT, 
DL-enhanced SPECT and the standard SPECT. SUVmax, SUVmean, SSIM and PSNR from 
each detectable sphere filled with imaging agent were measured and compared for 
different images.

Results:  U2-Net-based model reached the best PSNR (40.8) and SSIM (0.788) per‑
formance compared with other advanced deep learning methods. The clinic evalu‑
ation showed the quality of the synthesized SPECT images is much higher than that 
of fast SPECT images (P < 0.05). Compared to the standard SPECT images, enhanced 
images exhibited the same general image quality (P > 0.999), similar detail of 99mTc-
MDP (P = 0.125) and the same diagnostic confidence (P = 0.1875). 4, 5 and 6 spheres 
could be distinguished on 1/7 SPECT, DL-enhanced SPECT and the standard SPECT, 
respectively. The DL-enhanced phantom image outperformed 1/7 SPECT in SUVmax, 
SUVmean, SSIM and PSNR in quantitative assessment.

Conclusions:  Our proposed method can yield significant image quality improvement 
in the noise level, details of anatomical structure and SUV accuracy, which enabled 
applications of ultra fast SPECT bone imaging in real clinic settings.
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Background
Single-photon emission computed tomography (SPECT), registered with anatomical 
imaging CT (together known as SPECT/CT), combines the advantage of molecular-
level functional SPECT images and the precise anatomic details of CT images. It has 
been proved powerful in bone disease diagnosis and is widely used for the detection 
of bone metastases. Considering the as low as reasonable achievable (ALARA) prin-
ciple, dose reduction is important. From the imaging technique, reducing radiation 
dose and shortening scanning time have the same physical essence. The latter also 
contributes to the patient experience in SPECT/CT examination and reducing the 
motion artifact. However, short scanning time also means high imaging noise, low 
image quality and losing diagnostic value. Advanced methods have been proposed to 
reduce the scanning time or injected dose without degrading the image quality both 
from the hardware and software sides. In the 1990s, a multi-head gamma camera was 
introduced to shorten the scan time. In the 2000s, the invention of cadmium zinc tel-
luride (CZT) detector further improved imaging efficiency [1]. Iftikhar Ali et  al. [2] 
adopted ordered-subset expectation maximization with resolution recovery (OSEM-
RR) algorithm to keep the image quality for half-time SPECT myocardial perfusion 
imaging. Aju P. Pazhenkottil [3] proposed a dose-saving algorithm to depress the 
radiation in SPECT/CT examination.

In recent years, the deep learning method has made massive achievements on multiple 
imaging tasks like lesion detection [4–6], disease diagnosis [7, 8] and image augmenta-
tion [9–11] for different imaging modalities. Some CNN models succeeded to transform 
low-quality images into high-resolution images with less noise and clear boundaries. For 
SPECT images, Liu et  al. [12] used a 3D coupled U-Net (CU-Net) to suppress imag-
ing noise and artifacts in SPECT myocardial perfusion imaging (MPI). Shiri et al. [13] 
explored the performance of deep learning method in two time-reduction MPI-SPECT 
imaging, namely reduction of the acquisition time per projection and reduction of the 
number of angular projections.

In this work, we collect anonymous clinical SPECT/CT image pairs, enhance the fast 
acquired image using deep neural network and evaluate the quality of augmented image 
quantitatively. Compared to previous work, the innovation of this work lies in: (1) we use 
clinical SPECT image rather than simulated data used in other works; (2) we combine 
the SPECT image and corresponding CT images which bear richer anatomical informa-
tion; and (3) we investigate deep learning performance on ultra-high-speed SPECT (1/7 
scan time of normal examination), and the noise level is below the standard for making 
valid clinical diagnosis.

In this paper, we propose a method based on U2-Net architecture but can integrate 
multi-scale and multi-modality features from both low-dose SPECT and corresponding 
CT images. We incorporated a lesion attention loss function to enhance the sensitivity of 
our model to reconstruct lesion regions with more accurate SUV measures. Compared 
to the state-of-the-art methods, our proposed method achieves the best image quality 
with the highest peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). Fur-
thermore, we evaluate our proposed method on real clinical data and phantom data. It 
is demonstrated that synthesized SPECT image from fast SPECT with only 1/7 of stand-
ard scan time is reliable and provides high agreement and similar diagnostic confidence 
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as standard SPECT imaging in clinical routine, which has great value in real clinical 
applications.

Material and methods
Subjects and image acquisition

Patients received systemic bone imaging after the injection of 25–30  mCi (925–
1110  MBq) technetium 99  m-methyl diphosphonate (99mTc-MDP) at Shanghai East 
Hospital. This study was approved by the Institutional Review Board, and all patients 
signed informed consent before the examination. The SPECT/CT data were collected 
using Siemens Symbia Intevo T16 with two continuous protocols: one standard scan 
with 20  s per projection (referred as the standard SPECT) and one fast scan with 3  s 
per projection (referred as the 1/7 SPECT). Sixty projections were performed each scan. 
Projection data were then reconstructed based on CT attenuation map of ordered-
subset conjugate gradient (OSCG) algorithm enhanced with 2 subsets and 28 iterations 
without post-smoothing. Low-dose CT images were collected at 130  kV and 10 valid 
mAs and reconstructed using a smooth attenuation-correction kernel B31s with 3 mm 
slice thickness. The resolution of each SPECT images is 256 ×  256, and 200 images were 
collected each scan. Each SPECT voxel represented a 1.95  mm × 1.95  mm × 1.95  mm 
space. The resolution of CT images is  512 ×  512, and 131 slices were collected for each 
patient. Each CT voxel represented a 0.97  mm × 0.97  mm x 3  mm space. All patients 
were informed to stay still during the examination to keep the quality and correspond-
ence of images. Unmatched 1/7 SPECT and standard SPECT were discarded. Twenty 
matched groups (11 males, mean age: 56 years, age range: 26–75) of fast and standard 
SPECT/CT images were collected for further research. Ten subjects were used for train-
ing the proposed deep learning model, while the rest 10 subjects were set for testing the 
synthesized images. One example of training data is shown in Fig. 1.

National Electrical Manufacturers Association (NEMA) International Electrotech-
nical Commission (IEC) Body Phantom Set was applied as the model, which is a hol-
low cylinder made of plexiglass with 6 spheres of different diameters (10, 13, 17, 22, 28, 
37 mm), and the volume of the hollow cylinder is 9700 ml. The center of the spheres all 

Fig. 1  One example of training dataset. The left images are coronal and axial views of fused SPECT and CT 
images. The middle images are coronal and axial views of 1/7 SPECT. The right images are coronal and axial 
views of the standard SPECT
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locates on a circle 5 cm from the center of the cylinder and a plane 70 mm away from the 
upper surface of the cylinder. SPECT/CT quantitative tomography images with 20 s, 3 s/
view and total of 60 views were performed at a specific activity of 12:1 after one hour of 
instilling. 200 slices of SPECT images and 131 slices of CT images were collected. The 
first 80 slices of SPECT images and corresponding 53 CT images were inserted to the 
training dataset, and the rest matched images were treated as testing samples.

Image preprocess

The simultaneous SPECT and CT acquisition modes facilitate the integration of input 
data from the two modalities. SPECT image provides diagnostic information at the 
expense of the anatomic features which can be supplemented by the corresponding CT 
image. Hence, we propose to combine 1/7 SPECT image and CT image as the input and 
take the standard SPECT as the network output. To facilitate the combination of SPECT 
and CT images, each collection of CT images was reshaped into a 200 × 256 × 256 
matrix which has the same shape with SPECT. To flatten the difference of voxel values, 
all the input images and the output were divided by their own average. Then correspond-
ing SPECT and CT slices were concatenate in the first dimension before sending to the 
proposed U2-Net architecture.

The ablation study in the experiment shows the effectiveness of the combination com-
pared with using only 1/7 SPECT as input.

Residual U‑block and U2‑Net

The 1/7 SPECT varies greatly from the standard SPECT both from the presence of 
bone structure and voxel value of lesions. So, both local and global contextual features 
are important for this image synthesis task. U2-Net was originally proposed for salient 
object detection (SOD). The neural network architecture is different from modern CNN 
designs, such as AlexNet [14], ResNet [15], GoogLeNet [16], DenseNet [17] and VGG 
[18]. These networks were originally built for image classification tasks which prefer 
to use small convolutional filters with a size of 1*1 or 3*3 to extract features. U2-Net 
[19] is a simple yet powerful deep network architecture. It contains a novel two-layer 
nested U-shaped structure [20]. The proposed residual U-block (RSU) consists of a 
mixture of different-sized receive domains that helps capture contextual information 
on different scales more efficiently. It also uses pooling operations to increase the over-
all architecture depth without affecting the computational cost much. There are three 
major components in RSU which are input convolutional layer, U-Net-like symmetric 
encoder–decoder structure of ‘L’ height and residual connection to fuse local and multi-
scale features using summation. The RSU module with height = 7 is also shown in Fig. 2.

Based on RSU blocks alone, U2-Net was developed. It consists of a 6-stage encoder, a 
5-stage decoder and a graph fusion module attached to the decoders at different stages. 
(i) In the encoder stages, RSU-7, RSU-6, RSU-5 and RSU-4 are used, respectively, in 
which ‘7,’ ‘6,’ ‘5’ and ‘4’ denote the heights (L) of RSU blocks. As the resolution of fea-
ture maps in the middle part of U2-Net is relatively low, further downsampling of these 
feature maps would cause loss of useful context. Hence, we use dilated convolution to 
replace the pooling and upsampling operations, and this kind of special block is referred 
to as ‘RS-L’ which is also shown in Fig. 2 with height = 4. (ii) In the decoder stages, it has 
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similar structures to their symmetrical encoder stages starting from RS-4. There are 5 
stages in total in which each decoder stage takes the concatenation of the upsampled 
feature maps from its previous stage and those from its symmetrical encoder stage as 
the input as shown in Fig. 2. (iii) The last graph fusion module is used for generating 
final synthesized SPECT images. First, this U2-Net generates six side output synthesized 
SPECT images Sup(6), Sup(5), Sup(4), Sup(3), Sup(2), Sup(1), which are upsampled to 
have the same size as input 1/7 SPECT image. Then, these outputs are fused with a con-
catenation operation and input to a 1*1 convolution layer followed by a long skip con-
nection with 1/7 SPECT to generate the final synthesized SPECT image.

Lesion attention loss and deep supervision

To ensure the accuracy of the synthesized image value and distinguishability of the 
structure and important ROIs, we adapt a combination loss function of the structural 
similarity index (SSIM) loss and the L1 loss. The total loss for each output SPECT at dif-
ferent decoder stages is

where α is a fixed weight ( α = 0.5) that balances the SSIM loss and L1 loss.
To further improve the performance on lesion regions, we add lesion attention masks 

to emphasize the loss in these areas. The lesion masks were contoured on standard 
SPECT by physicians. So, the improved lesion attention loss is defined as

where β is a fixed weight ( β = 100) that balances the lesion region loss and whole image 
loss. M is the lesion mask.

We also use deep supervision strategy in the training process to speed up the training 
process and acquire stable media layers. The total loss for training the U2-Net is defined 
as

L = L1 + αLssim

ℓ = L+ βL ∗M

Ltotal =

N
∑

i=1

wi
sideℓ

i
side + wfinalℓfinal

Fig. 2  Illusion of proposed U2-Net architecture. It consists of 4 residual U-block (RSU) encoders with height 
of L, 3 bottom residual block (RS) and 4 symmetric RSU decoder. Skip connections are used to save spatial 
information along matched encoders and decoders. 1/7 SPECT and corresponding CT image are used as the 
input. The output of the network is images convoluted and upsampled from the second and third RS and 
follow-up decoders
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where ℓiside (N = 6, as Sup1, Sup2, Sup3, …, Sup6 in Fig. 2) is the loss of the side output 
and ℓfinal is the loss of final output of the network. wi

side and wfinal control the weights of 
each component in the total loss. In the testing process, final output is the only part for 
synthesizing SPECT images.

Implementation details

The proposed method is implemented using PyTorch 1.6.0 and trained on four NVIDIA 
GEFORCE 3090 (24 GB). The network is trained for 100 epochs, and the batch size is set 
to 4 by using axial slice as inference plain. VGG net is used as the discriminator. Adam 
optimizer is used with the learning rate of 0.0002 for both the generator and discrimina-
tor and divided by 10 after 80 epochs.

Quantitative assessment

To quantitatively evaluate the performance of synthesized images, PSNR and SSIM are 
used as evaluation metrics. PSNR for synthesized image is defined as

where MAXgt is the maximum pixel value of ground truth standard SPECT. MSE is the 
mean square error of synthesized images compared to the standard SPECT.

SSIM for synthesized image is defined as

where µx and σ 2
x  are average value and variance of input synthesized image. µy and σ 2

y  
are the average value and variance of input standard SPECT. σxy is covariance of two 
images. c1 and c2 are small constants. SSIM is calculated using scikit-image package.

Clinical assessment

Two readers independently grade 1/7 SPECT, synthesized SPECT by proposed method 
and standard SPECT in terms of general image quality, detail of 99mTc-MDP distribu-
tion, presence of artifacts and general diagnostic confidence using 5-point Likert scale (1 
for unacceptable image quality; 2 for suboptimal image quality; 3 for acceptable image 
quality; 4 for good image quality; and 5 for excellent image quality). Readers are blinded 
to meta-information of compared images.

Average scores of each kind of image are compared. Paired t test is used to identify 
significant differences between each criterion.

Phantom study

Half phantom images are used to training the model. The rest half including the center 
position of the phantom are used for testing. The images of the sphere centers are used 
to distinguish different spheres. SUVmax and SUVmean are measured and compared for 
each recognizable sphere. SUV is defined as

PSNR = 10 · log10

(

MAX2
gt

MSE

)

SSIM
(

x, y
)

=

(

2µxµy + c1
)(

2σxy + c2
)

(

µ2
x + µ2

y + c1

)(

σ 2
x + σ 2

y + c2

)
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PSNR and SSIM are calculated for 1/7 SPECT and generated SPECT.

Results
Comparison with other networks

The proposed U2-Net model is compared with four widely used deep learning architec-
tures, i.e., EDSR [21], RCAN [22] and ESRGAN [23], respectively.

The visualization results for one testing case for different methods are shown in Fig. 3. 
A zoomed-in region is also shown in Fig. 4 for better comparison. Figure 5 provides an 
axial view of image difference between different methods and the standard SPECT.

The quantitative results are presented in Table  1. In general, our result reaches the 
best performance based on both qualitative and quantitative evaluation. The noise in the 
chest region as shown in the 1/7 SPECT image has been successfully removed in our 
proposed result. This is the effect of using U2-Net as the neural network architecture 
since it provides abundant contextual information from different scales for improving 
the anatomical structural details. This is also the effect of adding the CT image as the 
input of the network due to the clear anatomy feature provided by CT images which 

SUV = pixel value ∗ weight in grams/total dose in MBq.

Fig. 3  Visual results of different methods on synthesizing standard SPECT from 1/7 SPECT. Please zoom in 
for a better comparison. The results are images from the same case using 1/7 scan time constructed with 
the OSCG algorithm, enhanced by EDSR network, RCAN network, ESRGAN network, proposed U2-Net, 
respectively, and the standard SPECT image

Fig. 4  Zoomed visual results of different methods on synthesizing standard SPECT from 1/7 SPECT. The 
results are zoomed images from the same case using 1/7 scan time constructed with the OSCG algorithm, 
enhanced by EDSR network, RCAN network, ESRGAN network, proposed U2-Net, respectively, and the 
standard SPECT image
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results in clear boundaries in the synthesized standard SPECT image. Our proposed 
method also increases the sharpness with consistent details and achieves the highest 
PSNR and SSIM score at the same time (PSNR = 40.8, SSIM = 0.788).

Clinic evaluation

The assessment results are shown in Fig. 6. The average scores for the 1/7 SPECT, pro-
posed method and the standard SPECT are 2, 3.85 and 3.85 in terms of general image 
quality, 1.8,3.8 and 4.15 for details of contrast, 2, 3.75 and 3.9 for presence of artifacts 
and 1.95, 3.85 and 4.15 for diagnostic confidence. We can see the average grades of the 
proposed method are much better than those of 1/7 SPECT. Significant difference was 
found using Wilcoxon test (P < 0.05) for all evaluation metrics. Compared to the stand-
ard SPECT, our method achieved the same general image quality (P > 0.999), similar 
detail of 99mTc-MDP (P = 0.0510), presence of artifacts (P = 0.3434) and the diagnostic 
confidence (P = 0.1265).

Phantom study

The phantom images acquired from 1/7 of standard scan time are also enhanced using 
our method. The images of the center part of the phantom are shown in Fig. 7. On 1/7 
SPECT, we can only identify 4 spheres that exhibited evident contrast against back-
ground signals. On the generated image and the ground truth image, we can distinguish 
5 and 6 spheres separately. All these spheres are numbered in the figure for further 
quantitative evaluation.

SUVmax and SUVmean are calculated for spheres 1 to 4. The quantitative results are 
shown in Table 2. SUVmax and SUVmean of each sphere in enhanced image are much 
closer to the ground truth image compared with the 1/7 SPECT image.

Fig. 5  An axial view of image difference between different methods and the standard SPECT. a–f The original 
image of 1/7 SPECT, EDSR, ESRGAN, RCAN, proposed method and the standard SPECT in the grayscale of 
minimum = 0, maximum = 120,000. g–k The difference between the standard and corresponding image 
(standard–corresponding image, minimum =  − 20,000, maximum = 20,000)

Table 1  Average SSIM and PSNR comparison for different methods

1/7 SPECT EDSR RCAN ESRGAN Proposed

SSIM 0.765 0.778 0.781 0.772 0.788

PSNR 37.7 38.6 40.5 40.1 40.8
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Fig. 6  Clinical assessment results of image quality for 1/7 SPECT, proposed method and the standard SPECT. 
The average scores for the 1/7 SPECT, proposed method and the standard SPECT are 2, 3.85 and 3.85 in terms 
of general image quality, 1.8,3.8 and 4.15 for details of contrast, 2, 3.75 and 3.9 for presence of artifacts and 
1.95, 3.85 and 4.15 for diagnostic confidence. 1/7 SPECT is significantly different from SPECT image enhanced 
by proposed method under Wilcoxon test (P < 0.05) for all evaluation metrics. Compared to the standard 
SPECT, proposed method achieved the same general image quality (P > 0.999), similar detail of 99mTc-MDP 
(P = 0.125), presence of artifacts (P = 0.531) and the diagnostic confidence (P = 0.1875)
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SSIM and PSNR results for 1/7 SPECT and enhanced image using the standard SPECT 
as reference are shown in Table 3. Proposed method performed better than 1/7 SPECT 
on both criteria.

Ablation study

To verify the effectiveness of using both 1/7 SPECT and CT image as input that boosts 
the image quality, ablation studies are conducted on w/ or w/o CT, while another imple-
mentation set remains the same. The visual results are shown in Fig. 8, in which we can 
observe that the bone structure pointed by the blue arrow has been recovered in the 

Fig. 7  Visualization results of phantom images from different methods. On 1/7 SPECT, only 4 spheres can 
be identified that exhibited evident contrast against background signals. On the generated image and the 
ground truth image, 5 and 6 spheres can be distinguished separately

Table 2  Quantitative results for different spheres

SUVmax SUVmean

1/7 SPECT Proposed Ground truth 1/7 SPECT Proposed Ground truth

Sphere 1 12.314 13.591 13.756 9.529 10.216 10.379

Sphere 2 13.176 12.4 12.231 8.405 8.095 7.923

Sphere 3 9.733 9.385 9.292 7.366 7.275 7.284

Sphere 4 4.897 4.62 4.735 4.093 3.869 3.885

Table 3  Average SSIM and PSNR comparison for 1/7 SPECT and enhanced image

1/7 SPECT Proposed

SSIM 0.87 0.94

PSNR 32.12 33.54

Fig. 8  Visual results of w/ and w/o CT as input of the proposed model. Enhanced image with combined CT 
input preserved more structure than those without CT input and 1/7 SPECT
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result with both 1/7 SPECT and CT as input, while the result w/o CT as input fails to 
recover this bone structure due to the missing information in the original 1/7 SPECT 
image. Ablation study of w/o and w/ lesion attention loss is also shown in Fig. 9. We can 
see that the synthesized SPECT using lesion attention has more accurate SUV values 
and better contrast compared to w/o lesion attention as pointed by the blue arrow.

Discussion
The deep learning-based imaging enhancement method has been applied to many 
modalities like low-dose PET/MRI [24], compressive sensing MRI [9] and low-dose CT 
[25]. For SPECT images, Olia et al. [26] implemented a generative adversarial network to 
predict non-gated normal-dose SPECT-MPI images in the projection domain at differ-
ent reduced dose levels. Song et al. [27] investigated a 3D residual convolutional neural 
network (CNN) model to predict standard-dose images from 1/4-dose gated SPECT-
MPI images. However, no research has employed an artificial intelligence algorithm on 
SPECT bone image augmentation to the best of our knowledge. Compared with pre-
vious SPECT study, Olia et  al. and Song et  al. use simulated low-dose SPECT recon-
structed from partial list mode data, and our work uses continuous scan to acquire data 
pairs which is closer to clinical settings. Besides, we explored a more complicated net-
work architecture which could extract smaller features.

This study evaluated 1/7 SPECT/CT image augmentation using the proposed deep 
learning method on a clinical set. The results showed that an undiagnosable SPECT 
image could be enhanced by deep learning method to be comparable with the stand-
ard SPECT in terms of visual effect. Quantitative results showed that PSNR and SSIM 
of synthesized SPECT images were much better than the original 1/7 SPECT and the 
proposed method reached the best performance compared with other advanced deep 
learning methods.

Organ movements during acquisition series may lead to non-perfect alignment of CT 
to SPECT and fast scan to the standard scan. Our result shows this phenomenon is not 
severe in organs visible in SPECT images like kidney. Our result shows the boundary of 
these soft tissues remains clear. The main problem of soft tissue quality is still noise level.

Fig. 9  Visual results of w/ and w/o lesion attention as input of the proposed model. Enhanced image with 
lesion attention loss holds clearer SUV variation within tissues than those without lesion attention
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Clinic assessment exhibits that the clinical value of synthesized images is much better 
than this of low-dose SPECT images and comparable to the standard SPECT images. 
The average score for deep learning enhanced image is obviously higher 3 and close to 4 
in 5-point Likert scale, which proved the image quality meets the standard for clinic use. 
Dietze et al. [28] compared different methods for SPECT image reconstruction includ-
ing filtered back projection (FBP), clinical used method, convolution neural network 
(CNN)-based method and Monte Carlo-based method. They concluded that images 
generated by CNN-based method reached similar image quality as those reconstructed 
by the Monte Carlo method but spent far less time. This result also demonstrated the 
potential of CNN-based imaging enhancement method in clinical use.

Compared to other widely used network architectures, our proposed U2-Net reached 
the best PSNR and SSIM performance. U2-Net has been verified useful in image seg-
mentation task [19], but the augmentation task is quart different in predicting the exact 
value of each pixel. Our visual results (Figs. 3, 4) proved U2-Net-based method has the 
best capability to handle small structures which could be discontinuous or invisible on 
1/7 SPECT images. Since no bone scan has been enhanced by deep learning method, we 
compared our results with other SPECT study. Li et al. [29] compared SSIM and PSNR 
of DL-enhanced phantom images on different dose levels. They received 0.9470 SSIM of 
simple Jaszczak phantom from 60-view projection data and 0.9117 from 30-view pro-
jection data. It is higher than our clinical result and comparable to our phantom result. 
High noise level in background is the main reason accounting for the relatively low SSIM 
result. If we set the background all to 0, we got SSIM of about 0.87 for 1/7 SPECT and 
about 0.96 for proposed method which is on the same level as Li’s result.

The ablation study showed the effectiveness of combining both SPECT and corre-
sponding CT as the input, which makes it possible to recover the bone structures that 
were missing on 1/7 SPECT. Associating a functional image and the matching structural 
image as the input of the neural network for image augmentation task has been proved 
effective in low-dose PET image recovery task [24]. Our result showed the possibility of 
structure recovery in fast SPECT that not presented on the standard SPECT. This means 
the input CT image may not only provide the structure information but also contribute 
to the pixel value which make the result misleading. One solution to this issue could be 
use the binarized gradient map of CT image which only provide structure boundaries. 
Increasing the training dataset may also help to solve this problem by generating a more 
precise model.

The ablation study also proved the usefulness of adding lesion region loss in the train-
ing process, which retrieved the contrast within structures much better than those with-
out lesion region loss. The SUV value in lesion area is more important in the clinical 
criteria. Ly et al. [30] evaluated the SUV of low-dose PET, the standard PET and PET 
synthesized using deep learning method. The simulated image has equal SUV perfor-
mance as the low-dose image, but far less than full-dose PET image. Our results exhibit 
that the SUV distribution with lesion attention is much more precise than those without 
lesion attention, which means the strategy also contributed to the accuracy of SUV.

Our experiment proved the feasibility of greatly accelerating SPECT imaging without 
sacrificing image quality using deep learning method. The fast SPECT imaging tech-
nique ameliorates patient experience and reduces motion artifacts. Methods have been 
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proposed to speed up SPECT imaging [1, 2, 12, 13]. However, traditional methods like 
using advanced detectors or using iterative algorithms could only increase the imag-
ing efficiency by a factor of two, and our methods could apply to ultra-low-dose SPECT 
imaging with only 1/7 scan time. Compared to other DL-based methods applying to 
MPI-SPECT, our method improved the imaging quality of bone SPECT. We also made 
it possible to make the image quality of synthesized SPECT comparable to that of the 
standard acquisitions.

In this work, we also applied our method to the phantom data. Chrysostomou et al. 
[31] used deep learning method to reconstruct low-projection SPECT imaging. They 
proved SSIM, MSE and PCC of enhanced phantom images were better than that of sim-
ulated low-projection SPECT images. In our study, we scan the real phantom and meas-
ured SSIM, PSNR, SUVmax and SUVmean and reach the same results as the previous 
work.

Our method could also enhance the image quality of low-dose SPECT images for both 
shortening the scan time and reducing the amounts of injected radionuclides, resulting 
in the reduction of received signals for SPECT scanners, which is the direct factor affect-
ing SPECT image quality. Ramon et al. [32] evaluated the diagnostic accuracy of CNN-
enhanced low-dose MPI-SPECT image and draw a conclusion that DL denoising can 
achieve additional dose reduction without sacrificing the diagnostic accuracy in SPECT-
MPI compared with iteration algorithms.

One limitation of our study is that our method is tested on a single SPECT/CT sys-
tem, single contrast agent and the same imaging reconstruction method. Further, we did 
not study the impact on image quality in special patient groups such as obese patients, 
young or old patients and patients with other metabolic diseases. Nevertheless, this is 
the first study to evaluate the performance of deep learning method on fast bone SPECT 
using clinical data. Further study in a larger population is required to explore the opti-
mum weights for different parts of the total loss and cut off the extra channels in the 
network to speed up the calculation. We believe this method could also be applied to 
greatly reducing injection dose if further validated.

Conclusion
In this paper, we focus on the synthesis of standard SPECT from a ultra fast SPECT scan 
with only  1/7 scan time. We propose to apply a novel U2-Net-based framework that 
aggregates features from both fast SPECT scan and corresponding CT image as well as 
extract both local and global information from multi-scale features. We demonstrated 
the proposed method   was able to achieve an acquisition time reduction by 7 times. The 
comprehensive results showed the proposed method can yield significant image quality 
improvement both in the noise level, anatomical structure clearness and SUV accuracy 
which enables application in real clinical settings.
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