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Abstract

Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower
eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including
Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is
the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of
the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps2] [PIN+] cells, Sup35 forms
fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions
on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1D, bem1D, arf1D,
and hog1D) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17D, vps5D, and
sac6D) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions
enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes
Huntington’s disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that
can be inhibited at different steps.
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Introduction

Prions are associated with transmissible spongiform encepha-

lopathies, a family of neurological diseases that include Creutz-

feldt-Jakob disease in humans, Scrapie in sheep, and the well-

publicized ‘‘Mad Cow’’ disease. Transmission of prions occurs

when a normally folded protein is converted to an alternate

conformation that has the ability to further convert additional

molecules of the normal protein into the misfolded infectious form.

Prions also exist in Saccharomyces cerevisiae. The well characterized

cytoplasmically transferred elements [URE3], [PSI+], and [PIN+]

(see reviews [1–4]), as well as several other recently characterized

elements [5–9], have been identified as yeast prions.

Prions occur spontaneously in laboratory strains, although at

very low frequency [10–12]. De novo appearance of prions can be

facilitated by overexpression of either the whole prion protein or

distinct regions that are required for propagation, called prion

domains [13–19]. Most known yeast prion domains are glutamine

(Q) and asparagine (N) rich [3,5–9,20]. In the case of de novo

appearance of the prion form of the Sup35 translational

termination factor, [PSI+], overexpression of Sup35 or its prion

domain (Sup35PD) dramatically increases the appearance of

[PSI+]. However, this increase requires either Q/N-rich domains

that are simultaneously overexpressed [21,22] or the presence of

another Q/N rich prion, like the prion form of the Rnq1 protein,

[PIN+] (also called [RNQ+]; [22–24]).

Similar to prion strains found in mammals (reviewed in [25]),

yeast prions have also been shown to exist in different conformations

called ‘‘variants’’ [14,26–30]. The introduction of in vitro generated

Sup35 amyloid fibers into yeast not only infects the cells with the

prion, proof of the ‘‘protein-only’’ hypothesis, but also demonstrates

that distinct forms of the in vitro made amyloid cause the appearance

of distinct variants that are heritable [31–32].

To further understand how prions are formed and maintained,

recent studies have focused on specific host factors that affect the

propagation and appearance of yeast prions. Chaperones, which

are normally involved in proper protein folding, play a role in

prion maintenance and appearance. Hsp104 and Sis1 break prion

aggregates into smaller pieces that efficiently segregate into

daughter cells, a requirement for prion transmission [33–41].

Deletion of the N-terminal activation domain of Hsf1, a heat shock

transcription factor, prevents [PSI+] formation, while deletion of

the Hsf1 C-terminal region promotes [PSI+] appearance [42].

Furthermore, disruption of the non-essential human Hsp110

ortholog, SSE1, or overexpression of HSP82 and HSC82 that

encode members of the Hsp90 family of chaperones, dramatically

reduces, but does not eliminate, the induction of [PSI+] caused by

the overexpression of Sup35PD [43].
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Factors that affect [PSI+] induction are not limited to

chaperones. Deletion of actin cytoskeletal genes, such as SLA1 or

SLA2, reduces [PSI+] induction [44], suggesting that the actin

cytoskeleton may play a role in prion appearance. Deletion of the

ubiquitin-conjugating enzyme, Ubc4, enhances the de novo

appearance of [PSI+] [45], and exposure to environmental stress

can also alter the frequency of [PSI+] appearance [46].

Here, we identify deletions of several genes (bug1D, bem1D,

arf1D, hog1D, las17D, vps5D, and sac6D) that reduce the efficiency

with which overexpression of Sup35PD can induce the de novo

appearance of [PSI+]. Deletion of LAS17, VPS5, or SAC6, which

are associated with endocytosis and the actin cytoskeleton, not

only inhibit [PSI+] induction, but also suppress the toxicity and

aggregation associated with the expanded glutamine repeats of the

huntingtin protein exon 1 that causes Huntington’s disease.

Results

Deletions of BUG1, BEM1, ARF1, HOG1, LAS17, VPS5, and
SAC6 show low or no induction of [PSI+] but maintain
propagation of [PSI+] and [PIN+]

Our goal was to identify genes that influence the induction of

the [PSI+] prion. Previous work approached this problem by

making use of the observation that overexpression of Sup35PD-

GFP in [PSI+] [PIN+] cells causes toxicity due to excessive

sequestration of essential Sup35 into large aggregates [46,47].

When Sup35PD-GFP is highly overexpressed in [psi2] [PIN+]

cells, the frequent induction of [PSI+] results in an intermediate

level of toxicity, because only cells that have switched to the [PSI+]

state are sick [23,46]. Therefore, genes whose deletions enhance or

reduce the toxicity associated with overexpression seemed likely to

increase or decrease [PSI+] induction frequency, respectively [46].

We tested 238 deletion strains that enhanced toxicity, 151 that

reduced toxicity, and nine other strains studied in Tyedmers et al.

[46] (Table S1; Tyedmers and Lindquist, unpublished) for their

effects on [PSI+] induction.

First, to distinguish the inability to induce [PSI+] from the

inability to propagate [PSI+] we tested if the 398 deletions could

maintain weak and strong variants of [PSI+] in a propagating

culture after cytoduction with [PSI+]. A plasmid encoding a copper

inducible Sup35PD-GFP fusion was plasmiduced into the deletion

strains simultaneously with the cytoduction of weak or strong

[PSI+]. After over 50 generations of growth, we scored for

maintenance of [PSI+] by overexpressing Sup35PD-GFP and

examining cells for the presence of fluorescent aggregates. All

deletion strains cytoduced with either weak or strong [PSI+]

contained fluorescent aggregates, indicative of [PSI+], except for

hsp104D, which had the characteristic diffuse fluorescence of [psi2]

cells (data not shown). Additionally, we have previously shown that

[PIN+] is maintained in all strains of the deletion library except

rnq1D and hsp104D [48].

Next, we used a standard nonsense suppression assay for [PSI+]

to screen the 398 yeast deletion library strains, in the BY4741

background, for their effects on induction of stable propagating

[PSI+]. To do this, the [PIN+] prion, the Sup35PD-GFP plasmid,

and a plasmid containing a ura3–14 nonsense allele to score for

[PSI+] cells [49] were simultaneously cytoduced into the 398

deletion strains as described previously [48]. Following overex-

pression of Sup35PD-GFP to induce [PSI+], cells were plated on–

Ura where suppression of the plasmid borne ura3–14 nonsense

allele allowed [PSI+], but not [psi2], cells to grow.

Six novel deletion strains: bem1D, def1D, scp160D, rpp1aD, spt4D,

and pre9D, as well as the expected rnq1D and hsp104D deletions,

failed to grow on -Ura (Table 1). Previous work has shown that in

the presence of the SUP35 R2E2 allele, which increases the

appearance of [PSI+] without SUP35 overexpression, bem1D and

pre9D decreased [PSI+] appearance [46]. In addition, 29 other

deletions showed either low or extremely low induction of [PSI+]

(Figure 1; Table 1). While strains carrying deletions of SPT4 or

YML010C-B failed to express Sup35PD-GFP, all other deletion

strains expressed Sup35PD-GFP at similar levels (data not shown).

Deletion strains that decrease the efficiency of [PSI+] induction

(Table 1) were from both enhanced and reduced toxicity groups.

This makes sense if we consider that toxic side effects of the

deletions could overlay the positive effect on growth rate due to the

Author Summary

Certain proteins that exist in functional unaggregated
conformers can also form self-perpetuating infectious
aggregates called prions. Here we investigate factors
involved in the initial switch to the prion form. De novo
appearance of the [PSI+] prion, which is the aggregated
form of the Sup35 protein, is dramatically enhanced by
overexpression of the SUP35 gene in the presence of the
prion form of the Rnq1 protein, [PIN+]. When tagged with
green fluorescent protein and transiently overexpressed in
[psi2] [PIN+] cells, Sup35 forms fluorescent rings, and cells
with these rings give rise to daughter cells that are [PSI+].
Here, we investigate factors required for this induction of
[PSI+]. Analyses of over 400 gene deletions revealed two
classes that reduce [PSI+] induction: one class forms
fluorescent rings normally, and the other does not.
Interestingly, the former class enhanced, while the latter
class reduced, toxicity associated with the expanded
polyglutamine repeats of the huntingtin protein exon 1
that causes Huntington’s disease. These results suggest
that prion formation and polyglutamine aggregation
involve a multi-phase process that can be inhibited at
different steps.

Table 1. Yeast deletion library strains that show no, very low,
or low induction of [PSI+].

Deletions that fail to induce [PSI+]

bem1D*- hsp104D- rnq1D*- scp160D*-

def1D*- pre9D* rpp1aD*+ spt4D{-

Deletions that show very low induction of [PSI+]

ase1D*- bfr1D*- hog1D*+ rpl20bD*-

arf1D*- bre1D*+ hop2D{- ycl005wD{-

Deletions that show low induction of [PSI+]

ada2D+ nas2D*+ snf8D+ ydr048cD{+

asc1D+ new1D+ swa2D*+ yhr033wD+

bug1D*+ pub1D- trf5D*+ yml010c-bD{-

cik1D*+ sac1D+ tsr2D+

gvp36D+ sgf73D+ vid22D+

lst7D*+ slg1D+ ydl032w+

*Re-engineered deletion.
{Unable to obtain deletion.
{Showed extremely low induction of Sup35PD-GFP.
+enhanced toxicity as described by Tyedmers et al., unpublished.
-reduced toxicity as described by Tyedmers et al., unpublished.
doi:10.1371/journal.pgen.1001386.t001

Two Gene Classes Control Prion and PolyQ Formation
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reduced [PSI+] induction. Furthermore, in some deletions, even

the overexpression of YFP alone (without the Sup35 prion

domain) causes strong toxicity that must be, therefore, completely

unrelated to prion induction frequency [46].

To eliminate the effects of secondary mutations known to have

accumulated in library strains [50,51], multiple independent

deletions of nineteen of the best candidates that showed no or

reduced induction of [PSI+] (Table 1) were re-engineered in a

wildtype 74-D694 [PIN+] strain. This 74-D694 genetic back-

ground contains a [PSI+] suppressible ade1–14 allele that provides

the ability to directly score for [PSI+] by examining growth on -

Ade. Of the 19 re-engineered deletions, only the six deletions

(bre1D, bug1D, bem1D, arf1D, pre9D, and hog1D) that reproducibly

reduced the frequency of [PSI+] induction, relative to the wildtype

induction frequency of approximately 7.5 X 1023 (Figure 2), were

pursued further. Since a slow growth phenotype complicates the

scoring for [PSI+], deletions that significantly inhibited growth in

the 74D-694 background, like lst7D and swa2D (data not shown),

were eliminated from further analysis.

In addition to the above deletions, we made a deletion of LAS17,

which was previously shown to inhibit the aggregation of the

polyglutamine 103Q repeat [52]. We also made deletions of VPS5

and SAC6, because they, like Las17 and other proteins shown to

affect the appearance of [PSI+], are associated with endocytosis

and the actin cytoskeleton. Even though prion propagation is

unaffected in these three deletion strains because they were all able

to maintain [PSI+] over many generations after cytoduction (data

not shown), vps5D caused a significant decrease in prion induction,

and las17D and sac6D strains completely failed to induce [PSI+]

(Figure 2).

To eliminate deletions that reduced [PSI+] induction by altering

the levels of Sup35, Sup35PD-GFP, or chaperones, we examined

these levels in all strains. None of the deletions caused significant

changes in Hsp104, Ssa1, Sis1, Sse1, or Ssb1/2 (data not shown).

Since Sup35PD-GFP levels were reduced in bre1D strains and

Sup35 endogenous levels were decreased in pre9D strains (Figure

S1), these deletions were dropped from further study.

To eliminate the possibility that the reduced [PSI+] induction

was due to the loss of [PIN+] during the construction of any of the

deletion strains, we showed that the maintenance of [PIN+] was

unaffected by the deletions. Each independently constructed

deletion was crossed to a [pin-] strain carrying a plasmid with

the CUP1 controlled RNQ1-GFP fusion. When grown on medium

containing copper, induction of the resulting diploid containing

the RNQ-GFP construct caused the appearance of punctate dots

indicative of [PIN+] (data not shown). Furthermore, we showed

that [PIN+] was maintained in deletion strains by the presence of

[PIN+] characteristic SDS-resistant oligomeric species after

24 hours of Sup35PD-GFP overexpression (Figure S2). Differenc-

es in the migration of Rnq1 SDS-resistant oligomers have been

shown to be associated with different [PIN+] variants [53]. We

observed similar migration of Rnq1 oligomeric species in the

deletion strains, suggesting that the [PIN+] prion variants were not

altered during construction of the strain or by Sup35PD-GFP

overexpression. These results and other properties of the deletions

investigated further below are summarized in Table 2.

Figure 1. Scoring for [PSI+] induction in deletion strains. All deletion library candidates in the BY4741 background were cured on GuHCl and
cytoduced using kar1 donor strains containing the Sup35PD-GFP and ura3–14 plasmids and either high [PIN+] (right) or [pin2] (left). Expression of
Sup35PD-GFP was induced on plasmid selective media containing 50 mM copper for two days and then spotted either onto -Ura to score for [PSI+]
induction or +Ura to assay growth. All cytoductions were performed in duplicate and cytoductants were tested for the ability to induce [PSI+] multiple
times. Control strains (top row) show growth on -Ura in [PIN+], but not [pin2], strains after 8 days. Both rnq1D (second row) and bem1D (third row)
strains show no growth on -Ura after 11 days, indicative of no [PSI+] induction. Deletion strains showing very low induction, e.g. arf1D, exhibit very
few colonies after 11 days of growth on -Ura (fourth row), whereas strains showing low induction (e.g. bug1D, last row) show slow growth on -Ura
after eight days.
doi:10.1371/journal.pgen.1001386.g001

Two Gene Classes Control Prion and PolyQ Formation

PLoS Genetics | www.plosgenetics.org 3 May 2011 | Volume 7 | Issue 5 | e1001386



Reduced [PSI+] formation is not always associated with
reduced ring formation

Transient overexpression of Sup35PD-GFP in [psi2] [PIN+]

cells leads to the appearance of cytoplasmic fluorescent rings and

lines [54]. Daughter cells derived from micromanipulated cells

that contain such rings or lines, where overexpression of

Sup35PD-GFP is turned off but where endogenous SUP35 is

tagged with GFP, always contained fluorescent punta indicative of

[PSI+] [55]. In contrast, mother cells without ring or line

aggregates always gave rise to daughter cells with diffuse

fluorescence, indicative of [psi2] [44,54–56]. Thus the appearance

of rings/lines, while not necessarily a direct intermediate in the

formation of [PSI+], is nonetheless a hallmark of the potential

appearance of induced [PSI+]. No such rings have ever been

observed during spontaneous appearance of [PSI+] in the absence

of Sup35PD overexpression (unpublished).

To determine the deletions that inhibit the induction of [PSI+]

and also prevent ring formation, we compared the number of cells

that contained rings after 24 hours of expressing Sup35PD-GFP in

the seven deletion strains. Ring containing cells in four of the

deletions, bug1D, bem1D, arf1D, and hog1D, appeared at levels

similar to wildtype (30%, Figure 3A). The rnq1D strains, which are

[pin2], always displayed diffuse fluorescence (Figure 3A), as

expected, since [PIN+] has been previously shown to be required

for ring formation [54].

Interestingly, when measured after 24 hrs of Sup35PD-GFP

induction, the three deletions associated with endocytosis and

organization of the actin cytoskeleton, sac6D, las17D, and vps5D, all

showed a significant reduction in cells containing rings. Since by

25 hrs of induction, wildtype, sac6D, and vps5D cultures were in

stationary phase, where ring formation peaks [54], the inhibition

of ring formation in sac6D and vps5D was not the result of a failure

of these cultures to reach stationary phase (Figure S3). Also, since

las17D cells reached saturation phase only after 36 hours, we also

measured ring formation in las17D cultures following 50 hrs of

induction, well after the culture reached stationary phase. These

cultures still showed a 50% reduction in ring formation relative to

the wildtype cultures (data not shown).

Ring-associated toxicity
Ring formation is associated with [PSI+] appearance [54].

However, it has been shown that cells that contain rings have a

higher rate of cell death than those that have diffuse fluorescence

[44,47,54]. Therefore, we asked if the deletions might be more

toxic to ring bearing cells, which would result in a decrease in

[PSI+] induction. To test this, we micromanipulated individual

ring containing cells from selected deletion strains and assessed

whether they were viable. Similar to previous findings [47], only

36% of wildtype ring containing cells were viable, whereas 95% of

wildtype cells with diffuse cytoplasmic fluorescence were viable

(Figure 3B). In general, the viability of ring containing wildtype,

bem1D, and hog1D cells appeared to be similar (Figure 3B) and

therefore cannot explain the strong reduction of de novo induction

of [PSI+]. Ring containing arf1D cells had reduced viability (21%),

which could account for the decrease in [PSI+] induction (Figure 2).

In contrast, bug1D ring cells showed an increase in viability (59%),

Figure 2. Nine deletions show reduced [PSI+] appearance. Genes were disrupted in the 74D-694 [PIN+] strain background. Deletion strains,
transformed with the Sup35PD-GFP plasmid, were grown in 10 ml of plasmid selective media supplemented with copper for 24 hours at 30uC and
plated on SD-Ade in order to determine [PSI+] induction frequency. Induction frequency and standard error were calculated with at least one
transformant from each independent knock out (see Table S3) for a total of three transformants per deletion. The exception was pre9D which was
calculated from three transformants from a single independent knock out. Only deletion strains that showed a significant difference in induction
frequency compared to wildtype strains (p,0.05 unpaired t-test) were included in the figure.
doi:10.1371/journal.pgen.1001386.g002

Two Gene Classes Control Prion and PolyQ Formation
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Figure 3. Ring formation and viability. A. [PIN+] cells containing Sup35PD-GFP were induced in copper containing liquid media for 24 hours. The
percentage of cells containing rings was determined by counting more than 300 cells from at least one transformant from each independent
knockout line (see Table S3) for a total of three transformants per deletion. Bars indicate standard error and (*) indicates deletion strains that showed
a significant difference in the percentage of cells containing rings compared to wildtype (p,0.01 unpaired t-test). B. Ring containing cells (purple
bars) or cells with diffuse cytoplasmic fluorescence (green bars) were isolated by micromanipulation, placed on rich media and assayed for growth. At
least 20 ring containing cells and 10 diffuse cells, from at least one transformant from each independent knock out line for a total of three
transformants, were tested. Bars indicate standard error and (*) indicates the deletion strains that showed a significant difference in viability
compared to wildtype strains (p,0.01 unpaired t-test).
doi:10.1371/journal.pgen.1001386.g003
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but apparently these cells did not efficiently give rise to [PSI+] cells.

In the absence of rings, there appeared to be no effect on the

viability of any of the deletion strains (Figure 3B, green bars).

Since isolating ring cells in strains with low ring formation was

difficult, we focused on one example and found that of the small

population of cells in vps5D strains that formed rings, a majority

were inviable (Figure 3B). This suggests that rings in the absence of

VPS5 may be harmful to the cell and likely explains the decreased

percentage of rings observed in Figure 3A.

Deletion strains affect aggregation and toxicity of
polyglutamine

We next asked if our deletion strains also affect the [PIN+]

dependent aggregation of the polyglutamine (polyQ) expanded

repeat found in the mutant huntingtin protein associated with

Huntington’s disease. Since las17D strains, carrying a galactose

inducible expanded polyQ repeat (103Q) fused to GFP, were

previously shown to delay 103Q-GFP aggregate formation

compared to wildtype strains [52], we tested our other deletions

for similar aggregation patterns. When wildtype [PIN+] cells

expressed 103Q-GFP for approximately one to two hours, 82% of

cells displayed strong fluorescent puncta, while [pin-] cells showed

mostly cells with diffuse fluorescence (73%) and a minor

population that contained a few faint fluorescent foci on a diffuse

background (27%; Figure 4A and 4B). Similar analyses of [PIN+]

strains with bug1D, bem1D, arf1D, and hog1D deletions resulted in a

reduced number of cells that contained strong fluorescent puncta

(Figure 4B, green bars) and an increased number of cells that had

faint fluorescent foci with a diffuse background (Figure 4B, purple

bars). As in the previous study [52], [PIN+] las17D strains had

barely any strong fluorescent foci. Examination of [PIN+] vps5D
and [PIN+] sac6D strains also showed a strong reduction in cells

having bright foci and a similar distribution of cells with faint foci

vs. no foci as seen in wildtype [pin-] strains.

We next examined the effect of these deletions on toxicity

associated with expression of the expanded polyglutamine protein

in the presence of the [PIN+] prion [57]. Our controls verified

earlier findings [57] that wildtype [PIN+] cells carrying a galactose

inducible 103Q-GFP plasmid show toxicity compared to cells

carrying the non-toxic 25Q-GFP plasmid. As expected, polyglu-

tamine expressing cells that are either [pin-] or rnq1D did not

exhibit toxicity, whereas wildtype [PIN+] cells were sick

(Figure 4C). Since previous studies have correlated the presence

of polyQ aggregates with cell toxicity [57], the lack of strong

polyQ fluorescent foci in the class of deletions that also reduced

ring formation after Sup35PD-GFP overexpression (las17D, vps5D,

and sac6D; Figure 4A and B) nicely explained the observed

decrease in polyQ toxicity. Interestingly, the class of deletions that

reduced [PSI+] induction, but not ring formation (bug1D, bem1D,

arf1D, and hog1D), increased the frequency of cells containing faint

polyQ-GFP fluorescent foci on diffuse backgrounds and clearly

enhanced 103Q toxicity.

Discussion

We scored 398 gene deletions, previously identified by their

ability to increase or decrease toxicity caused by overexpression of

Sup35PD-GFP [46], for effects on the induction of [PSI+] and

established effects for four of the deletions (see Table 2

summarizing all results). Since there is not always a strong

correlation between the toxicity associated with SUP35 overex-

pression and the induction of [PSI+], we tested all of the enhanced

and reduced toxicity candidates found in the previous study [46]

for [PSI+] induction. We observed that induction of [PSI+] was

inhibited by deletions that either reduced (arf1D and bem1D) or

enhanced (bug1D and hog1D) toxicity. Possibly the rings or other

less visible aggregates have an altered property in the presence of

bug1D or hog1D that inhibits detectable [PSI+] appearance and

causes toxicity. It has been shown that rings cause toxicity by

titrating Sup35 and/or Sup45 (the essential release factor that

binds to Sup35) into aggregates and away from the ribosome [46].

The toxicity associated with bug1D and hog1D during [PSI+]

induction could be an enhancement of this effect or could be by

the formation of a different type of toxic [PSI+] intermediate.

We also examined three deletions (las17D, vps5D, and sac6D),

which were chosen for their association with endocytosis and the

actin cytoskeleton, and found that they reduce [PSI+] induction.

While las17D and vps5D were not included in the library originally

scored for SUP35PD-GFP toxicity, the sac6D BY4741 library

strain was not associated with changes in toxicity [46]. We found

that sac6D inhibits [PSI+] induction in both the deletion library

(BY4741; data not shown) and the 74-D694 (Figure 2) back-

grounds. This suggests that other non-essential deletions that

inhibit [PSI+] induction were likely missed in the toxicity screen.

All seven of our deletion strains reduce [PSI+] induction caused

by overexpression of Sup35PD-GFP. While a deletion of BEM1

was previously shown to reduce the spontaneous appearance of

[PSI+] associated with the SUP35 R2E2 expanded repeat [46], it is

unknown whether our deletions affect the spontaneous appearance

of [PSI+] without overexpression or mutated alleles (e.g. R2E2) of

Sup35. Since the spontaneous appearance of [PSI+] is very

infrequent and Mendelian suppressors with the phenotype of

[PSI+] [58] appear at a higher rate than [PSI+], scoring for

mutations that lower the appearance of [PSI+] is challenging.

Prion and polyglutamine formation and maturation
Time lapse examination of individually micromanipulated

[psi2] [PIN+] cells, containing an endogenously tagged Sup35-

GFP fusion and transiently overexpressing Sup35PD-GFP from a

plasmid, previously showed that a fluorescent ring initially forms at

the cell periphery and then internalizes around the vacuole. Later,

such cells with rings give rise to [PSI+] daughter cells with

fluorescent foci (Figure 5A) [44,55].

In this paper, we identified two classes of gene deletions that

reduce the de novo induction of stable [PSI+] but differ in effects on

ring formation. Class I deletions (bug1D, bem1D, arf1D, and hog1D)

form Sup35PD-GFP rings at approximately wildtype levels

(Figure 3). Class II deletions (las17D, vps5D, and sac6D) have a

significantly reduced number of cells with Sup35PD-GFP rings

(Figure 3).

The existence of these two deletion classes suggests that the

prion formation pathway can be inhibited at different steps. In the

case of class I deletions, problems in peripheral and internal ring

formation were not detected (data not shown), suggesting that

these genes are important for ring containing cells to transmit

heritable [PSI+] aggregates to daughter cells (Figure 5A). In the

case of class II deletions, peripheral rings form infrequently,

suggesting that these genes are important in the initial formation of

the ring even in the presence of [PIN+] (Figure 5A). While rings

contained in vps5D (class II) cells have reduced viability, it is

unlikely that ring formation is so toxic that cells die before the ring

appears because there is no corresponding increase in toxicity in

non-ring containing cells (Figure 3B).

The formation of polyglutamine aggregates, upon overexpres-

sion of Q103:GFP in a [PIN+] strain, is not associated with ring

formation. Instead, large bright aggregates are observed within

one to two hours of induction [52]. All of our deletions affected

polyglutamine aggregation, but the type of effect differed based on

Two Gene Classes Control Prion and PolyQ Formation
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Figure 4. Aggregation and toxicity of 103Q in deletion strains. A. Log phase wildtype [PIN+] cells containing the 103Q-GFP plasmid were
induced in galactose containing media for one to two hours and then visualized. Within the population, most cells exhibited strong fluorescent
aggregates on a non-fluorescent background (bottom), some cells had faint fluorescent foci on a cloudy fluorescent background (middle), and a very
small population of cells had diffuse cytoplasmic fluorescence (top). B. Deletions containing 103Q-GFP were induced and scored for the different cell
types indicated in (A). The percentages of cells containing strong fluorescent aggregates (green bars), faint foci (purple bars), and diffuse cytoplasmic

Two Gene Classes Control Prion and PolyQ Formation
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the class of the deletion. Class I deletions (bem1D, bug1D, arf1D, and

hog1D) caused a decreased level of bright fluorescent aggregates

and an increase in diffuse cells with faint foci (Figure 4A and 4B).

Interestingly, these deletions enhanced the toxicity associated with

103Q-GFP (Figure 4C). In the presence of the class II deletions

(las17D, vps5, and sac6D) 103Q-GFP usually remained diffuse, and

Figure 5. Proposed effects of class I and II genes on the multistep pathways of de novo prion and polyglutamine aggregate
formation. A. Induction of [PSI+] by transient overexpression of Sup35PD-GFP in a [psi2] [PIN+] strain with endogenous Sup35 tagged with GFP. As
described in Mathur et al., [55] the first stages of [PSI+] induction involve the formation of a peripheral fluorescent ring. Class II deletions appear to
inhibit this step. As the ring matures, diffuse Sup35 diminishes in intensity. The peripheral ring then collapses to surround the vacuole. The daughters
of the ring containing cell contain multiple Sup35:GFP aggregates characteristic of [PSI+]. Class I deletions interfere with transitioning to [PSI+] after
the ring appears. B. Hypothetical model of 103Q aggregation in [PIN+] cells. Class II proteins function in the initial formation of small toxic 103Q
oligomers (left), since class II gene deletions result in diffuse fluorescence and suppression of toxicity. Class I proteins most likely facilitate
incorporation of these small oligomers into large protective aggregates (right).
doi:10.1371/journal.pgen.1001386.g005

fluorescence (gray bars) were calculated from over 300 cells from at least one transformant from each independent knock out line for a total of three
transformants. C. Wildtype [PIN+], wildtype [pin2], rnq1D, and the indicated [PIN+] deletion strains were transformed with either the 103Q-GFP or 25Q-
GFP plasmid and grown to late log phase in glucose (uninducing) media. Cells were serially diluted 20-fold and plated on media that either induced
(right column; galactose containing media) or did not induce (left column; glucose containing media) the overexpression of the 25Q-GFP or 103Q-
GFP plasmid. White arrowhead indicates the lowest dilution displaying growth. Deletion strains in (C) are in the 74D-694 background except sac6D,
which is in the BY4741 [PIN+] background as indicated. Pictures shown are representative of the multiple independent deletion lines tested for 103Q-
GFP toxicity.
doi:10.1371/journal.pgen.1001386.g004
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very few cells had bright aggregates (Figure 4B). Additionally, all

class II deletions suppressed polyglutamine toxicity (Figure 4C).

The formation of large huntingtin aggregates in mammals was

initially thought to be the cause of huntingtin-mediated cell death

(reviewed in [59]), but emerging evidence suggests that these large

aggregates are neuroprotective ([60], reviewed in [61]) and toxicity

is due to a soluble pool of oligomeric conformers [62-63]. Also in

yeast, small multiple foci of 103Q appear to be more toxic than a

large aggregate [64,65]. Thus, we propose that class I genes are

important for the formation of large protective aggregates but not

small toxic oligomers (Figure 4B), and that when a class I gene

product is absent, the reduction of large protective aggregates

permits the increased propagation of deadly soluble oligomers.

In contrast, in cells with class II deletions, 103Q-GFP toxic

oligomers or aggregates may form only rarely. While the [PSI+]

and polyglutamine formation pathways are not directly compara-

ble, we propose that class II genes affect the initial steps of

polyglutamine formation, and the formation of large protective

aggregates (promoted by class I genes) is a downstream event

(Figure 5B).

Actin and prion formation
Although endocytosis is relatively unaffected in bem1D, bug1D,

arf1D, hog1D, las17D, vps5, and sac6D strains, six out of seven of our

deletion mutants display fragmented vacuoles (Figure S4) [66,67].

Possibly, vacuole fragmentation may affect the perivacuolar

deposition site for aggregated proteins, called IPOD [68], which

has been suggested to play a role in prion formation [55,56]. Some

of the deletion library strains we screened induced [PSI+] normally

but had fragmented vacuoles (Table SI, asterisk; [66]), suggesting

that intact vacuoles are not necessarily a requirement for efficient

prion appearance. Vacuole fragmentation has been shown to be

associated with microtubular defects [69] as well as fluctuations in

the soluble actin pool [67]. We showed that treatment with the

microtubule disrupting drugs Nocodazole (Figure S4B and S4C)

and Thiabendazole (data not shown) at concentrations that did not

inhibit Sup35PD-GFP induction do not affect [PSI+] appearance.

Conversely, the actin disrupting drug Latrunculin A [70] and act1-

R117A alleles [44] do inhibit [PSI+] induction. Furthermore, many

of the deletions identified in this study are involved with actin

(Table 2), suggesting that actin organization plays a critical role in

the aggregation of prion and polyglutamine proteins.

Possibly, proper actin organization on the cell periphery is

required for the initial formation of the [PSI+] ring or

polyglutamine oligomers, where as actin organization elsewhere

in the cell could be required for downstream events such as the

formation of a propagating [PSI+] conformer or the formation of

large protective polyglutamine aggregates. Actin could possibly be

involved in facilitating the addition of monomer to newly formed

aggregates. In assaying for [PSI+], ring cells containing functional

monomer not yet integrated into an aggregate would appear to be

[psi2].

Our data suggests that prion and polyglutamine formation

involves a multi-step process that is dependent upon actin

organization. Interestingly, six of the seven proteins identified

here have mammalian homologues (Table 2), suggesting that

similar mechanisms may be involved in aggregation and

oligomerization of QN-rich proteins in higher eukaryotes.

Further elucidation of how actin nucleation contributes to prion

induction will not only shed light on how toxic oligomeric species

are formed, but also could provide clues to the molecular

mechanisms underlying many human aggregating neurodegen-

erative diseases.

Methods

Plasmids and strains
In this work, 398 yeast deletion library strains (parent strain

BY4741: MATa ura3D his3D1 leu2D met15D; Open Biosystems,

Huntsville, AL; Table S1) previously obtained from an earlier

toxicity screen ([46]; Tyedmers and Lindquist unpublished) were

scored for effects on [PSI+] induction in a wildtype Sup35

background. The ‘‘kar1 plasmid donor’’ strain (GF667; MATa
CEN1–16::pGal1-CEN1–16-URA3Kl kar1D15 lys2 rad5-535 leu2-

3,112 can1-100 his3-11,15 trp1-1 cyhR) was used to introduce

plasmids and prions into the deletion library strains via

cytoduction, as described in Manogaran et al. [48]. A plasmid

containing a copper inducible prion and middle domain of Sup35

(Sup35PD) fused to green fluorescent protein (Sup35PD-GFP;

p1181: CEN2 HIS3 ori ARS AmpR pCup1-Sup35PD-GFP) was used to

induce [PSI+] in deletion strain derivates of BY4741, while a LEU2

version of the plasmid (p1182) was used in 74-D694 (L1749; [33];

MATa ade1–14 leu2–3,115 his3D200 ura3–52 trp1–289 high

[PIN+]). To score for [PSI+] in the BY4741 strains, a plasmid

containing the [PSI+] suppressible ura3–14 allele ([49]; p1513;

CEN2 LEU2 ura3–14 ori ARS AmpR) was used. A tester strain

(L2174; MATa leu2 ura2 his3 [pin-]) transformed with a copper

inducible RNQ1 fused to GFP (p1186; CEN LEU2 ori ARS AmpR

pCUP1-RNQ1:GFP) was used to confirm the presence of [PIN+] in

74D-694 deletion strains (see below). Plasmids p1572 and p1838

[52], which contain a fusion of GFP to the galactose inducible 25Q

or 103Q repeats in exon 1 of the huntingtin gene, respectively,

were used to examine polyglutamine aggregation and toxicity.

These fusion constructs do not contain the proline-rich region of

the huntingtin exon 1 [52].

Cultivation procedures
Yeast strains were cultivated using standard media and growth

protocols [71] and grown at 30oC except when indicated.

Complex media contained 2% dextrose (YPD), and synthetic

complete media contained the required amino acids and 2%

dextrose (SD) or 2% galactose (SGal).

Curing of BY4741 deletion strains
Pre-existing prions were cured by growing strains on media

containing low levels of guanidine hydrochloride (GuHCl), which

cures through the inactivation of Hsp104 [72,73]. Strains were

spotted onto YPD plates containing 5mM GuHCl and repeated

two to three additional times to ensure that prions were cured.

Preparation of the kar1 plasmid donor and introduction
of plasmids and prions into deletion strains

Prions and plasmids were introduced into the kar1 plasmid

donor strain. To make a [PSI+] kar1 plasmid donor strain to test for

[PSI+] maintenance in the deletion strains, the kar1 plasmid donor

strain was crossed to either a weak [PSI+] (L1759) or strong [PSI+]

(L1763) strain containing Sup35PD-GFP. kar1 plasmiductants

containing [PSI+] were chosen as described in Manogaran et al.

[48], and confirmed to contain [PSI+] by the formation of

Sup35PD-GFP aggregates after 16 hours. The [PSI+] kar1 plasmid

donor was mated to the BY4741 deletion strains, deletion strain

cytoductants were confirmed by testing for auxotrophic markers,

and the presence of [PSI+] Sup35PD-GFP aggregate formation

was examined as described above [54].

To test for the induction of [PSI+], prions and plasmids were

introduced into the kar1 plasmid donor strains by crossing to either

a [PIN+] (L1749 high [PIN+]) or [pin-] strain (L2910) containing the

Sup35PD-GFP and ura3–14 plasmids. [PIN+] kar1 plasmid donor

Two Gene Classes Control Prion and PolyQ Formation
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strains were confirmed as above and tested for the presence of

[PIN+] by the formation of Sup35PD-GFP fluorescent rings after

24 hours of induction on copper [54]. Cytoduction of plasmids

and prions into the BY4741 library deletion strains has been

described previously [48]. To ensure reproducibility, cytoductions

were performed in duplicate.

Induction of [PSI+] in cytoduced deletion strains
Cytoduced BY4741 deletion strains, containing [PIN+] and both

Sup35PD-GFP (HIS3) and ura3–14 (LEU2) plasmids, were spotted

onto plasmid selective SD-His-Leu plates plus 50 mM copper sulfate

and grown for approximately two days. Strains were resuspended in

300 mL of sterile water and either spotted onto SD-Leu (grown two

days) to assess growth, or SD-Leu-Ura (grown at room temperature

for five to seven days) to score for [PSI+] induction. Induction

experiments on all 398 yeast deletion library strains were repeated

six times to ensure reproducibility. Spots that exhibited no or

reduced growth on SD-Leu-Ura, compared to controls, were

chosen as candidate genes that affect [PSI+] appearance (Table 1).

Re-engineering of candidate strains
Genetic recombination was used to replace candidate genes

(Table 1) with HIS3 in [PIN+] 74-D694. Primers (Table S2),

adjacent to sequences flanking the 59 or 39 ends of the candidate

gene, were used to PCR amplify the HIS3 gene. PCR products

were transformed and His+ transformants were confirmed for

insertion of the HIS3 gene in the correct locus. Two to three

independent knockout lines (Table S3) were obtained for each

deletion, except for pre9D. To confirm the presence of [PIN+],

deletion strains were mated to a [pin-] tester strain containing a

RNQ1-GFP plasmid. Diploids were checked for the formation of

fluorescent Rnq1-GFP aggregates after induction overnight. To

test whether las17D, vps5D, or sac6D maintain [PSI+], the deletions

were cytoduced with [PSI+] and checked for growth on –Ade.

Scoring the induction frequency of [PSI+]
Re-engineered deletion strains were transformed with the

Sup35PD-GFP (LEU2) plasmid and grown in SD-Leu plus copper

sulfate liquid media for 24 hours. After induction, approximately

10,000 cells were plated on SD–Ade, and a 50-fold dilution of cells

was plated on SD+12. Colony counts were obtained from at least

one transformant from each independent knock out (see Table S3)

on SD+12 vs. SD-Ade. Colony counts from at least three

transformants were used to determine the induction frequency.

Sup35PD-GFP ring formation in re-engineered deletion
strains

After 24 hours of induction, cells were examined for the

formation of GFP fluorescent rings [54] using a Zeiss Axioskop2

deconvolution workstation equipped with either a X40 Plan-

Neofluar or X100 Plan-Apochromat objective lens (Zeiss). Approx-

imately 300 cells were counted from at least one transformant from

each independent knock out, for a total of three transformants.

Determining cell viability of ring-containing cells
Ring containing cells were simultaneously visualized and

micromanipulated onto 2% sterile Noble Agar slabs. Slabs were

transferred onto YPD media and grown for one to two days.

Aggregation and toxicity of polyglutamine in
re-engineered deletion strains

Strains containing the galactose inducible 25Q or 103Q GFP

fusion plasmids were grown overnight in SD-Ura and then washed

in water approximately four times to remove residual glucose. To

score for aggregation, washed cells were grown in liquid Gal-Ura

for one to two hours with shaking and then examined for GFP

aggregates. To score for toxicity, log phase uninduced washed cells

were serially diluted 20-fold and spotted onto SD-Ura or SGal-

Ura.

Supporting Information

Figure S1 Certain deletion strains have decreased levels of

Sup35 and Sup35PD-GFP. [PIN+] wildtype or deletion strains

containing Sup35PD-GFP were grown for 22 hours to an

approximate OD600 3.0 at 30uC in the presence of 50 mM

copper. All strains are in the 74D-694 background except sac6D,

which is in the BY4741 background. Equivalent amounts of cell

lysates were loaded per lane and subjected to SDS-PAGE (see

Text S1). Lanes in the left panel were run on the same gel.

Blotted proteins were incubated either with anti-GFP antibody,

anti-Sup35 C-terminal antibody, or anti-PGK antibody (as

indicated).

Found at: doi:10.1371/journal.pgen.1001386.s001 (0.24 MB TIF)

Figure S2 The [PIN+] variant in the deletion strains appears to

be unaffected. [PIN+] wildtype and deletion strains, containing

Sup35PD-GFP, were grown for 24 hours in copper media, and

equivalent amounts of protein were loaded on a 1.5% agarose gel

and subjected to SDD-AGE [53]. Blotted proteins were incubated

with an antibody against the Rnq1 protein.

Found at: doi:10.1371/journal.pgen.1001386.s002 (0.62 MB TIF)

Figure S3 All deletion strains reach saturation after 24 hours of

induction, except las17D. Deletion and wildtype strains containing

Sup35PD-GFP and [PIN+] were grown in plasmid selective media

with copper at 30uC. OD600 readings were taken at the indicated

time points to assess growth.

Found at: doi:10.1371/journal.pgen.1001386.s003 (0.27 MB TIF)

Figure S4 Vacuole formation is altered in deletion strains,

except hog1D. A. Wildtype and deletion strains were incubated

with 5 mM FM4-64 for 20 minutes in YPD, washed and then

allowed to incubate for 60 minutes before visualizing internali-

zation of the dye. B. Wildtype cells were treated either with

DMSO (gray bars) or various concentrations of Nocodazole

(purple bars) during overnight induction of Sup35PD-GFP.

Percent of rings were calculated after 24 hours of induction.

C. Untreated cells (DMSO) or cells treated with 50 ug/ml of

Nocodazole from (B) were plated in 20 fold serial dilutions on

SD-Ade media to score for [PSI+] induction. Growth on SD+Ade

indicates there is no growth defect.

Found at: doi:10.1371/journal.pgen.1001386.s004 (0.98 MB TIF)

Table S1 Candidate deletions screened for [PSI+] induction.

Found at: doi:10.1371/journal.pgen.1001386.s005 (0.16 MB

DOC)

Table S2 Primers used in re-engineering deletion candidates in

the 74-D694 genetic background.

Found at: doi:10.1371/journal.pgen.1001386.s006 (0.05 MB

DOC)

Table S3 Re-engineered independent knock out lines in the 74-

D694 background used in this study.

Found at: doi:10.1371/journal.pgen.1001386.s007 (0.05 MB

DOC)

Text S1 Supporting information methods.

Found at: doi:10.1371/journal.pgen.1001386.s008 (0.05 MB

DOC)
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