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Viral diseases are considered as a global burden. The eradication of viral diseases is
always a challenging task in medical research due to the high infectivity and mutation
capability of the virus. The ongoing COVID-19 pandemic is still not under control even
after several months of the first reported case and global spread. Neither a specific
drug nor a vaccine is available for public use yet. In the pursuit of a promising strategy,
carbon dots could be considered as potential nanostructure against this viral pandemic.
This review explores the possibility of carbon nano-dots to combat COVID-19 based
on some reported studies. Carbon dots are photoluminescent carbon nanoparticles,
smaller than 10 nm in dimension with a very attractive photostable and biocompatible
properties which can be surfaced modified or functionalized. These photoluminescent
tiny particles have captured much attention owing to their functionalization property
and biocompatibility. In response to this pandemic outbreak, this review attempts to
summarize the potential use of carbon dots in antiviral therapy with particular emphasis
on their probable role in the battlefront against COVID-19 including their possible
biosensing applications.

Keywords: antiviral, carbon dots, COVID-19, SARS-CoV-2, functionalization of carbon dots

INTRODUCTION

Finding a solution by any means to stop the COVID-19 outbreak in this urgent scenario would be
an applaudable step. The global scientific community is struggling to develop sprint technologies to
fight this pandemic (Rai et al., 2020). Because of their exceptional properties and biocompatibility,
carbon dots can be investigated as a promising solution in the pursuit of an effective therapeutic
strategy against COVID-19 (Garg et al., 2020). Exploring these nanostructures for specific and
tailored functions is in need to provide solutions for exigencies like COVID-19. Carbon dots have
shown proven antiviral effects and that too against Coronaviruses (Du et al., 2018; Ting et al., 2018).
At present environment-friendly carbon dots are available for various applications (Du et al., 2014;
Park et al., 2014; Yuan et al., 2016). The existence of nanosized functional substances in natural
systems has captured a great curiosity for the scientific community due to their unique properties.
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Every year millions of people are killed by viral infections
and nearly one-third of global mortality is due to infectious
diseases. And now the new emerging viral diseases like
COVID-19, SARS, MERS, etc. add on to this. Even though
vaccination is the best approach to prevent this pandemic
situation, unfortunately, it is not yet practical for newly
emerging infections. Nanotechnology has tremendous potential
in different areas to fight against COVID-19, which include
diagnosis, prevention as well as treatment. The application of
nanotechnology in antiviral therapy is still in its early stages
(Borah et al., 2020; Chen and Liang, 2020; Innocenzi and Stagi,
2020; Palmieri and Papi, 2020). Constant emergences of novel
viruses are challenging and need more attention in research on
nanotechnology-based targeted antiviral therapy. In this review,
we are focusing on the potential therapeutic applications of
carbon dots against COVID-19. Once infected with SARS-CoV-
2 the patients may need treatment to stop the replication of
the virus inside the body. The mechanism of SARS-CoV-2
infection has been already reported in the literature (Coperchini
et al, 2020; Dhama et al., 2020; Li et al, 2020; Wang et al,
2020). Reports suggest that the SARS-CoV-2 virus binds to
the angiotensin converting enzyme 2 (ACE2) receptor with
its spike protein and the virus is around 60-140nm in size
(Chan, 2020). These two findings can be exploited for the design
and development of potential tools for the treatment based on
nanotechnology. There are several studies done on viral research
based on nanotechnology which proves the powerful ability

of nanoparticles as antiviral agents. Moreover, functionalized
nanoparticles have been proved for its extremely powerful
inhibition on proliferation of viruses (Chen and Liang, 2020).
Out of these, carbon dots are gaining special interest owing to
their exceptional cell membrane permeability, biocompatibility,
low cytotoxicity, and functionalization property (Wang and Hu,
2014; Georgakilas et al., 2015; Lim et al., 2015). Carbon dots
or carbon quantum dots are now an emerging group of carbon
nanoparticles with <10nm in size and luminescent property
(Molaei, 2019). Xu et al. found this luminescent carbon for the
first time in 2004 while purifying single-walled carbon nanotubes
(Xu et al., 2004). Since carbon dots have several desirable
properties like low cytotoxicity, biocompatibility, inertness,
photostability, easier synthesis, and functionalization, etc. these
are gaining more research interests since its discovery (Zuo
et al, 2016; Al-Qattan et al, 2018; Mahajan et al., 2018;
Maheshwari et al., 2019; Tian et al, 2020). Apart from drug
delivery or therapeutic applications they are well-established
for in vitro as well as in vivo bio-imaging, chemiluminescence,
optical sensing, photocatalysis, etc. They are also well-known
for their low or no cell toxicity and biocompatibility. Zebrafish
larvae showed a normal growth after treating with 1.5 mg/mL
carbon dot solution (Kang et al., 2015). Moreover, HeLa cell
viability (more than 90%) was observed after incubation of
24h with 500 g/mL of carbon dots and the observed LCsg
was above 5 mg/mL (Ding et al, 2013). Several researches
have proved the non-toxicity and safety of carbon dots for in
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vivo applications in animal models. Neutral carbon dots are
more promising for biological applications since they do not
induce any cellular abnormalities. Negatively charged carbon
dots may induce oxidative stress and positively charged carbon
dots may be cytotoxic also (Wang K. et al., 2013; Havrdova
et al., 2016; Emam et al., 2017). Poor stability and difficult
to maintain properties for longer periods of time are another
limitations of these nanosized carbon particles (Mishra et al.,
2018). The regulatory concerns are similar to nanoparticles.
To focus on the regulatory issues on nanoparticles, European
Medical association have already created an expert group on
nanomedicines. A new concept, Safe-by-Design concepts can
be used to anticipate the risk identification, reduction and
ambiguities regarding human health and environmental safety
in early stages of nanotechnology related product development
(Schmutz et al., 2020).

Extensive research have been done by many scientists to
prove the ability carbon dots in photodynamic therapy, cancer
therapy, antimicrobial therapy etc. (Hola et al., 2014; LinaChee
and JunaLoh, 2015; Bing et al., 2016; He et al., 2018; Li et al.,
2018). A recent review by Basak et al., also gives the potential
of carbon dots against viral infections briefly along with some
other potential nanomaterials (Basak and Packirisamy, 2020).
A large number of reviews are published recently mentioning
the potential and possibilities of nanomaterials to fight against
corona virus (Innocenzi and Stagi, 2020; Manivannan and
Ponnuchamy, 2020; Mukherjee et al.,, 2020; Nair et al., 2020).
But our review focus on the possibility of carbon dots and also
functionalized or doped carbon dots against viral infection with
special emphasis to corona virus.

Different approaches have been developed for the production
of carbon dots, which are mainly categorized as top-down and
bottom-up approaches. Some of the most widely used methods
include hydrothermal synthesis, pyrolysis, microwave-assisted
synthesis, electrochemical oxidation, laser-ablation, etc. from a
different diversity of carbon sources (Lim et al., 2015). Some
of the precursor molecules for bottom-up approach include
ethylene glycol (Hu et al., 2013), boric acid/glycine (Jahan et al.,
2013), ethylenediamine and citric acid (Fahmi et al, 2016;
Loczechin et al., 2019) and various green sources like apple juice
(Mehta et al., 2015), bee pollen (Zhang et al., 2015), cabbage
(Alam et al., 2015), carica papaya juice (Kasibabu et al., 2015),
garlic (Zhao S. et al., 2015), ginger (Li et al., 2014), Grape peel
(Xu et al, 2015), grass (Liu et al., 2012), honey (Yang et al.,
2014), milk (Wang and Zhou, 2014), etc., whereas candle soot
(Liu et al.,, 2007), lampblack (Wang X. et al., 2013), graphite
(Anilkumar et al., 2011), etc. are examples of some of the
precursor compounds for top-up approach. After synthesis or
during synthesis, modification can be achieved by techniques
like surface passivation (Zhu et al., 2009; Lai et al, 2012),
inorganic salt doping (Anilkumar et al, 2011) and element
doping (Dong et al., 2012; Jiang et al., 2012). Surface passivation
and functionalization further expand their exploitation from
biosensing to drug delivery. For green carbon dots, doping or
excessive surface passivation is not necessary since these are
almost self-passivated during the nucleation process (Miao et al.,
2016).

This review article is exploring the potentials and possibilities
of carbon dots against SARS-CoV-2 based on the published
research data on antiviral activity of carbon dots. There are not
much research done on the applicability of carbon dots against
corona virus especially SARS-CoV-2 virus. But the article details
all the possible mechanisms by which carbon dots can act against
virus and especially corona virus. This review is not detailing
the properties, synthesis, and other applications of carbon dots
since these are extensively discussed in many reviews (Baker and
Baker, 2010; Zhao A. et al., 2015; Yuan et al., 2016; Jaleel and
Pramod, 2018). We anticipate that this review article would offer
precious insight and cheer up the scientific community for a
deeper exploration of therapeutic and diagnostic applications of
carbon dots against SARS-CoV-2.

ANTIVIRAL MECHANISM OF ACTION OF
CARBON NANO-DOTS

Carbon nano-dots act by a different mechanism at different stages
of viral replication. The mechanism of viral infection generally
involves four main steps namely attachment, penetration,
replication, and finally budding.

Viral Inhibition by the Alteration of

Attachment and Penetration Step

Viral attachment to the host cell is the first step of infection,
thus hindrance to this step will inactivate the virus. Most of
the reported carbon dots act by interfering with the early
stage of viral infection by altering the viral surface proteins.
Benzoxazine monomer derived carbon dots can inhibit host-
cell entry of Japanese encephalitis virus and other flaviviruses.
Immunofluorescence assay in Vero cells showed that these
carbon dots can significantly inhibit Zika and dengue virus
proliferation. The in vitro assay showed that the inhibitory
effect on infection is due to the direct contact of carbon
dots with the virus membrane, not because of the host
cells mounting an antiviral reaction. It was found that the
viral binding with the host cell was significantly decreased
by the treatment of the Japanese encephalitis virus with
Benzoxazine monomer derived carbon dots (Figure 1) (Barras
et al, 2016) shows the mechanism of inhibition of entry
step by 4-aminophenylboronic acid hydrochloride derived
carbon dots.

Inhibition of penetration and viral entry can be brought about
by altering the cell surface membrane and attached proteins.
The plaque reduction analysis showed a strong concentration
related inhibitory action of carbon dots from curcumin on the
porcine epidemic diarrhea virus. The curcumin derived carbon
dots can block the infection in a very early stage of viral
entry. Raman spectral analysis and fluorescence analysis verified
that viral aggregation and inactivation is caused by electrostatic
interaction of positively charged carbon dots (Ting et al., 2018).
Surface-functionalized carbon dots with amine or boronic acid
functional groups can obstruct the entrance of type 1 herpes
simplex virus. This can in particular act on the very initial step
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FIGURE 1 | Mechanism of inhibition of entry step by 4-aminophenylboronic acid hydrochloride derived carbon dots. Reprinted with permission from Barras et al.
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of the viral entry by interacting with the virus or possibly with
the cells simultaneously (Barras et al., 2016).

Viral Inhibition by Inhibiting Replication
Once the virus enters the host cell, the only strategy for
inhibition is either to stop the replication or to stop or prevent
budding. Inhibition of viral replication can be accomplished
by the alteration of enzymes that are needed for viral genome
replication. Curcumin carbon dots can drastically slow down
the production of negative RNA strand in porcine epidemic
diarrhea virus, proved by the reduction in the level of negative-
strand RNA in curcumin carbon dots treated cells as compared
with the untreated plate at various time intervals after infection.
The replication of porcine epidemic diarrhea virus in Vero cells
showed decreased plaque numbers as well as reduced virus titers
in the carbon dot-treated group as compared to the control group
(Ting et al., 2018).

Viral Inhibition by Hindering Budding and

Detachment Steps

After replication, the progeny will bud-off from the host cell as
a new virus. The strategies which can prevent the budding and
excision of newly formed more virulent virus can also inhibit or
control the infection.

Some viral infections are characterized by overexpression of
reactive oxygen species which in turn leads to DNA damage
through apoptotic regulation signaling pathways. Curcumin
derived carbon dots can inhibit reactive oxygen species (ROS)
generation which is induced by coronavirus infection (Ting et al.,
2018).

Even though these three are the major antiviral mechanisms of
action carbon dots against virus, many research have proved the
antiviral activity without mentioning exact mode of action. An
elaborated research is needed to explore all the possible mode of
operation of carbon dots in inactivating or suppressing or killing
of virus.

ANTIVIRAL CARBON DOTS

In a recent article by Garg et al, elaborated the inhibitory
mechanism of human coronaviruses by hetero atom doped
carbon dots. The research group propose the potential
development of triazole-based carbon dots against SARS-
CoV-2 infection using a series of bioisosteres. Since carbon
dots have a large number of hydrophilic functional groups on
borders, they are appropriate for diverse biomedical applications.
In addition to this the surface functionality of these magic nano
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FIGURE 2 | Mechanism of viral inhibition of cationic curcumin carbon dots. Reprinted with permission from Ting et al. (2018). Copyright (2018) American Chemical
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substance is vital to fine-tune the of interaction level with virus
(Garg et al., 2020).

Curcumin cationic carbon dots (CCM-CDs) can efficiently
inhibit coronavirus infection. Curcumin carbon dots were
synthesized by the hydrothermal reaction of curcumin and citric
acid in a Teflon coated autoclave followed by purification with
centrifugation and then dialysis. The CCM-CDs were found to
inhibit the entrance of virus, production of the negative strand
of RNA as well as budding. Suppression of viral replication was
found to be due to stimulation in the production of interferon
stimulating genes as well as pro-inflammatory cytokines and
also due to the accumulation of ROS. This was proved as a
multisite inhibitor for Enteric Coronavirus (Figure 2). This one
step ultrasmall sized (1.5nm) antiviral fluorescent CCM-CDs
with a positive charge and many hydrophilic groups obtained
by pyrolysis of curcumin are highly effective against coronavirus
model (porcine epidemic diarrhea virus) (Ting et al., 2018).

Carbon dots can effectively inhibit the replication of RNA
viruses like Porcine reproductive and respiratory syndrome
viruses. Carbon dots are synthesized by the hydrothermal
reaction of PEG-diamine and ascorbic acid in a Teflon coated
autoclave chamber. The antiviral activity was tested in vitro on
Monkey kidney cells infected with Porcine reproductive and
respiratory syndrome viral strain, WUH3. Viral replication is
inhibited by increased interferon-o production and enhanced

expression of interferon-stimulating genes (Du et al., 2016).
A broad strategy of anti-coronavirus therapy is not practically
possible due to the biodiversity and rapid mutation characteristic
of coronaviruses. Loczechin et al. developed seven different types
of carbon quantum dots against human coronavirus. The first
generation carbon dots were made from ethylenediamine/citric
acid by hydrothermal carbonization and then functionalization
was carried out by chemical integration of boronic acid.
The second-generation carbon dots were prepared from 4-
aminophenyl boronic acid. Inhibition of HCoV-229E entry as
well as viral replication was achieved with the developed carbon
dots (Loczechin et al, 2019). Boronic acid or amine group
surface functionalized carbon dots can inhibit type 1 herpes
simplex virus infections. The carbon dots were synthesized from
4-aminophenyl boronic acid hydrochloride by hydrothermal
carbonization showed a high potency to prevent the infection in
herpes simplex type 1 infected A549 and Vero cells. The research
showed that the carbon dots interfere with the entry of the virus
into the host cell (Barras et al., 2016). Carbon dots derived from
benzoxazine monomers by hydrothermal reaction was found
to be effective against the adenovirus-associated virus, porcine
parvovirus, dengue virus, Zika virus, and Japanese encephalitis
virus. Carbon dots were formed as a result of pyrolysis,
carbonization, and oxidization of benzoxazine monomers in the
presence of aqueous sodium hydroxide (NaOH) in a Teflon
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coated stainless steel autoclave. These carbon dots were able to
bind directly to viral surface proteins and stop the first step of
vial attachment with the host cells (Huang et al., 2019).

Curcumin derived carbon quantum dots were found to be
effective against enterovirus 71 also. One-step heating at a
temperature of 180°C preserved polymeric curcumin moieties
with advanced antiviral properties. The core-shell of carbon
dots is formed by dehydration, polymerization, carbonization,
and surface passivation of curcumin with pyrolytic curcumin
like polymer surface, polymerization, crosslinking carbonization,
and surface passivation. Insoluble black carbon materials are
formed as a result of severe pyrolysis as well as carbonization
of curcumin at higher temperatures. In this reaction, curcumin
acts both as a source of carbon and also as a source of
surface functionalization moiety. In new born mice infected
with a lethal dose of enterovirus 71, this curcumin derived,
biocompatible carbon dots was able to decrease mortality and
protects from virus-induced paralysis of the hind limb. The
antiviral effect is due to the inhibition of viral attachment,
promotion of antioxidant action, and also the alteration of
transcription regulation, activation of intracellular signaling
cascades (Lin et al, 2019). Surface modified carbon dots
were able to produce a significant antiviral effect on human
norovirus virus-like-particles (VLP) by inhibiting binding to
histo-blood group antigen receptors on human cells. In this
work, chemical functionalization was carried out on harvested
carbon nanoparticles from the commercially available carbon
nano powders. The 2,2'-(ethylenedioxy)-bis(ethylamine) (EDA)
functionalization was achieved by refluxing carbon nanoparticles
with thionyl chloride and mixing with dried EDA liquid under
heat and nitrogen environment. EDA carbon dots were separated
after centrifugation and dialysis against water. It was found
that the carbon dots were able to inhibit the binding of
human norovirus virus-like particles to saliva A, B, and O type
HBGA receptors. It could also inhibit VLPs" binding to their
corresponding antibodies. The study could prove the antiviral
property of carbon dots by inhibiting the binding of viruses with
HGBA receptors. The paper points out that this strategy could be
effectively used in preventing or spreading of human Norovirus
infection since there is no effective vaccine. The strategy of
disabling viral recognition of binding sites on host cells can be
used as a promising antiviral approach (Dong et al., 2017).

Highly biocompatible carbon dots from glycyrrhizic acid were
able to inhibit the entry as well as reproduction of porcine
reproductive and respiratory syndrome virus. These carbon dots
were produced by hydrothermal process by the addition of NaOH
in a Teflon-lined autoclave. These carbon dots possess the ability
to inhibit the accumulation of ROS in the cell as well to stimulate
the innate immune response. Moreover, it could inhibit porcine
epidemic diarrhea virus and pseudorabies virus which suggests
its broad spectrum of antiviral activity (Tong et al., 2020).

Du et al., developed Glutathione capped CdTe quantum
dots against pseudorabies virus. From the growth curve as well
as fluorescence co-localization analyses it was clear that CdTe
QDs inhibit viral multiplication at an early stage by controlling
the invasion, and also found that it has no significant action
against viral penetration. The size of quantum dots decreased

gradually by addition of virus within 30 min due to the of release
Cd** by interaction with the virus and as result a reduction
in the number virus which can infect cells was achieved. The
structure of viral surface proteins is also altered was evidenced
by Raman spectra and Circular Dichroism spectroscopy analyses.
This research gives an in-depth understanding of the inhibition
of viral pathogenesis by carbon dots (Du et al., 2015).

Liu et al. developed two types of carbon dots by a
hydrothermal process which can selectively enter into the
cytoplasm and the whole cell with no surface modification. Blue-
fluorescent carbon dots were prepared by heating powdered
young barley leaves with anhydrous citric acid in a stainless
steel autoclave. Cyan-fluorescent carbon dots were produced in
a similar way as the previous one with the addition of urea
along with citric acid. The carbon dot with blue fluorescence can
only enter the cytoplasm but with comparatively better antiviral
property against pseudorabies virus, while the cyan-fluorescent
carbon dot was cable of distribution over the entire cell, including
the nucleus (Liu et al., 2017).

Quantum dots prepared by using microwave were able to
inhibit viral replication both in vivo and in vitro by the inhibition
of cellular nuclear factor kB signaling pathway. This pathway has
a vital role in the inflammatory response. The carbon dots were
prepared similar to their previous work by microwave synthesis
of aqueous dispersed CdTe/CdS/ZnS Core-Shell-Shell procedure
which produced biocompatible and photostable carbon dots.
Apart from antiviral activity, the carbon dots exhibited anticancer
and anti-inflammatory activity (Hu et al., 2016).

Carbon dots can successfully prevent HIV 1 infection through
inhibition of target cell interaction by interfering with the entry
step. Carbon dots are synthesized by citric acid pyrolysis and
functionalized with boronic acid since it ensures the specific
interaction of carbon dots with glycoprotein on the viral surface.
This boronic acid conjugated carbon dots was able to bind to
gpl20 protein on the virus and stop the binding of MOLT-
4 cells and block infection. In vitro experiments proved that
higher concentrations of boronic acid conjugated carbon dots on
syncytia, which mediate fusion of infected cells with an adjacent
cell, were observed in the cultured cells. The absence of cellular
toxicity is proved on MOLT-4 human leukemia cells by specific
assays. The results offer a basis for the advanced exploration
of functionalized carbon dots in antiviral therapy (Fahmi et al.,
2016). The published researches on carbon dots for the antiviral
effect are summarized in the Table 1.

Polyamine-modified carbon quantum dots were proved to
inhibit White spot syndrome virus infection by attaching to
the viral envelope in a dose-dependant manner (Huang et al.,
2020). Carbon dots were synthesized by direct pyrolysis by
heating of spermidine powder (Jian et al, 2017). This virus
causes white spot syndrome in cultured shrimps which has
led to high mortality rates in culture shrimps around the
globe. The viral inhibitory effect of this polyamine capped
carbon dots was confirmed through in vivo experiments
(Huang et al., 2020).

The above mentioned are the published researches which
proved the excellent ability of these carbon derived nano-
substances as antiviral agents. Works mentioning the antiviral
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TABLE 1 | Antiviral carbon dots.

Carbon dot (size)

Synthesis method /precursor

Effective against

Mechanism of viral inhibition

References

Curcumin cationic carbon dots
(1.5nm)

Carbon dots (4.7 nm)

Functionalized carbon quantum
dots

Boronic
acid/amine-functionalized
carbon dots

Benzoxamine carbon dots
(4.4nm)

curcumin derived carbon
quantum dots (4.2-5.2 nm)

Carbon dots

Glycyrrhizic acid carbon dots
(11.4nm)

Blue-fluorescent carbon dots

Hydrothermal reaction/ curcumin
and citric acid

Hydrothermal reaction
/PEG-diamine and ascorbic acid
Hydrothermal
carbonization/ethylenediamine
and citric acid

Hydrothermal
carbonization/4-aminopheny!
boronic acid hydrochloride
Hydrothermal
reaction/benzoxazine monomers

Pyrolysis/curcumin
2,2~

(ethylenedioxy)bis(ethylamine)
and 3-ethoxypropylamine

Hydrothermal/Glycyrrhizic acid

Hydrothermal process/young

Coronavirus model (porcine
epidemic diarrhea virus)

Porcine reproductive and
respiratory syndrome virus

Human coronavirus

Herpes simplex virus type 1

Adenovirus-associated virus,
Porcine parvovirus, Dengue virus,
Zika virus, and Japanese
encephalitis virus

Enterovirus

Human norovirus
virus-like-particles

Coronavirus and Herpes viridae
(porcine reproductive and
respiratory syndrome virus)

Pseudorabies virus

Entry, replication, and budding

Replication

Entry and replication

Entry

Attachment

Entry and replication

Inhibition of binding

Invasion and Replication

Ting et al., 2018

Duetal.,, 2016

koczechin et al., 2019

Barras et al., 2016

Huang et al., 2019

Lin etal., 2019

Dong et al., 2017

Tong et al., 2020

(1.9nm) Cyan-fluorescent
carbon dots (2.7 nm)

barley leaves and urea or citric
acid

Quantum dots 92.2 nm) Microwave Synthesis/aqueous
dispersed CdTe/CdS/ZnS
Boronic acid functionalized Pyrolysis/citric acid

carbon dots

Polyamine-modified Carbon
quantum dots

Pyrolysis/ spermidine powder

Human herpes simplex virus type 1

Human immunodeficiency virus 1

White spot syndrome virus -

mMRNA expression level of IFN-a,  Liu et al., 2017
IFN-B, and ISGs
Viral replication Hu et al., 2016

Entry step Fahmi et al., 2016

Jian et al., 2017;
Huang et al., 2020

activity of simple carbon dots as well as surface functionalized
carbon dots were discussed. In most of the research mentioned
here the antiviral activity is by one or more mechanism which
affect the life cycle of virus. From these results we can understand
that carbon dots derived from natural antiviral agents like
curcumin has excellent ability against corona virus. It should
be noted that surface modification or functionalization also
improved the antiviral activity of carbon dots.

Biosensing
There is a high demand for sensitive, selective, and affordable
biosensors for detecting viruses in this pandemic situation.
Carbon dots have been investigated in viral as well as bacterial
sensing by many researchers. Environmental and biosafety make
carbon dots to dominate in the diagnostic and monitoring field.
Changes in fluorescence property make carbon dots to act as
sensors for biological as well as non-biological entities (Jaleel and
Pramod, 2018). Resonance energy transfer, inner filter property,
electron transfer, photo-induced charge transfer are the main
mechanism which leads to changes in fluorescence property
which is required for sensing applications (Sun and Lei, 2017).
Ultrasensitive biosensor developed using carbon dots and gold
nanoparticles based on the principle of fluorescence resonance
energy transfer, proved to be effective for the detection of HIV

DNA. The research showed promising results for real sample
analysis (Qaddare and Salimi, 2017). So this method can be
explored for the detection of viral RNAs also.

Carboxylic carbon quantum dots (citric acid and malic
acid carbon dots) are useful for sensing of nucleic acid. The
sensing is based on the principle that, the difference in the
tendency of adsorption to the surface of carbon dots by single-
stranded and double-stranded DNA (Figure 3). It was proved
that citric acid and malic acid carbon dots can perform an
advanced range of detection of at least 3 orders of magnitude
(Loo et al.,, 2016). Similar way viral RNA detection probes can
also be anticipated in the future. For detecting HIV DNA in
biological samples a sensor containing fluorescent carbon dots
and cadmium telluride quantum coated with 3-mercapropionic
acid can be employed effectively. This probe allows the
ratiometric determination of double-stranded DNA with a
quantification limit of 1.0 nM. Also, no significant interference
with biomolecules like amino acids, nucleotides, etc. was
observed (Liang et al., 2017). Similarly a ratiometric nanosensor
for selective recognition of DNA using fluorescent carbon
dots and a fluorescent dye, ethidium bromide is also reported
(Huang et al., 2015).

BAI et al, exploited carbon dots for the detection of
DNA, for the first time in literature. It was observed that
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FIGURE 3 | Fluorescent detection of DNA by Carboxylic acid quantum dots. Reprinted with permission from Loo et al. (2016). © (2016) American Chemical Society.

methylene blue can cause an excellent quenching of fluorescence
of carbon dots. But the addition of ct-DNA restored the
fluorescence of carbon dots since DNA can bind with methylene
blue and removed it from the carbon dots. This system
can detect ct-DNA with a quantification limit of 1.0 X
107% mol/L (Bai et al, 2011). Polyethylene glycol capped
carbon dots also can effectively detect double-stranded DNA
(Milosavljevic et al., 2015).

Carbon dots from sources such as Saccharum officinarum were
also used for cell imaging in yeast and bacteria (Mehta et al.,
2014). Carbon dots synthesized from rice straw can bind with
bacterial membranes and facilitate their imaging and counting
with the help of a fluorescent microscope (Mandal and Parvin,
2011). A simple as well as sensitive technique for the detection
of H5N1 DNA using quantum dots and carbon nanotubes is also
reported. This technique is also based on fluorescence resonance
energy transfer from carbon dots to nanotubes and proved to
be an easy and effective method for the quantitative detection of
viral nucleic acid (Tian et al., 2012).

CONCLUSION AND FUTURE
PERSPECTIVES

In this current review, we have addressed all the published
research as well as review articles on antiviral carbon dots
along with a brief description of the synthesis and its antiviral
mechanism of action. Therefore, carbon dots have proved
promising application against different types of corona viruses.
Still, more focus required to be given in exploring carbon
dot-based antiviral agents for treating SARS-CoV, MERS-CoV,
and SARS-CoV-2 viral infections. Carbon dots are extensively
researched in biomedicine other than therapy like biosensing,

bioimaging, etc. Surface functionalization and low toxicity makes
carbon dots the most superior among other nanoparticulate
therapeutic delivery systems. These functionalized carbon dots
can stay as a new stage for the production of biosafe
nanotherapeutics for treating viral infections in the near
future. Among the reviewed researches carbon dots derived
from herbal sources like curcumin, glycyrrhizin, etc. was
found to be more promising because of their biocompatibility,
lower toxicity, and strong in vitro as well as in vivo
antiviral activity.

Apart from this, carbon dots could probably be exploited
in many other ways. As there is no specific vaccine against
SARS-CoV-2, cleaning of contaminated surfaces and
handwashing are highly needed to prevent the spread of
disease. Therefore, incorporation of carbon dots to sanitizing
solutions, handwashing soaps, cleaning detergents, etc. will be
useful. Carbon dot incorporated masks and air filters also seem
to be promising.

What we suggest from these studies is that a bottom up
approach with natural antiviral agent as a precursor for the
production of carbon dots will be a promising option. Additional
surface passivation/functionalization can also be considered for
enhancing the efficiency. Carbon dots with positive charge and
more hydrophilic groups on surface will be an add-on for a
superior anti-viral action.

Regardless of the encouraging results, still much more
research is needed to address some issues to make the dream
come true. Firstly, the exact antiviral mechanism of these carbon
dots is still not much explored and most of the literature reported
an early stage inhibition except few. Secondly, the in vivo efficacy
studies are not much detailed in any of the reported researches
and it’s difficult to make exact animal models for viral diseases.
The mutation capability of the virus is the last but not the least
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issue. Still, we can expect a bright future for carbon dots in
antiviral therapy especially in this urgent situation of COVID-19.
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