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1  | INTRODUC TION

EDC are chemical substances that impede the endocrine system 
leading to negative reproductive, developmental, and neurologi-
cal impacts in both human and animal (NIEHS, 2010). There exist 
about eight hundred (800) chemicals suspected to have the capa-
bility to interfere with the endocrine system (UNEP/WHO, 2012). 
Our understanding of endocrine disruption is dependent on clear 
understanding of the endocrine system (ES). ES is a collection of 
glands that produce hormones directly into the circulatory system 
to be transported to target organs, where normal hormonal effects 
are produced through unified complex signaling pathways involving 
hormone receptors. The system controls a vast number of biological 

processes ranging from developmental to functional processes. Any 
interference in the system will, therefore, result in abnormal hor-
monal effect, consequently, affecting the development, behaviour, 
and reproductive system of the organisms (Caliman & Gavrilescu, 
2009; You et al., 2015).

EDC either act as agonists or antagonists by their interactions 
with the hormone receptor. Their mechanisms of action include: 
mimicking the actions of physiologic hormones, by producing similar 
physiologic effects; and competitively binding to the hormone re-
ceptor, thus, preventing the naturally occurring hormones from bind-
ing and, consequently, leading to inactivation and disruption of the 
hormone synthesis, transport, metabolism, and their corresponding 
endocrine functions. Major classes of EDC include but not limited 
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Abstract
Direct municipal wastewater effluent discharge from treatment plants has been 
identified as the major source of endocrine- disrupting chemicals (EDC) in freshwa-
ters. Consequently, efficient elimination of EDC in wastewater is significant to good 
water quality. However, conventional wastewater treatment approaches have been 
deficient in the complete removal of these contaminants. Hence, the exploration of 
new and more efficient methods for elimination of EDC in wastewater is imperative. 
Enzymatic	treatment	approach	has	been	suggested	as	a	suitable	option.	Nonetheless,	
ligninolytic	enzymes	seem	to	be	the	most	promising	group	of	enzymes	for	EDC	elimi-
nation, perhaps, owing to their unique catalytic properties and characteristic high 
redox potentials for oxidation of a wide spectrum of organic compounds. Therefore, 
this	paper	discusses	the	potential	of	some	ligninolytic	enzymes	(laccase,	manganese	
peroxidase, and versatile peroxidase) in the elimination of EDC in wastewater and 
proposes a new scheme of wastewater treatment process for EDC removal.
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to pharmaceuticals and personal care products (PPCPs), phthalates, 
polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons 
(PAHs), alkylphenols (APs), alkylphenol ethoxylates (APEs), pesti-
cides including dichlorodiphenyltrichloroethane (DDT), and plastic 
additives such as bisphenol A (BPA) (Annamalai & Namasivayam, 
2015).

Runoff and discharge of treated wastewater effluents into fresh-
waters are the main sources of EDC contamination, perhaps, due to 
partial elimination of EDC during wastewater treatment. The receiv-
ing waterbodies, which serve as the main sources of portable water, 
are also used for various domestic and agricultural purposes includ-
ing	irrigation,	thus	exposing	the	public	to	biochemical	hazards	result-
ing from poor quality wastewater effluents. The U.S. Environmental 
Protection Agency has described EDC discharged from wastewater 
treatment plants (WWTPs) as “contaminants of emerging concern 
with potentially widespread environmental effects.”

This concern has, consequently, motivated research into EDC in-
cluding their detection and occurrence in the environment, as well as 
development of effective method for their elimination in freshwater 

and wastewater. Recent studies have detected EDC in wastewater 
(Table 1) and the receiving waterbodies in many countries (Barber, 
Loyo-	Rosales,	 Rice,	 Minarik,	 &	 Oskouie,	 2015;	 Komesli,	 Muz,	 Ak,	
Bakirdere, & Gokcay, 2015; Noutsopoulos et al., 2015; Vajda et al., 
2015). The micropollutants have also been detected in drinking water 
and	sediments	(Liu,	Kanjo,	&	Mizutani,	2009).	Some	examples	of	EDC	
detected in water sediments are nonylphenols (NP), bisphenols, hex-
estrol (HEX), Diethylstilbestrol (DES), dienestrol, androsterone, trans- 
dehydrotestosterone	 (DEHA),	 4,5-	α- dihydrotestosterone (DHT), 
estrone (E1), 17β- estradiol (E2), trenbolone, 19- norethindrone, and 
17α- ethinylestradiol (EE2) (Yuan et al., 2015).

The effect of EDC on the biochemical and physical integrity of 
water, as well as their impacts on the flora and fauna that depend on 
freshwaters, has been reported. These effects are profound in fish, 
wildlife, and humans. Some of the adverse effects in humans include 
infertility, increase in natal defects, alteration in sexual expression, and 
cancer (Jobling et al., 2013). Given the ecological risk and adverse health 
effects associated with exposure of humans to EDC, their removal from 
the environment should be the utmost priority of stakeholders.

TABLE  1 Detection of EDC in water

Water source EDC detected Concentration Country Reference

Surface water Polycyclic aromatic hydrocarbons 
(PAHs)

Winter: 582.8–2208.3 ng/l 
Summer:	952.4–1201.7	ng/l

China Li et al. (2015)

Groundwater and surface 
water

PAHs — Bangladesh Mandal et al. (2015)

Surface water Polychlorinated biphenyls (PCBs) 0.93–13.07 ng/l China Yang, Xie, Liu, and Wang 
(2015)

Wastewater and surface 
water

Alkylphenolic chemicals (APs) — USA Barber et al. (2015)

Wastewater Pharmaceutical residues 117 μg/l South Africa Matongo, Birungi, 
Moodley, and Ndungu 
(2015)

Surface water Pharmaceutical residues 84.60	μg/l

Surface water Nonylphenol 694.6	±	248.7	ng/l China Wang et al. (2015)

Groundwater Nonylphenol 244.4	±	230.8	ng/l

Surface water Nonylphenol (NP) 0.1–6.2	μg/l Argentina Babay, Itria, Ale, 
Becquart, and Gautier 
(2014)

Mono- ethoxylate (NP1EO) 0.1–9.2 μg/l

Di- ethoxylate (NP2EO) 0.1–5.2 μg/l

Wastewater Pharmaceuticals and personal care 
products (PPCPs)

Influent:	7.26	μg/l 
Effluent:	6.72–940	ng/l

Spain Carmona, Andreu, and 
Picó	(2014)

Wastewater Phthalate esters (PAEs) 6.95–61.49	ng/ml China Gao, Li, Wen, and Ren 
(2014)Surface water PAEs 9.93–45.55	ng/ml

Drinking water sources Di- 2- ethylhexy phthalate (DEHP) 128.9–6570.9	ng/l China Liu, Chen, and Shen 
(2013)Di- butyl phthalate (DBP) 52–4498.2	ng/l

Freshwater Dichlorodiphenyltrichloroethane 
(DDT) and its metabolites

Fall:	0.29	±	0.69	ng/l 
Spring:	0.36	±	0.91	ng/l

China Wang et al. (2013)

Wastewater Bisphenol A 0.07–1.68	μg/l Canada Mohapatra, Brar, Tyagi, 
and Surampalli (2011)

Surface water PPCPs 56–1013	ng/l South Korea Yoon, Ryu, Oh, Choi, and 
Snyder (2010)

Surface water Bisphenol A Up to 330 ng/l Netherlands Belfroid,	van	Velzen,	van	
der Horst, and Vethaark 
(2002)
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Unfortunately, removal of EDC by most wastewater treatment 
plants seems to be inefficient as there is no specific unit designed 
to eliminate EDC in the present wastewater treatment technol-
ogy	 (Zhang,	 Li,	Wang,	Niu,	 &	 Cai,	 2016).	 Auriol,	 Filali-	Meknassi,	
Tyagi,	Adams,	and	Surampalli	(2006)	made	the	following	observa-
tions with the use of some conventional treatment processes for 
removal of EDC in wastewater: Coagulation with the use of “iron 
and aluminum salts” did not support any EDC removal; however, 
coagulation involving powdered activated carbon (PAC) removed 
a	significant	amount	of	“small-	sized	contaminants”	including	EDC,	
while filtration processes, which allowed quite high EDC removal, 
are costly and involve a substantial maintenance in order to pre-
vent membrane clogging. These and some other challenges have 
led to the development of different treatment methods for EDC 
removal employing the advanced oxidation processes such as 
photocatalysis,	ozonation,	 the	use	of	hypochlorites,	and	chlorine	
oxides (Silva, Otero, & Esteves, 2012; Taboada- Puig et al., 2015). 
Although the advanced oxidation processes have recorded high 
EDC removal efficiency, they also present some challenges such 
as increased prices, narrow specificity, and generation of inter-
mediates with unknown or higher estrogenic activity compared to 
their	precursors	(Oller,	Malato,	&	Sanchez-	Perez,	2011;	Silva	et	al.,	
2012; Taboada- Puig et al., 2015). It is obvious that most of the 
conventional	 treatment	methods	 are	 characterized	 by	 one	 chal-
lenge or the other. Consequently, research efforts should be chan-
neled toward addressing these challenges and developing new 
wastewater treatment technologies that will effectively remove 
EDC and other emerging pollutants even at very low concentra-
tions in wastewater. Hence, this paper discusses the potential of 
ligninolytic	enzymes	in	the	elimination	of	EDC	in	wastewater	and	
proposes a new scheme of wastewater treatment process for EDC 
removal. Details of some reported methods of EDC removal are 
given in the succeeding section.

2  | CONVENTIONAL METHODS FOR 
REMOVAL OF EDC IN WA STE WATER

Research efforts toward complete removal of EDC in wastewater 
have continued to increase, and these had led to appreciable pro-
gress in recent years. A major progress made so far include the 
development of new methods for removal of EDC in wastewater. 
Some of these methods include but not limited to adsorption, elec-
trochemical oxidation, chemical advanced oxidation, photocatalysis, 
biodegradation,	and	enzymatic	treatment.	Details	of	these	methods	
are presented as follow:

2.1 | Adsorption by activated carbon

Adsorption by activated carbon is one of the most effective tech-
niques for removal of EDC in wastewater (Jeirani, Niu, & Soltan, 
2016;	Nam,	Choi,	Kim,	Her,	&	Zoh,	2014).	This	 technique	 is	based	

on hydrophobic interaction, which is determined by the nature of 
functional groups on the adsorbent and the adsorbates (Moreno- 
Castilla,	2004).	More	so,	formation	of	electron	donor–acceptor	com-
plex and hydrogen bonding, as well as π–π dispersion interactions, 
are the major mechanisms reported for adsorption of organic pol-
lutants by carbon in aqueous solutions (Li, Lei, & Huang, 2009; Lladó 
et	al.,	2015;	Moreno-	Castilla,	2004).	Jeirani	et	al.	(2016),	in	a	recent	
review, gave a concise documentation of the major mechanisms in-
volved in adsorption of emerging pollutants on activated carbon.

A major progress in adsorption technique is the exploration 
of cheap adsorbents for adsorption of emerging organic pollut-
ants.	 Ifelebuegu,	 Lester,	 Churchley,	 and	Cartmell	 (2006)	 exploited	
coconut, wood, and coal- based carbons for the removal of EE2 in 
wastewater	final	effluent	with	99.3%,	96.4%,	and	98.6%	removal	ef-
ficiency achieved, respectively. Krupadam, Sridevi, and Sakunthala 
(2011) employed crab shell chitin as a biosorbent for the removal 
of	some	EDC	 including	benzo	 (a)	anthracene,	β- estradiol, and BPA 
in contaminated groundwater. The use of chitin has, therefore, 
been suggested as a cost- effective adsorbent for EDC elimination 
in aqueous solutions. Furthermore, Loffredo and Castellana (2015) 
conducted a comparative study on the efficiency of low- cost ad-
sorbents (almond shells and green compost) and ligninolytic fungi 
(Pleurotus ostreatus and Sterenum hirsutum) to remove organic pol-
lutants (xenoestrogens and pesticides) from a landfill leachate. The 
study concluded that combined adsorption and biodegradation is 
suitable for the removal of xenoestrogens (BPA, ethinylestradiol, 
and	4-	n-	NP)	and	pesticides.	Also,	Saucier	et	al.	(2015)	assessed	the	
use of microwave- assisted carbon from cocoa shell as adsorbent for 
removal of sodium diclofenac and nimesulide (anti- inflammatory 
drugs) in aqueous effluents. The study suggested that MWCS- 1.0 [a 
mixture of cocoa shell and inorganic components (CSC- 1.0) acidified 
with HCl] is capable of efficient removal of sodium diclofenac and 
nimesulide in simulated hospital effluents. Furthermore, Qin, Jia, Liu, 
Li, and Wu (2015) suggested metal- organic frameworks with high 
porosity	and	large	pore	size	as	potential	adsorbents	for	the	removal	
of EDC in contaminated water.

2.2 | Electrochemical oxidation

This	 approach	 combines	 electro-	enzymatic	 catalysis	 and	 electro-
coagulation as a novel electrochemical approach for the removal 
of EDC in wastewater, with horseradish peroxidase (HRP) immobi-
lized	on	graphite	felt	of	titanium	electrode	as	cathode	and	aluminum	
plate serving as anode of the working electrode (Zhao et al., 2015). 
Electrochemical approach has been used to remove BPA and reduce 
the total organic carbon (TOC) of wastewater. By this approach, Zhao 
et	al.	(2015)	achieved	94%	BPA	removal	and	52%	TOC	reduction	in	
real	wastewater	upon	sequencing	treatment.	The	electro-	enzymatic	
process	mediated	polymerization	of	BPA	and	incorporation	of	BPA	
into humic acid (HA), thereby, transformed BPA. It also altered the 
chemical/structural features of HA, and this gave rise to a form more 
prone to electrocoagulation.
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2.3 | Chemical advanced oxidation

This approach involves the use of chemical oxidants for the removal 
of EDC in a process called advanced oxidative process (AOP), which 
is	characterized	by	the	generation	of	reactive	oxygen	species	(ROS),	
primarily,	hydroxyl	radicals	(˙OH)	that,	subsequently,	oxidize	organic	
pollutants to carbondioxide (CO2) and inorganic ions (Esplugas, Bila, 
Gustavo,	Krause,	&	Dezotti,	2007)	 in	wastewater.	Another	mecha-
nism employed in this approach is the transformation of pollutants 
to	some	other	metabolic	products	by	some	strong	oxidizing	agents	
such as chlorine (Cl2), chlorine dioxide (ClO2), hydrogen peroxide 
(H2O2),	 and	ozone	 (O3) through oxidation–reduction reactions (Liu 
et al., 2009). The promising potentials of manganese oxide (MnO2) 
and calcium peroxide (CaO2)	 as	 oxidizing	 agents	 for	 EDC	 removal	
in wastewater have also been reported (Jiang, Huang, Chen, & 
Chen, 2009; Zhang, Wang, & Li, 2015). Han, Zhang, Zhao, and Feng 
(2015)	 synthesized	 a	 new	 class	 of	 stabilized	 MnO2 nanoparticles 
known	 as	 carboxymethyl	 cellulose-	stabilized	 MnO2 nanoparticles 
with potential for in situ “oxidative degradation of several emerg-
ing contaminants in soil and groundwater” (Han et al., 2015). More 
so, CaO2 oxidation has also been employed for effective removal of 
EDC	including	E1,	E2,	EE2,	estriol,	BPA,	and	4-	NP	in	waste-	activated	
sludge (Zhang et al., 2015). However, the performance of CaO2 at 
removing the EDC was dose- dependent (Zhang et al., 2015). In other 
words, the efficiency of EDC removal increased with CaO2 dosage. 
The ROS released during CaO2 oxidation have been identified as the 
major factor responsible for EDC removal, with hydroxyl radicals 
(˙OH)	playing	the	most	significant	role.	Interestingly,	EDC	products	
from CaO2 oxidation have shown less estrogenic activity than their 
precursors, which is an advantage over other advanced oxidation 
processes that may likely release by- products with higher estro-
genic activity than their precursors. CaO2 treatment has, therefore, 
been suggested as a promising technology for the removal of EDC in 
wastewater (Zhang et al., 2015).

Fenton oxidation is another chemical advanced oxidation em-
ployed for removal of EDC in wastewater. Fenton oxidation involves 
the use of ferrous salt and H2O2 to generate hydroxyl radicals with 
high redox potential for oxidation of a broad range of organic pollut-
ants	(Klavarioti,	Mantzavinos,	&	Kassinos,	2009)	including	EDC.	The	
effectiveness of this process is enhanced by ultraviolet irradiation 
in a photo- Fenton reaction, which leads to generation of more hy-
droxyl	 radicals	 (Ifelebuegu	&	 Ezenwa,	 2011).	 Several	 studies	 have	
reported the use of Fenton oxidation in the degradation of organic 
compounds	 including	 pharmaceutical	 products	 (Mendez-	Arriaga,	
Esplugas,	&	Gimenez,	2010;	Xu,	Wang,	Li,	&	Gu,	2004).	Despite	the	
effectiveness	of	Fenton	oxidation,	it	is	characterized	by	some	major	
setbacks,	which	include	narrow	pH	range	of	operation	(pH	2–4)	and	
recovery of dissolved ions from treated solutions, which require 
additional treatment step (Klavarioti et al., 2009). Furthermore, 
Fenton- like oxidation has been employed for the removal of EDC 
in	wastewater	 (Ifelebuegu	&	Ezenwa,	 2011).	 Fenton-	like	 oxidation	
is the reaction of ferric ion generated from Fenton oxidation with 
H2O2 to generate ferrous ion and hydroxide radical, which is able 

to attack aromatic compounds that are protected against hydroxyl 
radical attack due to the natural organic matters that are present in 
the treatment plant (Lindsey & Tarr, 2000). Several studies have also 
reported	the	use	of	ozonation	in	the	removal	of	EDC	in	water	(Bila,	
Montalvao,	&	Dezotti,	2005;	Huber,	Canonica,	Park,	&	von	Gunten,	
2003;	Ternes	et	al.,	2003;	Vogna,	Marotta,	Napolitano,	Andreozzi,	&	
d’Ischia,	2004).

2.4 | Photocatalysis

This mechanism removes EDC in a photochemical reaction cata-
lyzed	by	semiconductor	metal	oxides	known	as	photocatalysts	such	
as titanium dioxide (TiO2),	zinc	oxide	(ZnO),	zinc	sulfide	(ZnS),	ferric	
oxide (Fe2O3), and tin oxide (SnO2). During photocatalysis, photon 
energy absorbed by the catalyst produces an electron excitation, 
which leads to a change of level from valence to conduction band 
(Dalrymple,	Yeh,	&	Trotz,	2007).	Consequently,	an	electron–hole	is	
created in the valence band. Therefore, the electron–hole moves to 
the surface of the catalyst, where it takes part in an oxidation–re-
duction reaction with the EDC or other emerging pollutants that are 
adsorbed on the catalyst. The hole may further interact with water 
(H2O) or H2O2 to produce hydroxyl radicals, which, subsequently, 
facilitate degradation of EDC or other micropollutants (Dalrymple 
et al., 2007; Wong & Chu, 2003) in an indirect photolysis. However, 
the efficiency of photocatalytic degradation is dependent on the 
absorbance spectrum of the pollutants, quantum yield of photoca-
talysis, concentration of H2O2, and the water matrix (Klavarioti et al., 
2009). Recent studies have reported the efficiency of photocatalytic 
degradation	of	EDC.	Arlos	et	al.	(2016)	investigated	the	photocata-
lytic degradation of some target EDC including EE2, E2, E1, estriol, 
and BPA and their estrogenic activity by UV- LED irradiated TiO2. All 
the compounds except E2 were efficiently degraded at a wide pH 
range as a significant reduction in the total estrogenic activity was 
also observed. Furthermore, previous studies have also reported re-
duction and removal of estrogenic activity by photocatalytic treat-
ment with TiO2 (Coleman, Routledge, Sumpter, Eggins, & Byrne, 
2004;	Ohko	et	al.,	2001,	2002).

2.5 | Biodegradation

Biodegradation involves the use of microbes including fungi and 
bacteria for degradation of EDC and other environmental pollut-
ants. Biodegradation has been described as a major removal mecha-
nism that is capable of affecting the fate of EDC in the environment 
(Yu, Deeb, & Chu, 2013). Over the years, several studies have re-
ported the degradation of various EDC by different microorgan-
isms	 (Ahuactzin-	Perez	 et	al.,	 2018;	Cajthaml,	 2015;	Combalbert	&	
Hernandez-	Raquet,	2010;	Husain	&	Qayyum,	2012;	Yu	et	al.,	2013;	
Zhang	 et	al.,	 2016;	 Zhao	 et	al.,	 2016).	 Ligninolytic	 organisms,	 pre-
dominantly, white rot fungi (WRF), have received increased atten-
tion for degradation of various emerging micropollutants. There are 
quite a number of reviews on the potential of ligninolytic fungi in 
the efficient removal of EDC in the environment. Cabana, Jones, 



     |  5 of 17FALADE Et AL.

and Agathos (2007a) gave a comprehensive review on the capabil-
ity of WRF to effectively eliminate EDC in various environmental 
matrices. In the review, the authors suggested the need to develop 
“robust and reliable biotechnological processes for the treatment 
of EDC- contaminated environmental matrices” (Cabana, Jones, and 
Agathos, 2007a). Cajthaml (2015), in another review, reported the 
versatility of ligninolytic fungi in the degradation of EDC using the 
lignin-	modifying	enzymes	system	and	cytochrome	P-	450.	EDC	deg-
radation	by	ligninolytic	fungi	occurs	through	polymerization	of	the	
micropollutants or degradation of the original structure by extra-
cellular	enzymes	system	(Cajthaml,	2015).	It	 is	worthy	of	note	that	
ligninolytic fungi are among the very few microbes with the ability to 
degrade EE2 and PCBs efficiently (Cajthaml, 2015).

Ligninolytic bacteria are also promising candidates for degrada-
tion of EDC, perhaps, because of their dexterity in the degradation 
of recalcitrant compounds and their abilities to produce some lignin- 
modifying	 enzymes	 including	 laccase	 and	 manganese	 peroxidase,	
which are mostly responsible for the EDC degradation proficiency 
manifested by WRF. Bacteria seem to hold stronger potential for 
EDC degradation, given their striking resilience in diverse environ-
ments and the maneuverability of their genome. Furthermore, bac-
terial degradation has been suggested as an easy way to remove EDC 
in wastewater (Husain & Qayyum, 2012). To justify this claim, Zhang 
et	al.	(2016)	gave	a	succinct	documentation	on	the	bacterial	degra-
dation of EDC and classified EDC- degrading bacteria into the follow-
ing: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes.

On the other hand, the combination of bacteria and physical 
methods such as adsorption is a novel technique with excellent po-
tential for EDC elimination in an aqueous environment (Zhang et al., 
2016).	Nevertheless,	a	major	concern	on	the	adoption	of	biodegra-
dation for EDC removal is the likely introduction of pathogenic mi-
croorganisms into the environment, which may also contribute to 
the	problem	of	antibiotic	and	multiple	drug	resistance	via	horizontal	
gene	transfer.	Therefore,	enzymatic	treatment,	involving	the	use	of	
ligninolytic	extracellular	enzymes	rather	than	the	whole	cell	culture,	
will be a suitable alternative.

3  | PROMISING LIGNINOLY TIC ENZ YMES 
FOR EDC ELIMINATION

Laccases (EC 1.10.3.2), manganese peroxidase—MnP (EC 1.11.1.13), 
and	versatile	peroxidase—VP	(EC	1.11.1.16)	are	ligninolytic	enzymes	
(LEs) with promising potential for the removal of EDC in wastewater. 
The resourcefulness of LEs in the elimination of EDC is, perhaps, due 
to their high redox potentials for oxidation of a wide spectrum of 
organic compounds. Besides the lignin degradation activity of LEs, 
their potentials for bioremediation and wastewater effluent treat-
ment have been reported (Husain, 2010; Mehta, 2012; Rajasundari 
& Murugesan, 2011). Furthermore, they have shown great poten-
tials for the transformation of several types of recalcitrant aromatic 
compounds with known or suspected endocrine- disrupting prop-
erties	 such	 as	 PAHs,	 PCBs,	 APs,	 and	 pesticides	 (Davila-	Vazquez,	

Tinoco,	 Pickard,	 &	 Vazquez-	Duhalt,	 2005;	 Garcia-	Morales	 et	al.,	
2015;	 Mao,	 Lu,	 Gao,	 &	 Huang,	 2010;	 Suzuki,	 Hirai,	 Murata,	 &	
Nishida, 2003; Taboada- Puig et al., 2011; Touahar, Haroune, Ba, 
Bellenger,	&	Cabana,	2014).

The potential of laccase and MnP for removal of EDC in waste-
water has been well studied (Auriol et al., 2008; Ba, Jones, & Cabana, 
2014;	 Cabana,	 Jones,	 &	 Agathos,	 2007b,	 2009;	 Kim,	 Yeo,	 Kim,	 &	
Choi, 2008; Lloret et al., 2012; Sei, Takeda, Soda, Fujita, & Ike, 2007). 
However, there is dearth of information on the use of VP for EDC 
elimination. Among the LEs, VP seems to be the most promising for 
the elimination of EDC in wastewater, given its peculiar attribute 
of hybrid molecular architecture. Besides, unlike laccase, VP is not 
dependent on redox mediators for degradation of micropollutants 
(Ravichandran	&	Sridhar,	2016).	Summary	of	EDC	removal	by	LEs	is	
presented in Table 2.

3.1 | Laccases (EC.1.10.3.2)

Laccases	 are	 multicopper	 oxidases	 (MCOs)	 that	 oxidize	 a	 wide	
range of aromatic compounds using molecular oxygen in a radical- 
catalyzed	 reaction	 (Strong	&	Claus,	2011).	Usually,	 their	molecular	
weights (MW), optimal pH, and temperature fall within 58–90 kDa, 
2–10,	 and	 40–65°C,	 respectively	 (Quaratino,	 Federici,	 Petruccioli,	
Fenice,	&	D’Aannibale,	2007;	Zouari-	Mechichi	et	al.,	2006).

They are the largest member of MCOs family, with wide distribu-
tion in eukaryotes and prokaryotes (Sirim, Wagner, Wang, Schmid, & 
Pleiss, 2011). However, microbial laccases have attracted much in-
terest, probably, owing to their low substrate specificity and capabil-
ity	to	oxidize	different	compounds	(Gasser,	Ammann,	Shahagaldian,	
&	Corvini,	2014).	Other	MCOs	include	ferroxidases,	ascorbate	oxi-
dase,	and	ceruloplasmin	(Strong	&	Claus,	2011).	MCOs	oxidize	their	
substrates with a concomitant four- electron reduction of molecu-
lar oxygen to water (Sirim et al., 2011). They are divided into three 
classes, based on their copper centers: type 1 (blue), type 2 (normal), 
and type 3 or coupled binuclear (Messerschmidt & Huber, 1990; 
Ouzounis	&	Sander,	1991).	Type	1	(T1)	and	type	2	(T2)	have	one	Cu	
atom each, while type 3 (T3) has two Cu atoms (Wong, 2009).

The catalytic efficiency of laccases is dependent on the redox 
potential of the active site type 1 (T1) copper ion (Eldridge et al., 
2017), where substrate oxidation occurs in a one- electron reaction. 
Usually, microbial laccases exhibit higher redox potential than lac-
cases	of	plant	origin	(Gasser	et	al.,	2014).	This	indicates	that	laccases	
from microbes may probably have higher activity and catalytic ef-
ficiency when compared to plant laccases. In the other, T2 and T3 
form a trinuclear cluster, T2/T3, where molecular oxygen is reduced 
to water through the electrons transferred from T1 site to the trinu-
clear	site	(Gasser	et	al.,	2014;	Wong,	2009).	Generally,	the	catalytic	
reaction of laccases involves oxidation of four molecules of sub-
strate and reduction of molecular oxygen to two water molecules 
(Gasser	et	al.,	2014).	The	use	of	atmospheric	oxygen	as	electron	ac-
ceptor	in	a	laccase-	catalyzed	reaction	is	an	advantage	over	the	use	
of hydrogen peroxide by peroxidases. Nonetheless, laccases depend 
on	redox	mediators	such	as	2,2′-	azino-	bis	(3-	ethylbenzthiazoline-	6-	
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TABLE  2 EDC	removal	by	ligninolytic	enzymes

Reaction matrix Classes of EDC
Removal 
efficiency (%) Enzyme used References

Aqueous system Bisphenol A ≈100 Immobilized	laccase Zdarta et al. (2018)

Bisphenol F ≈100

Bisphenol S >40

Aqueous system Acetaminophen 90 Immobilized	laccase Garcia- Morales et al. (2018)

Diclofenac 68

Aqueous system Bisphenol A 90 Immobilized	laccase Ji et al. (2017)

Carbamazepine 40

Aqueous system Bisphenol A 100 Crude laccase de Freitas et al. (2017)

Aqueous system Bisphenol A 100 Laccase with mediator 
(Hydroxybenzotriazole)

Daasi	et	al.	(2016)

Wastewater Bisphenol A (BPA) 100 Versatile peroxidase using 
two- stage system (TSS)

Taboada- Puig et al. (2015).

Triclosan

Estrone (E1)

17β- estradiol (E2)

17α- ethinylestradiol (EE2)

Synthetic and 
groundwater

Bisphenol A 89 Free laccase cocktail Garcia- Morales et al. (2015)

4-	nonylphenol 93

17α- ethinylestradiol 100

Triclosan 90

Wastewater Nonylphenol 99.2 Versatile peroxidase using TSS Mendez-	Hernandez	et	al.	
(2015)

Aqueous system Nonylphenol and triclosan >95% Laccase Ramírez-	Cavazos	et	al.	(2014)

Wastewater Acetaminophen 93 Cross- linked laccase aggregates 
and polysulfone hollow fiber 
microfilter membrane

Ba	et	al.	(2014)

Mefenamic acid

Carbamazepine

Aqueous system Bisphenol A 100 Immobilized	laccase Debaste	et	al.	(2014)

Nonylphenol

Triclosan

Wastewater Estrone 83.6 Laccase	using	enzymatic	
membrane reactor (EMR)

Lloret, Eibes, Moreira, Feijoo, 
and Lema (2013)17β- estradiol (E2) 94

17α- ethinylestradiol (EE2) 93.6

Water Bisphenol A 90 Encapsulated ligninolytic 
enzymes	(Manganese	peroxi-
dase, lignin peroxidase, and 
laccase)

Gassara et al. (2013)

Aqueous system Bisphenol A 80 Immobilized	laccase Songulashvili et al. (2012)

Nonylphenol 40

Triclosan 60

Aqueous system Estrone 65 Immobilized	laccase	in	a	
packed- bed reactor

Lloret et al. (2012)

17β- estradiol (E2) 80

17α- ethinylestradiol (EE2) 80

Aqueous system Diclofenac and estrogen 
hormones

100 Versatile peroxidase Eibes, Debernardi, Feijoo, 
Moreira, and Lema (2011)

Sulfamethoxazole	and	
Naproxen

80

(Continues)
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sulfonic acid) for degradation of nonphenolic compounds. Despite 
this shortcoming, laccases have attracted considerable attention in 
the last one decade, probably, owing to their potential applications in 
various biotechnological processes such as biopulping, biobleaching, 
bioremediation,	 juice/wine	 clarification,	 textile	 dye	 decolorization,	
degradation of xenobiotics, and effluent treatment (Afreen, Anwer, 
Singh,	&	Fatma,	2016;	Chandra	&	Chowdhary,	2015;	Couto	&	Toca	
Herrera,	2006).	Interestingly,	there	has	been	a	drastic	shift	from	the	
conventional application of laccases in lignin modification to degra-
dation of emerging micropollutants.

3.2 | Manganese peroxidase (EC.1.11.1.13)

MnP was discovered by Kuwahara, Glenn, Morgan, and Gold 
(1984)	and	is	the	most	common	ligninolytic	peroxidase	produced	
by microbes (Hofrichter, 2002). Its participation in lignin modi-
fication has been documented and studied extensively in fungi 
(Hofrichter, 2002). Nevertheless, there is rarity of information on 
MnP- producing bacteria. MnP catalytic reaction involves oxida-
tion of Mn2+ to Mn3+,	 which	 then	 oxidizes	 a	 broad	 spectrum	 of	
phenolic substrates including phenolic lignin monomers (Tuor, 
Wariishi, Schoemaker, & Gold, 1992). The Mn3+ formed from the 
oxidation of Mn2+	present	in	lignocellulosic	materials	is	stabilized	
by reacting with a carboxylic acid such as tartrate which serves as 
ion	 chelator.	 The	 resultant	 complex	will	 in	 turn	oxidize	 the	phe-
nolic component of lignin structure which leads to generation 
of unstable radicals that may breakdown naturally (Hofrichter, 
2002).	 However,	 MnP	 is	 also	 capable	 of	 oxidizing	 nonphenolic	
compounds, but with the involvement of redox mediators such as 

thiyl or lipid radicals (Abdel- Hamid, Solbiati, & Cann, 2013; Reddy, 
Sridhar,	&	Gold,	2003).	More	so,	the	ability	of	MnP	to	oxidize	and	
degrade lignin and other recalcitrant compounds has been re-
ported	 (Bogan,	 Lamar,	 &	 Hammel,	 1996;	 Dehorter	 &	 Blondeau,	
1993; Hofrichter, 2002; Hofrichter, Steffen, & Hatakka, 2001; 
Hofrichter, Ullrich, Pecyna, Liers, & Lundell, 2010). Generally, MnP 
has	a	MW	ranging	from	38	to	62.5	kDa,	with	most	purified	MnPs	
having	MW	of	 about	 45	kDa	 (Hatakka,	 1994).	 About	 11	 various	
isoforms of MnP have been identified in Ceriporiopsis subvermis-
pora	(Lobos,	Larram,	Salas,	Cullen,	&	Vicuna,	1994)	with	variations	
in the isoelectric point of the different isoforms.

3.3 | Versatile peroxidase (EC.1.11.1.6)

VP	belongs	to	the	group	of	enzymes	called	ligninases,	which	are	mi-
crobial	extracellular	enzymes	capable	of	degrading	lignin.	Generally,	
ligninases	are	characterized	by	high	redox	potential	for	oxidation	of	
phenolic and nonphenolic compounds. As well, they have shown ca-
pability for degradation of some recalcitrant compounds including 
“chlorophenols, polycyclic aromatic hydrocarbons (PAHs), organo-
phosphorus compounds, and phenols” (Wesenberg, Kyriakides, & 
Agathos, 2003), thus informing their potentials for diverse industrial 
and biotechnological applications (Falade et al., 2017; Husain, 2010; 
Mehta, 2012; Rajasundari & Murugesan, 2011).

VP is a relatively new and unique lignin- modifying heme perox-
idase belonging to the same class (class II of peroxidase–catalase 
superfamily) with lignin peroxidase (LiP) and MnP. It is also referred 
to as “hybrid peroxidase” or “lignin- manganese peroxidase” and is 
largely produced by ligninolytic fungi belonging to certain genera: 

Reaction matrix Classes of EDC
Removal 
efficiency (%) Enzyme used References

Wastewater Bisphenol A, B, F 100 Immobilized	laccase Diano and Mita (2011)

Aqueous system Triclosan 99.4 Manganese peroxidase Inoue et al. (2010)

Wastewater Estrone 100 Laccase Auriol et al. (2008)

Estriol

17β- estradiol (E2)

17α- ethinylestradiol

Simulated 
wastewater

Nonylphenol 100 Laccase Cabana, Jiwan, et al. (2007)

Bisphenol A 100

Triclosan 65

Simulated 
wastewater

Nonylphenol 100 Immobilized	laccase	in	fluidized	
bed reactor

Cabana, Jones, and Agathos 
(2007b)Bisphenol A

Triclosan

Aqueous system Natural steroidal hormone, 
estrone

98 Manganese peroxidase and 
laccase

Tamagawa	et	al.	(2006)

Aqueous system Genistein 93 Manganese peroxidase and 
laccase

Tamagawa, Hirai, Kawai, and 
Nishida (2005)

Aqueous system Bisphenol A 100 Manganese peroxidase and 
laccase-	1-	hydroxybenzotriazole	
(laccase- HBT) system

Tsutsumi et al. (2001)

Nonylphenol

TABLE  2  (Continued)
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Bjerkandera	 (Heinfling,	Martınez,	Martınez,	Bergbauer,	&	Szewzyk,	
1998), Pleurotus	(Palma,	Lloret,	Sepulveda,	&	Contreras,	2016;	Ruiz-	
Duenas,	Martınez,	&	Martınez,	1999),	and	Lepista (Zorn, Langhoff, 
Scheibner,	Nimtz,	&	Berger,	2003).	Its	production	by	Phanerochaete 
chrysosporium	has	also	been	reported	(Coconi-	Linares	et	al.,	2014).	
Nonetheless, there is limited information on its production by bac-
teria. Thus, exploitation of bacteria and other fungal genera for VP 
production is imperative.

The uniqueness of VP is manifested in its hybrid molecular ar-
chitecture, which combines different substrate binding and oxida-
tion	 sites	 (Camarero,	 Sarkar,	 Ruiz-	Duenas,	 Martinez,	 &	 Martinez,	
1999). Its characteristic oxidation of high and low redox potential 
substrates motivates for its potential application in the elimination 
of	EDC	in	wastewater.	Furthermore,	the	enzyme	has	the	ability	to	
combine the substrate specificity of two ligninolytic peroxidases 
(MnP and LiP) and one other fungal peroxidase family, Coprinopsis 
cinerea	peroxidase	 (CIP)	 (Perez-	Boada,	Ruiz-	Duenas,	Pogni,	Basosi,	
&	Choinowski,	2005).	Consequently,	it	is	capable	of	oxidizing	a	wide	
range of substrates such as Mn2+, phenolic and nonphenolic lignin 
model dimers, α- keto- γ- thiomethylbutyric acid (KTBA), veratryl al-
cohol	 (VA),	 dimethoxybenzenes,	 synthetic	 dyes,	 substituted	 phe-
nols,	 and	 hydroquinones	 (Caramelo,	 Martınez,	 &	 Martınez,	 1999;	
Perez-	Boada	et	al.,	2005).	It	employs	the	MnP	pathway	by	oxidizing	
Mn2+ to Mn3+ with H2O2 as electron acceptor (Figure 1); however, 
Mn3+ is highly reactive, but has a very short half- life. Thus, when VP 
is	utilizing	the	MnP	pathway,	a	dicarboxylic	organic	acid	such	as	ox-
alate, tartrate, or malonate is required to form a stable complex with 
Mn3+ (Mn3+- oxalate, Mn3+- tartrate, or Mn3+- malonate). With the 
utilization	of	 this	mechanism,	VP	 is	capable	of	oxidizing	pollutants	
situated far away from it by the action of the metallic ion complex 
(Taboada-	Puig	et	al.,	2015).	The	utilization	of	MnP	pathway	by	VP	
commits it to oxidation of phenolic substrates as it is also able to 
oxidize	nonphenolic	compounds	and	other	typical	substrates	of	LiP	
using the normal LiP catalytic reaction mechanism. However, LiP is 
able	to	oxidize	veratryl	alcohol,	a	typical	LiP	substrate	more	effec-
tively than VP. The variation in the catalysis of LiP and VP has been 
attributed to the variation in the tryptophan environment of the en-
zymes	(Khindaria,	Yamazaki,	&	Aust,	1996).

VP also employs the “long- range electron transfer (LRET) 
mechanism in the oxidation of high redox potential aromatic com-
pounds”	 (Perez-	Boada	 et	al.,	 2005;	 Ruiz-	Dueñas	 et	al.,	 2009).	
Specifically, three possible LRET pathways for the oxidation of 
high redox potential aromatic compounds have been revealed in 
two	VP	 isozymes	 (VPL	and	VPS	1)	of	Pleurotus eryngii (Caramelo 
et	al.,	 1999;	 Perez-	Boada	 et	al.,	 2005;	 Ruiz-	Duenas	 et	al.,	 1999).	
The	pathways	start	at	either	TrP	164	or	His	232	of	VPL	and	at	His	
82	or	TrP	170	of	VPS	1,	which	 is	homologous	 to	TrP	164	 in	VPL	
(Perez-	Boada	et	al.,	2005;	Ruiz-	Dueñas	et	al.,	2009).	Furthermore,	
the	involvement	of	TrP	164	in	the	oxidation	of	veratryl	alcohol	and	
reactive black 5 has been reported. However, the other two path-
ways	(His	232	and	His	82)	were	not	involved	in	LRET	(Perez-	Boada	
et	al.,	 2005).	 Therefore,	 the	 ability	 of	 VP	 to	 oxidize	 high	 redox	
potential compounds could, perhaps, be linked to an exposed 

catalytic	tryptophan:	Trp-	164,	which	forms	a	radical	on	the	surface	
of	 the	 enzyme	 through	 a	 LRET	 to	 the	 heme	 (Ruiz-	Dueñas	 et	al.,	
2009;	Saez-	Jimenez	et	al.,	2015).	Hence,	LRET	could	 suffice	as	a	
novel mechanism for EDC removal by VP.

4  | POTENTIAL OF LEs  IN THE 
ELIMINATION OF EDC IN WA STE WATER

The high environmental and health risk posed by exposure of 
human to EDC and the inefficiency of the conventional treatment 
approaches for complete removal of EDC in wastewater, as well as 
some	challenges	that	characterized	the	conventional	treatment	pro-
cesses, have led to an increased interest in the exploration of alter-
native treatment processes for elimination of EDC in wastewater. 
Therefore,	enzymatic	treatment	process,	 involving	the	use	of	ligni-
nolytic	oxidative	enzymes	for	EDC	removal,	has	recently	attracted	
attention as an environmentally friendly alternative. The potential 
of some LEs including laccase, MnP, and VP for efficient removal 
of EDC in water has recently been reported (Diano & Mita, 2011; 

F IGURE  1 Exploitation of the VP catalytic cycle for EDC removal. 
The	VP	catalytic	cycle	is	adapted	from	Perez-	Boada	et	al.	(2005)	with	
permission	 from	 Elsevier	 (license	 number:	 4365891195222).	 C-	IA 
(Compound IA, containing Fe4+- oxo and porphyrin cation radical), C- 
IIA (Compound IIA, containing Fe4+- oxo after reduction in porphyrin), 
C- IB (Compound IB, containing Fe4+- oxo and tryptophanyl (Trp164) 
radical), C- IIB (Compound IIB, containing Fe3+ and tryptophanyl 
(Trp164) radical), and PAH (polycyclic aromatic hydrocarbons). I–III: 
Reactions involved in Mn2+ oxidation mechanism for EDC removal. 
Mn3+ generated in step III forms a complex with a dicarboxylic 
acid such as oxalate/malonate/tartrate, which is responsible for 
subsequent degradation of EDC. I, IV- VII: Reactions involved in 
long- range electron transfer mechanism proposed for EDC removal. 
The tryptophanyl radical generated on the surface of C- IIB could be 
exploited for degradation of EDC such as PAH in step VII
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Garcia-	Morales	et	al.,	2015;	Ramírez-	Cavazos	et	al.,	2014;	Taboada-	
Puig	et	al.,	 2011;	Touahar	et	al.,	 2014;	Wen,	 Jia,	&	Li,	2009,	2010;	
Zhang & Geissen, 2010).

Immobilized	 laccase	 from	 Cerrena unicolor C- 139 eliminated 
80%	of	BPA,	40%	of	NP,	and	60%	of	 triclosan	from	solutions	that	
contained 50 μmol of each endocrine disruptor, respectively 
(Songulashvili,	 Jimenez-	tobon,	 Jaspers,	 &	 Penninckx,	 2012).	 Also,	
Debaste,	Songulashvili,	and	Penninckx	(2014)	reported	total	removal	
of	BPA,	4-	NP,	and	triclosan	by	immobilized	laccase	from	Cerrena uni-
color. The authors, therefore, suggested the potential application 
of	 the	 immobilized	enzyme	 for	elimination	of	harmful	micropollut-
ants industrially and domestically. On the other hand, Eldridge et al. 
(2017) have attributed the efficient removal of EE2 by Lentinula edo-
des (Shiitake) to laccase as the induction of laccase production in the 
organism increased the removal efficiency of the pollutant from 50% 
to 80%. More so, Zdarta et al. (2018) reported approximately 100% 
removal of BPA and bisphenol F (BPF) by Trametes versicolor laccase 
immobilized	on	Hippospongia communis spongin scaffolds. However, 
the	removal	efficiency	of	the	enzyme	on	bisphenol	S	(BPS)	was	only	
greater	than	40%.	The	removal	efficiency	of	the	enzyme	was	optimal	
at	 slightly	acidic	pH	 (4–5),	while	 the	optimum	temperature	 ranged	
from	30	to	40°C.

A new approach for elimination of EDC in wastewater is the immo-
bilization	of	LEs	on	nanoparticles.	Garcia-	Morales	et	al.	(2018)	reported	
90%	and	68%	biotransformation	of	acetaminophen	and	diclofenac	by	
Pycnoporus sanguineus	 laccase	immobilized	onto	titania	nanoparticle,	
respectively. Likewise, Pleurotus ostreatus	 crude	 laccase	 immobilized	
on	functionalized	TiO2 nanoparticles attained 90% BPA degradation 
within	6	hr	of	treatment,	while	only	about	10%	degradation	efficiency	
was	recorded	with	carbamazepine	after	48	hr	(Ji,	Nguyen,	Hou,	Hai,	&	
Chen,	2017).	The	poor	elimination	of	carbamazepine	in	the	study	was	
attributed to the high redox potential of the compound, which ham-
pered	its	oxidation	by	the	enzyme	(Hata,	Shintate,	Kawai,	Okamura,	
& Nishida, 2010; Ji et al., 2017). Nevertheless, degradation of carba-
mazepine	was	enhanced	in	the	presence	of	BPA,	with	40%	elimination	
attained	after	24	hr	reaction.	The	authors,	therefore,	concluded	that	
oxidative products of BPA had a redox mediator effect on the degra-
dation	of	carbamazepine.	The	findings	from	the	study	suggested	that	
the “presence of more reactive micropollutant can promote the re-
moval of the more recalcitrant pollutants” in a cocktail (Ji et al., 2017). 
Also, crude laccases from P. ostreatus and P. pulmonarius were able to 
degrade BPA in aqueous solution, with 100% and 85% degradation 
efficiency achieved, respectively, within 1 hr (de Freitas et al., 2017). 
Moreover, P. ostreatus laccase reduced BPA toxicity from 85% to less 
than 5%, but there was no decrease in toxicity when treated with 
laccase from P. pulmonarius. The study indicated that degradation of 
BPA by P. pulmonarius laccase, probably, generated metabolites with 
the same toxicity as the parent compound (de Freitas et al., 2017). 
Therefore, crude laccase from P. ostreatus was recommended as an 
efficient degrader of EDC. Besides the use of laccase alone for EDC 
elimination, Gassara, Brar, Verma, and Tyagi (2013) assessed the ef-
fectiveness of free LEs (Laccase, MnP and LiP) and encapsulated LEs 
in the degradation of BPA. The authors recorded higher degradation 

efficiency (90%) when the three LEs were encapsulated on polyacryl-
amide	hydrogel	and	pectin,	while	only	26%	efficiency	was	observed	
with	the	free	enzymes.

MnP	 is	 another	 ligninolytic	 enzyme	 that	 has	 shown	 effec-
tiveness for elimination of EDC (Inoue, Hata, Kawai, Okamura, & 
Nishida,	2010;	Tamagawa,	Yamaki,	Hirai,	Kawai,	&	Nishida,	2006;	
Tsutsumi, Haneda, & Nishida, 2001). In a study by Tsutsumi et al. 
(2001), BPA and NP were treated with MnP and laccase from 
ligninolytic fungi. MnP was able to completely remove the target 
compounds in an aqueous solution after 1 hr of treatment, but 
not without estrogenic activities. Upon extension of treatment 
time to 12 hr, the observed estrogenic activities were totally re-
moved. Similarly, Inoue et al. (2010) treated triclosan with MnP 
from P. chrysosporium, T. versicolor laccase, and the laccase (0.5 and 
2.0	nkat/ml)	 with	 1-	hydroxybenzotriazole	 (0.2	mM)	 as	 mediator.	
The	authors	observed	99.4%	triclosan	removal	by	MnP	after	1	hr	of	
treatment, while 10.2% and 29% elimination were observed with 
the use of laccase and laccase–mediator system, respectively. The 
ability of MnP to almost remove the target compound completely 
within a short period indicates its potential for degradation of other 
classes of EDC.

VP has recently emerged with promising potential for elimination of 
EDC in wastewater. One of the few reports that implicated VP in EDC 
removal is the work of Taboada- Puig et al. (2011). They produced a 
combined	cross-	linked	enzyme	aggregate	from	VP	and	glucose	oxidase	
(combined CLEA) and investigated its ability to eliminate the following 
endocrine disruptors: BPA, NP, triclosan, EE2, and E2. Coaggregation 
of VP with glucose oxidase resulted in an increased activity recovery 
of	89%	from	the	initial	activity	of	67%	and	an	increased	stability	of	VP	
against H2O2. The combined CLEA was able to remove all the target 
pollutants except triclosan, while the removal of their estrogenic activi-
ties was more than 55% for all the EDC except triclosan. The exploration 
of other H2O2-	producing	enzymes	with	more	appropriate	substrates	in	
water treatment rather than glucose in the case of glucose oxidase has 
been suggested as glucose may support the unwanted growth of micro-
organisms. Adoption of this concept (coaggregation of glucose oxidase 
with other ligninolytic peroxidases) is desirable for EDC removal and 
other applications as this will nullify the cost of H2O2. Likewise, Touahar 
et	al.	(2014)	investigated	the	ability	of	a	combined	cross-	linked	enzyme	
aggregate (combi- CLEA) {comprising laccase, VP, and glucose oxidase} 
to transform a cocktail of pharmaceutically active compounds (PhACs) 
in	a	mixed	solution	and	synthetic	wastewater.	The	free	enzymes	and	
combi- CLEA showed the ability to efficiently transform nonsteroidal 
anti- inflammatory drugs (acetaminophen, naproxen, mefenamic acid, 
diclofenac, and indometacin) in a mixed solution and eliminate acet-
aminophen in municipal wastewater. However, combi- CLEA exhibited 
more improved removal efficiency. The study also demonstrated that 
VP had a wider removal spectrum than laccase. Furthermore, Taboada- 
Puig	et	al.	(2015)	utilized	the	oxidant,	Mn3+- malonate generated by VP 
in a two- stage (TS) system for continuous removal of the following 
EDC: BPA, triclosan, E1, E2, and EE2 from synthetic and real waste-
waters at degradation rates ranging from 28 to 58 μg/L min, with little 
enzyme	inactivation	observed.	Interestingly,	a	14-	fold	increase	in	the	
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EDC removal efficiency of VP in a TS system was observed when com-
pared	with	a	regular	enzymatic	membrane	reactor	(EMR)	system.	Also,	
some of the operational challenges encountered during EDC removal in 
an EMR system were prevented, as the TS system was able to separate 
the complex formation stage from the contaminant oxidation stage. It 
is	noteworthy	that	VP	 in	a	TS	enzymatic	system	exhibited	100%	re-
moval efficiency for all the EDC studied, therefore demonstrating the 
practicability of this approach for removing EDC at both high and envi-
ronmental concentrations.

5  | PROPOSED SCHEME OF WA STE WATER 
TRE ATMENT PROCESS FOR EDC REMOVAL 
BY LEs

The present wastewater treatment technology involves three dif-
ferent stages including primary, secondary, and tertiary treatments. 
Each stage has specific units for specified treatment (Figure 2a). In 
most cases, the tertiary wastewater treatment stage involves dis-
infection and probably, nutrient removal (optional). However, no 

F IGURE  2  (a) Proposed scheme of wastewater treatment process for EDC removal by LEs. Adapted from https://www.britannica.com/
technology/wastewater-treatment. Primary Treatment Stage: coarse debris screen, sand and grit removal, and primary clarification. Secondary 
Treatment	Stage:	 aeration	and	clarification.	Tertiary	Treatment	Stage:	enzymatic	 treatment	 for	EDC	 removal	 and	disinfection.	Solid	 lines:	
conventional	treatment	units;	broken	lines:	proposed	additional	treatment	unit.	ETU:	enzymatic	treatment	unit.	(b)	Proposed	treatment	stages	
for EDC elimination by LEs using continuous stirred tank reactors. Stage I (VP reactor): generation of Mn3+-	malonate	complex	by	immobilized	VP	
via the MnP mechanism. Stage II (oxidation reactor): oxidation of EDC by Mn3+- malonate complex. Stage III (laccase- VP reactor): treatment of 
residual	EDC	with	coimmobilized	laccase-	VP.	Stages	I	and	II	are	adapted	from	Mendez-	Hernandez	et	al.	(2015).	UFM:	ultrafiltration	membrane
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specific unit is designed to remove EDC during wastewater treat-
ment process. This deficiency has, perhaps, resulted in the occur-
rence of EDC in wastewater treatment plant effluents (Huang et al., 
2014;	Ifelebuegu,	2011;	Martın,	Camacho-	Munoz,	Santos,	Aparicio,	
&	 Alonso,	 2012;	 Pessoa	 et	al.,	 2014;	 Ra	 et	al.,	 2011;	 Zhang	 et	al.,	
2016).

This paper, therefore, proposes a scheme of wastewater treat-
ment process that includes a specific unit for EDC removal at the 
tertiary treatment stage (Figure 2a). Upon clarification, the liquid is 
passed	 through	 enzymatic	 treatment	 unit	 (ETU)	 for	 EDC	 removal:	
a three- stage continuous stirred tank reactor (Figure 2b). The first 
stage is the VP reactor, where Mn3+- dicarboxylic acid complex 
(Mn3+- malonate, Mn3+- tartrate, or Mn3+- oxalate) is generated by 
immobilized	VP,	while	the	second	stage	(oxidation	reactor)	involves	
the	oxidation	of	EDC	by	the	complex	generated	in	stage	I	(Mendez-	
Hernandez	 et	al.,	 2015).	 In	 the	 third	 stage	 (laccase-	VP	 reactor),	
effluent from the oxidation reactor is further treated with laccase 
coimmobilized	with	VP	to	eliminate	any	residual	EDC	before	pass-
ing the effluent through disinfection unit and subsequent disposal. 
During the treatment process, the VP reactor will be fed with two 
different	peristaltic	pumps.	One	will	be	used	 for	 the	enzyme	acti-
vator, H2O2, while the other will be used for the solution of sodium 
malonate and MnSO4	(Mendez-	Hernandez	et	al.,	2015)	at	predeter-
mined feeding rates. Another peristaltic pump will be used to feed 
the laccase- VP reactor with H2O2. However, further research is re-
quired	 to	 optimize	 the	 concentrations	 of	H2O2, Mn2+, and sodium 
malonate required by VP. It is also imperative to regulate the con-
centration of H2O2 in the laccase- VP reactor to ensure that laccase 
activity is not adversely affected as increase in H2O2 may inhibit the 
enzyme	activity	(Milton,	Giroud,	Thumser,	Minteer,	&	Slade,	2013).	
However, addition of H2O2 may also increase laccase activity during 
oxidation of some phenolic compounds (Min, Kim, Kim, Jung, & Hah, 
2001).	Although	both	enzymes	usually	perform	optimally	in	slightly	
acidic	 pH	 region	 (Jarosz-	Wilkolazka,	 Luterek,	 &	Olszewska,	 2008;	
Min et al., 2001; Zdarta et al., 2018), it is important to determine the 
pH	requirements	of	the	enzymes	to	ensure	best	performance	during	
application. Likewise, efforts should be geared toward assessing 
the potential toxicity of Mn2+ and malonate in the effluent and the 
chance	of	recovering	them	after	the	enzymatic	treatment.

The	use	of	immobilized	enzymes	is	suggested	for	the	proposed	
technology	as	immobilization	increases	enzyme	stability	and	allows	
the	 enzymes	 to	 be	 reused	 in	 subsequent	 treatment	 (Zdarta	 et	al.,	
2018). A three- stage reaction system is necessary to ensure high 
efficiency in the elimination of EDC during treatment process. One 
of the benefits of separating the oxidation process from the Mn3+ 
complex generation system is that it allows recirculation of the im-
mobilized	enzyme	into	the	VP	reactor	for	reuse	(Taboada-	Puig	et	al.,	
2015). Also, it prevents some operative challenges that character-
ize	 conventional	 enzymatic	 reactors	 such	 as	 decrease	 in	 enzyme	
activity	 against	 time	 (Rios,	 Belleville,	 Paolucci,	 &	 Sanchez,	 2004;	
Taboada-	Puig	 et	al.,	 2015).	Moreover,	 a	 second	 enzymatic	 reactor	
with	 coimmobilized	 laccase	 and	VP	 is	 essential	 for	 complete	 EDC	
removal as there is possibility that some more recalcitrant EDC, 

which may resist oxidation by Mn3+ complex in stage II (Figure 2b), 
are	present.	However,	 coimmobilized	 laccase-	VP	will	have	a	wider	
EDC removal spectrum through combined advantages. At this stage, 
VP	will	catalyze	EDC	removal	in	Mn-	independent	reaction	through	
LRET mechanism, a typical LiP catalytic pathway. Exploitation of the 
LiP catalytic mechanism by VP will ensure degradation of nonphe-
nolic micropollutants.

6  | CONCLUSION

Indeed, LEs have shown great potential for degradation of EDC and 
other emerging organic micropollutants in wastewater, hence their 
potential applications in bioremediation and the water sector. More 
so, a new design of wastewater treatment technology that includes a 
three- stage continuous stirred tank reactor for EDC removal should 
be adopted as this will prevent discharge of the micropollutants di-
rectly	into	freshwater	environment.	Furthermore,	coimmobilization	
or combined cross- linking of laccase and VP will be a promising ap-
proach for complete elimination of EDC and other emerging organic 
pollutants in wastewater as this will provide leverage for laccase in 
the degradation of nonphenolic pollutants and, consequently, nul-
lifying the cost of redox mediators required by laccase for degrada-
tion of nonphenolic compounds.
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