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Purpose: To compare how linear mixed models (LMMs) using Gaussian, Student t, and log-gamma (LG)
random effect distributions estimate rates of structural loss in a glaucomatous population using OCT and to
compare model performance to ordinary least squares (OLS) regression.

Design: Retrospective cohort study.
Subjects: Patients in the Bascom Palmer Glaucoma Repository (BPGR).
Methods: Eyes with � 5 reliable peripapillary retinal nerve fiber layer (RNFL) OCT tests over � 2 years were

identified from the BPGR. Retinal nerve fiber layer thickness values from each reliable test (signal strength � 7/10)
and associated time points were collected. Data were modeled using OLS regression as well as LMMs using
different random effect distributions. Predictive modeling involved constructing LMMs with (n e 1) tests to predict
the RNFL thickness of subsequent tests. A total of 1200 simulated eyes of different baseline RNFL thickness
values and progression rates were developed to evaluate the likelihood of declared progression and predicted
rates.

Main Outcome Measures: Model fit assessed by WatanabeeAkaike information criterion (WAIC) and mean
absolute error (MAE) when predicting future RNFL thickness values; log-rank test and median time to progression
with simulated eyes.

Results: A total of 35 862 OCT scans from 5766 eyes of 3491 subjects were included. The mean follow-up
period was 7.0 � 2.3 years, with an average of 6.2 � 1.4 tests per eye. The Student t model produced the lowest
WAIC. In predictive models, all LMMs demonstrated a significant reduction in MAE when estimating future RNFL
thickness values compared with OLS (P < 0.001). Gaussian and Student t models were similar and significantly
better than the LG model in estimating future RNFL thickness values (P < 0.001). Simulated eyes confirmed LMM
performance in declaring progression sooner than OLS regression among moderate and fast progressors
(P < 0.01).

Conclusions: LMMs outperformed conventional approaches for estimating rates of OCT RNFL thickness
loss in a glaucomatous population. The Student tmodel provides the best model fit for estimating rates of change
in RNFL thickness, although the use of the Gaussian or Student t distribution in models led to similar improve-
ments in accurately estimating RNFL loss.
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Accurate detection of disease progression is essential in
managing glaucoma and preventing visual disability.
Although standard automated perimetry (SAP) has tradi-
tionally been utilized to assess functional vision loss in
glaucoma, changes in the retinal nerve fiber layer (RNFL),
as measured with OCT, provide valuable objective data in
evaluating structural loss due to glaucoma. Accurate as-
sessments of change in RNFL thickness provide guidance in
identifying eyes with glaucomatous progression, which can
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then be treated appropriately. Given that SAP test variability
can be high among glaucoma patients,1 trending structural
OCT data may be beneficial.

Rates of changes have typically been estimated using
ordinary least squares (OLS) regression, which is applied to
summary metrics such as average RNFL thickness. How-
ever, OLS can be highly imprecise in the presence of a few
measurements, which often occur in clinical practice.
Commercially available progression software typically
1https://doi.org/10.1016/j.xops.2023.100454
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requires 5 tests before any analysis is provided due to this
imprecision. With a typical frequency of OCT testing
completed once or twice yearly,2 a substantial amount of
time would be required before the availability of
OLS-based analyses for clinical use.

Linear mixed models (LMMs) have been applied in
estimating rates of change in glaucoma, primarily due to
their ability to utilize correlated patient data in the overall
population. These rates have been shown to be more precise
using various modalities such as SAP and scanning laser
ophthalmoscopy,3,4 as data regarding the overall population
are able to guide eye-level estimates. Individual estimates
are improved by “borrowing strength” from population
trends when fewer data points are available for a particular
eye. As more measurements are available, estimates will
rely primarily on the individual’s data, and the need to rely
on population data decreases. Linear mixed model estimates
consist of fixed effects, which are the population averages,
and random effects, which are eye-specific deviations from
the overall population means.

The traditional LMM estimates random effects using a
Gaussian distribution, leading to the assumption of a normal
distribution of rates of change in the population. However, prior
work has demonstrated that only a small percentage of patients
with glaucoma have moderate or fast progression as assessed
by SAP, leading to a left-skewed distribution.5,6 In addition, the
shrinkage of estimates toward the population mean may
attenuate more extreme values. Recent work has evaluated
SAP metrics using the Gaussian LMM as well as models
utilizing alternative random effects distributions, such as the
Student t distribution and left-skewed log-gamma (LG) distri-
bution (Fig 1).7 Prior work had suggested that the LG
distribution may be more appropriate, as the majority of eyes
have rates of change close to 0, whereas a minority have
more extreme values.8 These analyses demonstrated that the
LG model provided the best fit for SAP data.

However, an analogous analysis of OCT data has not
been completed. Although LMMs have been commonly
used with OCT data,9e11 improved performance compared
with traditional OLS has not been clearly demonstrated. It is
unknown if the LG model would be beneficial when
Figure 1. (A) Gaussian, (B) Student t, and (C) log-gamma probability densi
indicates the probability density. The Student t distribution has thicker tails th
distribution.
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assessing glaucomatous progression with OCT data. The
purpose of this work was to compare LMM performance
with OLS predictions, as well as the accuracy of Gaussian,
Student t, and LG LMMs in estimating rates of change in
OCT RNFL thickness.

Methods

The University of Miami institutional review board approved this
study and granted a waiver of informed consent given the retro-
spective nature of this work. The study adhered to the Declaration
of Helsinki and the Health Insurance Portability and Accountability
Act.

Data Collection

The Bascom Palmer Glaucoma Repository contains demographic
and ophthalmic data of eyeswith or suspected of glaucoma examined
at the clinical sites of the Bascom Palmer Eye Institute (Miami, FL),
identified using International Classification of Diseases codes
(Table S1, available at www.ophthalmologyscience.org) from the
Epic electronic health record (Epic Systems). The large Hispanic
and Black populations in South Florida contribute to the diversity
of this database. Glaucoma type was determined by the
International Classification of Diseases coding at the time of the
first visit in this analysis. Normal tension glaucoma was classified
as primary open-angle glaucoma, whereas pigmentary and pseu-
doexfoliative glaucomas were classified as secondary open-angle
glaucomas. For eyes that met inclusion criteria, we identified any
instance of key ocular diagnoses that would substantially confound
testing. These diagnoses included exudative macular degeneration,
retinal detachment, uveitis, retinal vascular occlusions, proliferative
diabetic retinopathy, and nonglaucomatous optic neuropathy
(see Table S2, available at www.ophthalmologyscience.org, for the
complete list). These exclusions mirror those utilized by a similar
electronic health record database analysis.12 Any testing after the
first instance of any of these diagnoses was excluded. In addition,
eyes that underwent glaucoma procedures (trabeculectomy,
aqueous shunt insertion, cyclophotocoagulation, laser iridotomy,
or microinvasive glaucoma surgeriesdidentified by Current Pro-
cedural Terminology codes 66170, 66172, 0192T, 66183, 66180,
66179, 66710, 66711, 66761, 65855, 65820, 66174, 65865, 66991,
66989, 66987, 66988, 0474T, 0449T, and 0450T) were identified.
OCT tests after any of these procedures were eliminated due to the
ty distributions. The x-axis consists of arbitrary units, whereas the y-axis
an the Gaussian, whereas the log-gamma distribution features a left-skewed
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potential impact of surgical intervention on the rate of change of
RNFL thickness.

OCT data from the Zeiss Cirrus system were extracted from
Zeiss Forum (Carl Zeiss Meditech). All data between April 2008
and February 2022 were collected. Any scans with RNFL thickness
values < 30 mm or > 130 mm were excluded due to likely artifacts
as previously completed.12 All scans were required to have signal
strength � 7/10 and a baseline RNFL thickness � 38 mm to allow
for longitudinal trend given the “floor” effect.13 If multiple scans
were completed on 1 day, an averaged RNFL thickness value
was utilized. Eyes included in this study were required to have
� 5 reliable tests over � 2 years of follow-up.

Bayesian Modeling

Bayesian LMMs were constructed. The construction of these
models has been discussed fully in our prior publication.7 In short,
Bayesian statistics utilizes probabilities to gauge the true rate of
progression. The prior distribution represents an initial belief in
the probability of an event, which is then combined with the
observed data to compute a posterior distribution. The model
construction of the Gaussian, Student t, and LG distributions
followed the same construction completed in our prior work.
A random-intercept and random-slope Bayesian model was used
to estimate OCT RNFL thickness as follows:

Yit ¼ b0 þ b0i þðb1 þ b1iÞ � xit þ εit

where Yit represents OCT RNFL thickness at time t of eye i, b0
represents the fixed intercept for the population, b1 represents the
fixed slope for the population, and b0i and b1i represent eye-specific
random intercepts and slopes. The prior distributions for b0, b1, and
the error term (εit) were normally distributed for all 3 LMMs, but
the prior distributions of the random effects were either Gaussian,
Student t, or LG. Random effects were placed at the eye level. A
more complex model with the eye nested within the patient did not
provide additional improvement in estimates, so the simpler model
was described. All analyses were completed using R 4.2.0
(R Foundation for Statistical Computing). The brms package
was used to model the Gaussian and Student t LMMs, whereas
the prior distribution for the LG model was directly coded into
Stan (Stan Development Team) using the rstan package. Further
details regarding model construction can be obtained from our
prior work.7

Data Analysis

Ordinary least squares regression was completed using standard
linear regression for each eye. Linear mixed models calculations
were completed on the University of Miami Institute for Data
Science and Computing Triton supercomputer. Posterior distribu-
tion estimates of model parameters were obtained with 4 chains
each running 8000 iterations (burn-in of 1000 iterations). Model
convergence was confirmed using autocorrelation diagnostics.
Bayesian LMMs were compared using the WatanabeeAkaike in-
formation criterion, a metric that reflects the fit of a Bayesian
model to the data; lower values indicate a better fit. Mean posterior
estimated intercepts and slopes were estimated for each eye by
adding the fixed and random components of each draw and aver-
aging these values for all draws corresponding to each eye. Eyes
were defined as progressors if the 1-sided Bayesian P value < 0.05
(i.e., the posterior probability that an eye-specific slope was <
0 had to be < 0.05). Ordinary least squares progressors were
defined as those with a statistically significant negative rate of
change (P < 0.05, 1-sided).

For predictive modeling, OLS and Bayesian models were
constructed using different numbers of OCTs and assessing their
ability to predict future RNFL values. For example, a model using
the OCT RNFL thickness values from the first 3 tests was con-
structed. This model was then used to predict the RNFL thickness
of the fourth, fifth, sixth, seventh, and eighth tests. This process
was repeated using the first 4 OCTs to predict the RNFL thickness
of the fifth, sixth, seventh, and eighth OCT tests, and so on, up to a
model that used the first 7 OCTs to predict the RNFL thickness of
the eighth test. The mean absolute error (MAE) of all Bayesian
models and the OLS were compared for each predicted test.
Bootstrapped 95% confidence intervals were calculated for MAE
for each model and at each OCT using 200 bootstrap samples. In
addition to confidence intervals, we performed statistical compar-
isons using ANOVA and Tukey’s honest significant difference test
for pairwise comparisons.

Simulations

Simulated eyes with different baseline RNFL thickness values and
rates of change were created and analyzed with the LMMs as well
as OLS regression. The goal of these simulations was to evaluate
the ability of the different LMMs to accurately estimate rates of
change among different clinical scenarios, particularly moderate
and fast progressors, which may be more prone to shrinkage to-
ward the overall population mean. A major advantage to simula-
tions is their known ground truth (i.e., a predefined rate of change),
thereby allowing the assessment of the accuracy of model esti-
mates. In contrast, the true rates of change in observed clinical
cohorts are unknown. Simulations allow for a larger number of fast
progressors to be evaluated, which are typically infrequent in an
observed population. Simulations were completed in a similar
fashion as previously described.7 Briefly, data from the Bascom
Palmer Glaucoma Repository were split at the patient level, with
80% used for model training and 20% used to create a
distribution of residuals. A total of 12 different settings were
utilized, which were created from 3 baseline thickness categories
(i.e., intercept) and 4 progressor categories (i.e., slope). The 3
baseline thickness categories were labeled “thick,” “moderate,”
and “thin,” and corresponded to thickness values between 90 to
110 mm, 70 to 90 mm, and 50 to 70 mm, respectively. The rate
categories were defined as nonprogressor (0 mm/year), slow (0 to
e1 mm/year), moderate (e1 to e2 mm/year), and fast (e2 to e3
mm/year) based on previously defined cutoff values.12

A total of 100 simulated eyes were generated for each setting,
with the intercept and slope of each eye randomly generated from
the noted range of values. Time points used in this analysis were
the mean times for the first 8 visits in the study population (0, 1.2,
2.6, 3.9, 5.1, 6.2, 7.1, and 8.1 years). Estimated RNFL thickness at
the 8 time points was calculated using linear regression with the
intercept and slope of the simulated eye. Noise was added to the
estimated RNFL thickness at each time point by sampling the re-
sidual distribution corresponding to the estimated RNFL thickness
value. Residual distributions were binned in increments of 5 mm
between 50 mm and 110 mm. Residuals corresponding to RNFL
thickness values < 50 mm or > 110 mm were included in the first
and last bins, respectively. The smallest bin contained 88 residuals
for sampling. The aim of the addition of noise was to generate
simulations mimicking eyes observed in clinical practice.
Additional details regarding this methodology can be reviewed in
prior publications.1,7,14

Simulation Analysis

The LMMs trained on 80% of the data set as well as OLS
regression estimated the intercept and slopes of all 1200 eyes.
Model performance was assessed by evaluating the cumulative
rates of glaucoma progression among all models as well as the
3
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overall bias of slope estimates. Bias is defined as the difference
between the predicted and true values of a variable. Cumulative
rates of glaucoma progression were assessed among the models,
with P value cutoffs adjusted accordingly for a 5% false-positive
rate for each model. The log-rank test was used to compare the
different curves. Median time to progression was calculated for
each of the progressor groups for OLS and each model. Bias values
were pooled across the different intercept groups and compared at
each time point by the progressor group using ANOVA and
Tukey’s honest significant difference test for pairwise
comparisons.
Results

This analysis evaluated a total of 35 862 OCT tests from
5766 eyes of 3491 subjects (Table 3). The mean age of
subjects was 65.9 � 12.7 years, with female subjects
comprising 61.8% of the study cohort. A total of 16.2%
subjects self-identified as Black. The mean follow-up
period was 7.0 � 2.3 years, with a mean of 6.2 � 1.4
OCT tests per eye. The average baseline RNFL thickness
was 81.8 � 13.5 mm, which ranged from 40.2 to 129.3 mm.
Most eyes were glaucoma suspects or diagnosed with open-
angle glaucomas (91.7%) at the initial visit, whereas chronic
angle-closure glaucoma only accounted for 5% of eyes. A
total of 672 eyes (11.2%) underwent glaucoma procedures
during follow-up; all OCT tests following these procedures
were excluded.

The distributions of slopes from OLS and the different
LMMs are displayed in Figure 2. The Gaussian model
Table 3. Demographics and Clinical Characteristics at Ba

Characteristic

Baseline age, yrs
Mean � SD

Sex, female (%)
Self-identified race, (%)
Black

Eye-specific characteristics
Glaucoma type
Suspect
POAG
SOAG
CACG
Other

Number of OCT tests, n
Follow-up time, yrs
Mean � SD
Median (IQR)

Number of OCT tests per eye, n
Mean � SD
Median (IQR)

Baseline OCT RNFL thickness, mm
Mean � SD
Median (IQR)

Number of eyes that underwent cataract extraction during follow-up
Number of eyes that underwent glaucoma surgery during follow-up

CACG ¼ chronic angle-closure glaucoma; IQR ¼ interquartile range; POAG
standard deviation; SOAG ¼ secondary open-angle glaucoma.

4

demonstrated more shrinkage to the population mean,
whereas the Student t and LG distributions had slightly
more extreme slope estimates. Table 4 contains different
model parameters from the 3 LMMs, including eye-
specific slopes and the WatanabeeAkaike information
criterion value of each model. The WatanabeeAkaike in-
formation criterion was lowest for the Student t LMM,
indicating that this model provided the best overall fit for
OCT data.

The distribution of rates of all eyes and progressors is
presented in Tables 5 and 6. As expected, the LG model led
to more negative estimates. The Gaussian, Student t, and LG
LMMs estimated a slope of � e1 mm/year or faster for 573
eyes (9.9%), 456 eyes (7.9%), and 821 eyes (14.2%),
respectively (Table 5). When evaluating those eyes
identified as progressors by each model or OLS regression
(Table 6), the Student t distribution identified the greatest
number of progressors, with most of these eyes identified
as slow progressors with rates between 0 and e1 mm/year.
However, the Student t model allowed for faster
progressors to have significantly extreme slope values
when warranted (Fig 2 and “eye-specific slopes” in Table 4).

When evaluating predictive modeling data, all LMMs
had significantly lower MAE than OLS regression (Fig 3)
until LMMs utilized 6 OCT tests (P < 0.001 for all
comparisons between each LMM and OLS utilizing 3e5
OCT tests). When using 6 OCT tests, OLS MAE for the
seventh and eighth tests remained significantly higher
than those of the Gaussian and Student t models but not
the LG MAE. When using 7 OCT tests to predict the
seline of the Subjects and Eyes Included in the Study

n [ 5766 Eyes of 3491 Patients

65.9 � 12.7
2158 (61.8)

564 (16.2)

2730 (47.3%)
2298 (39.9%)
261 (4.5%)
287 (5.0%)
190 (3.3%)

35 862

7.0 � 2.3
6.7 (5.1e8.6)

6.2 � 1.4
6.0 (5.0e7.0)

81.8 � 13.5
82.6 (72.7e91.1)
798 (13.8%)
672 (11.7%)

¼ primary open-angle glaucoma; RNFL ¼ retinal nerve fiber layer; SD ¼



Figure 2. Quantileequantile plots describing the distributions of the estimated slopes from (A) ordinary least squares regression and posterior estimated
slopes from the (B) Gaussian, (C) Student t, and (D) log-gamma Bayesian linear mixed models. Ordinary least squares and Student’s t models demonstrated
a greater range of slopes with more positive and negative extreme values, whereas the Gaussian model demonstrated a more normal distribution with
shrinkage toward the mean. The log-gamma model demonstrated more extreme negative values, reflecting a left-skewed distribution.
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eighth test, OLS MAE remained significantly higher than
those of the Gaussian and Student t models (P ¼ 0.027
and P ¼ 0.041, respectively) but not the LG MAE (P ¼
0.819).

When comparing MAEs among the different LMMs,
Gaussian and Student t MAEs were persistently lower than
those of the LG model when only a few tests were utilized
(Fig 3). When evaluating the model that used 3 OCTs, MAE
from the LG model was consistently worse (P < 0.001 vs.
Gaussian and P < 0.001 vs. Student t). When evaluating
the model that used 4 OCTs, the MAEs of the LG model
were significantly lower than those of the Gaussian and
Student t models for the fifth (P ¼ 0.002 and 0.005,
respectively), sixth (P ¼ 0.003 and 0.016, respectively),
and seventh tests (P ¼ 0.003 and 0.018, respectively).
When predicting the eighth OCT RNFL value, the
5



Table 4. Bayesian Linear Mixed Model Characteristics using Varied Random Effect Distributions

Population Intercept (ß0), mm Population Slope (ß1), mm/yr Eye-Specific Slopes, mm/yr WAIC

Gaussian 81.54 � 0.18 e0.42 � 0.01 e0.38 (e0.67, e0.12) [e4.81, 3.09] 195 418
Student t 81.71 � 0.18 e0.39 � 0.01 e0.37 (e0.60, e0.16) [e9.04, 7.42] 193 774
Log-gamma 81.42 � 0.01 e0.59 � 0.01 e0.38 (e0.73, e0.08) [e5.07, 2.44] 198 213

Data are displayed as mean � standard error or as median (interquartile range) [Range].
Eye-specific slopes are estimates derived from the posterior distributions and include both fixed and random effect components.
The boldface value indicates the lowest WAIC, demonstrating best model fit.
WAIC ¼ WatanabeeAkaike information criterion.
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differences were nonsignificant (P ¼ 0.139 and P ¼ 0.182,
respectively). The MAEs of the Gaussian and Student t
models did not significantly differ from each other
(P > 0.05).

Simulations confirmed that LMMs performed better than
OLS in declaring progression sooner among simulated
moderate and fast progressors. Except for the thick baseline/
moderate progressor setting, OLS was significantly slower
in identifying progression among these simulated eyes (Fig
4). There were no significant differences between the 3
LMMs (P > 0.05). Among moderate progressors, bias
was higher with Student t estimates, whereas Student t
estimates had the lowest bias for fast progressors (Fig 5).
No one LMM demonstrated consistently lower bias
values. The median time to progression was lower among
LMMs for moderate and fast progressors compared with
OLS (Table 7).
Discussion

In this analysis, we demonstrated that LMMs significantly
outperform OLS regression in predicting future OCT RNFL
thickness values and that the Student t LMM seems to
provide the best fit for this population of over 5500 eyes.
Both Student t and Gaussian LMMs had significantly lower
MAEs compared with the LG LMM, indicating better
overall prediction. Simulations confirmed faster declaration
of progression with LMMs compared with OLS among
moderate or fast progressors. This study suggests that the
LMM approach is superior to traditional OLS regression
when estimating future RNFL thickness or declaring pro-
gression in a glaucomatous population.
Table 5. Distribution of Slopes Estimated by Ordinary Least Square (

0 to e1 mm/yr

OLS 2983 (51.7%)
Gaussian 4286 (74.3%)
Student t 4570 (79.3%)
Log-gamma 3800 (65.9%)

Data are presented as n (%). Slopes of the Bayesian models are estimates deriv
OLS ¼ ordinary least squares.
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Our results confirm the value of LMMs compared with
OLS, particularly when few tests are available (Fig 3). The
MAE values of all LMMs were substantially lower than that
of OLS regression when only 3 or 4 OCT tests were utilized
in modeling. Although the benefit of the LMM methodology
is gradually attenuated with additional tests, MAE values
from OLS regression remained significantly worse. Precise
assessments with fewer tests are clinically meaningful,
given the biannual or annual frequency of OCT testing
observed in clinical practice.

With respect to model fit, the Student t distribution seems
to be superior in modeling the random effects among these
eyes. We believe this finding is likely due to its flexibility
with respect to permitting more extreme positive and
negative slopes. Thus, this distribution performs better than
the Gaussian distribution in modeling fast progressors.
However, in contrast to SAP mean deviation, the distribu-
tion of rates of change in RNFL thickness is not as left-
skewed, leading to reduced benefit of the LG LMM. In
addition, RNFL thickness can be impacted by retinal
changes such as hyaloid traction or temporary epiretinal
membrane formation, which can transiently impact RNFL
thickness. Wu et al15 recently identified various factors such
as Black race that may be associated with greater RNFL
thickness variability. Increased variability may lead to
some positive slopes in population-level data, which the
Student t distribution could handle better than the LG dis-
tribution, although these are not clinically meaningful in the
assessment of glaucoma. Similarly, the Student t distribution
is able to handle more extreme negative estimates than the
Gaussian distribution, likely leading to a superior fit with the
Student t LMM. Although the Student t LMM technically
provided the best fit, predictive modeling demonstrated
OLS) Regression and Bayesian Linear Mixed Models of All Eyes

e1 to e2 mm/yr < e2 mm/yr

841 (14.6%) 303 (5.3%)
502 (8.7%) 71 (1.2%)
363 (6.3%) 93 (1.6%)
679 (11.8%) 142 (2.5%)

ed from the posterior distributions.



Table 6. Distribution of Slopes Estimated by OLS Regression and Bayesian Linear Mixed Models of Eyes Identified as Progressors

Number of Progressors Mean Slope, mm/yr 0 to e1 mm/yr e1 to e2 mm/yr < e2 mm/yr

OLS 1142 (19.8%) e1.42 � 1.03 482 (42.2%) 445 (39.0%) 215 (18.8%)
Gaussian 1388 (24.1%) e1.05 � 0.50 815 (58.7%) 502 (36.2%) 71 (5.1%)
Student t 1501 (26.0%) e1.01 � 0.76 1046 (69.7%) 362 (24.1%) 93 (6.2%)
Log-gamma 1391 (24.1%) e1.21 � 0.59 634 (45.6%) 615 (44.2%) 142 (10.2%)

Data are presented as n (%) or mean � standard deviation. Percentages listed in the first column are with respect to all eyes in the analysis, whereas those
listed in subsequent columns are with respect to only progressors. Slopes of the Bayesian models are estimates derived from the posterior distributions.
OLS ¼ ordinary least squares.
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similar MAE values for the Student t and Gaussian distri-
bution. The MAE from the LG model was persistently
higher, indicating poorer performance.

Simulation results confirmed that LMM outperforms
OLS regression in the most important clinical scenarios,
Figure 3. Mean absolute error (MAE) of ordinary least squares (OLS) regression
layer thickness of subsequent OCT tests. Mean absolute error values for the mod
eyes are shown. The x-axis represents the predicted OCT test. Error bars represe
OLS estimate indicate the statistical significance of OLS MAE compared with th
the statistical significance of OLS MAE compared with only the Gaussian and St
indicates statistical significance compared with the LG estimate.
namely moderate or fast progressors. All LMMs signifi-
cantly outperform OLS regression when only 3 or 4 OCT
tests are available among fast progressors, a scenario in
which rapid detection of progression is crucial. The bias of
LMM estimates for simulated eyes have statistically
and Bayesian linear mixed models (LMMs) in predicting retinal nerve fiber
els constructed using the first (A) 3, (B) 4, (C) 5, (D) 6, and (E) 7 OCTs of
nt bootstrapped 95% confidence intervals. Three asterisks (***) above the
ose of all 3 LMMs, whereas 2 asterisks (**) above the OLS estimate indicate
udent t estimates. One asterisk (*) above the Gaussian or Student t estimate
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Figure 4. Cumulative event curves indicating the probability of declaring glaucomatous progression among simulated eyes under different simulation
settings with OCT data (indicated by panel title). The first term refers to the baseline retinal nerve fiber layer thickness category (intercept), and the second
term refers to the progressor class (slope). P values indicate comparison of the different models using the log-rank test. OLS ¼ ordinary least squares.
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significant differences as noted in Figure 5, although the
clinical significance of these differences would seem to be
minimal. The Student t LMM features the lowest bias
with the use of fewer OCT tests among fast progressors,
whereas the Student t LMM has slightly higher values for
moderate progressors. Collectively, we believe the
simulation data confirm the strength of the LMM
approach compared with OLS but do not clearly indicate
the superiority of one LMM distribution over others.
Given the noninferior performance of the Gaussian LMM
8

when compared with the Student t LMM, we believe it is
reasonable to model longitudinal OCT data with Gaussian
LMMs, which have been used extensively in glaucoma
research thus far.11,15e17 Our work seems to demonstrate
that although their estimates may shrink estimates toward
the population mean, this change does not seem to nega-
tively impact their predictive value nor their ability to
declare progression with fewer tests.

These results with longitudinal OCT data stand in
contrast to our prior analysis using longitudinal SAP data, in



Figure 5. Comparison of bias estimates of the 3 linear mixed models by the number of OCT tests used to estimate the slope in the models. Data are grouped
by progressor class: (A) slow, (B) moderate, and (C) fast. The asterisk (*) indicates a statistically significant difference between the Student t model and the
respective model.
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which the LG LMM was noted to provide the best fit.7 We
believe that this is due to inherent differences between SAP
and OCT data. Prior work had suggested that the LG
distribution was more appropriate for SAP data, whereas
the Gaussian distribution was more appropriate for OCT
data.8 In addition, the SAP mean deviation metric is
measured on a logarithmic scale, whereas RNFL thickness
is measured on a linear scale. Early disease is often
characterized by minimal change on SAP testing but
notable changes on OCT testing, referred to as
preperimetric glaucoma.18 The left-skewed distribution of
SAP mean deviation rates may be due to many eyes having
rates close to 0 due to early disease. In contrast, the distri-
bution of rates of OCT RNFL thickness was likely less left-
skewed per this analysis, perhaps due to the more linear
relationship between disease progression and structural rate
of change.

Limitations of this work include the use of retrospective
data and the assumption of linear rates of change over time.
Although we accounted for surgical interventions, we did
not have access to data regarding the augmentation of
medical therapy between OCT tests, which could affect rates
of change. As noted in Table 3, this study cohort had a
mixture of open-angle and closed-angle glaucomas, which
may progress at different rates. However, only 5% of eyes in
our cohort had chronic angle-closure glaucoma, of which
only 54 of these eyes had cataract surgery during the study
Table 7. Median Time to Progression (in years) among Different Pro
Mode

Slow (0 to e1 mm/y) M

OLS 7.1
Gaussian 7.1
Student t 7.1
Log-gamma 8.1

The third through eighth tests occurred at 2.6, 3.9, 5.1, 6.2, 7.1, and 8.1 years
OLS ¼ ordinary least squares.
period, constituting < 1% of the entire cohort. We believe
these findings are unlikely to alter the comparison of rates
assessed by LMMs in this analysis. In addition, these data
are drawn from 1 institutional database using the Zeiss
Cirrus OCT platform, which may limit our conclusions. The
prediction of individual slopes from LMM estimates relies
on the concept that the individual shares characteristics with
the population used to derive the prior probabilities in the
Bayesian framework and, therefore, estimation of the indi-
vidual slope can benefit from such prior knowledge. As
such, a model derived from one population may not
necessarily be applicable to individuals from other pop-
ulations. Further studies are needed in this regard. As done
in our prior work, we assumed a constant correlation be-
tween intercept and slope, which may not necessarily occur
in clinical practice due to more intensive treatment for pa-
tients with advanced disease. Finally, other empirical dis-
tributions could be considered in addition to the 3 evaluated
here, but the Gaussian, Student t, and LG distributions were
chosen given clinical knowledge regarding OCT rates of
change.

In summary, we have confirmed in this work that linear
mixed modeling significantly improves future predictions of
OCT RNFL thickness values compared with OLS regres-
sion. We also demonstrated that the LMM utilizing the
Student t distribution technically provides the best model fit
for OCT RNFL data. However, the Gaussian LMM
gressor Groups as Assessed by OLS Regression and Linear Mixed
ls

oderate (e1 to e2 mm/yr) Fast (e2 to e3 mm/yr)

5.1 3.9
3.9 2.6
3.9 3.9
3.9 2.6

, respectively.

9
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performs as well as the Student t LMM in estimating future
RNFL thickness values in predictive modeling. Both Stu-
dent t and Gaussian LMMs are reasonable options for
10
analyzing structural glaucoma data. These findings sub-
stantiate the application of linear mixed modeling to longi-
tudinal OCT data among glaucomatous populations.
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