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Gilthead sea bream (Sparus aurata) is a teleost of considerable economic importance in 
Southern European aquaculture. The aquaculture industry shows a growing interest in 
the application of genetic methods that can locate phenotype–genotype associations with 
high economic impact. Through selective breeding, the aquaculture industry can exploit this 
information to maximize the financial yield. Here, we present a Genome Wide Association 
Study (GWAS) of 112 samples belonging to seven different sea bream families collected from 
a Greek commercial aquaculture company. Through double digest Random Amplified DNA 
(ddRAD) Sequencing, we generated a per-sample genetic profile consisting of 2,258 high-
quality Single Nucleotide Polymorphisms (SNPs). These profiles were tested for association 
with four phenotypes of major financial importance: Fat, Weight, Tag Weight, and the Length 
to Width ratio. We applied two methods of association analysis. The first is the typical single-
SNP to phenotype test, and the second is a feature selection (FS) method through two novel 
algorithms that are employed for the first time in aquaculture genomics and produce groups 
with multiple SNPs associated to a phenotype. In total, we identified 9 single SNPs and 6 
groups of SNPs associated with weight-related phenotypes (Weight and Tag Weight), 2 groups 
associated with Fat, and 16 groups associated with the Length to Width ratio. Six identified 
loci (Chr4:23265532, Chr6:12617755, Chr:8:11613979, Chr13:1098152, Chr15:3260819, 
and Chr22:14483563) were present in genes associated with growth in other teleosts or even 
mammals, such as semaphorin-3A and neurotrophin-3. These loci are strong candidates for 
future studies that will help us unveil the genetic mechanisms underlying growth and improve 
the sea bream aquaculture productivity by providing genomic anchors for selection programs.

Keywords: aquaculture, Sparus aurata, double digest random amplified DNA, Genome Wide Association Study, 
feature selection

Abbreviations: GWAS, Genome Wide Association Study; ddRAD, double digest Random Amplified DNA; SNPs, Single Nucleotide 
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INTRODUCTION

The gilthead sea bream, Sparus aurata (Linnaeus, 1758), is a 
teleost fish of great economic importance for the Mediterranean 
aquaculture industry (Tsigenopoulos et al., 2014). It ranks first 
among other aquacultured species in South Mediterranean 
with total production of 160,563 tons for 2016 (FEAP, 2017). 
One of the top interests of the aquaculture industry is the 
genetic improvement of the stocks to maximize the efficiency 
of the production and the product quality (Fernandes et al., 
2017). Coupled with this concern, various areas of sea bream 
biology are being explored, such as nutrition requirements 
(Silva-Merrero et al., 2017; Guardiola et al., 2018), immune 
responses (Antonopoulou et al., 2017; Bahi et al., 2018; 
Tapia-Paniagua et al., 2018), skeletal development (Negrín Báez 
et al., 2015; Vélez et al., 2018), reproduction, and broodstock 
management (Loukovitis et al., 2011). Recently, the genome 
of sea bream has been sequenced and analysed offering a 
backbone for conducting genomic analyses on the species 
(Pauletto et al., 2018).

One of the main avenues to genetically improve the cultured 
stock is to identify associations between genetic variants and 
traits of interest, such as growth, disease resistance, and fat 
content. Genome Wide Association Studies (GWAS) offer 
the way to accomplish this by comparing the genotypes of 
individuals having varying phenotypes for a specific trait of 
interest. GWAS have boosted the field of human genetics as well 
as plant and livestock breeding (Geng et al., 2017), leading to 
improved higher selection accuracies of the animal breeding 
programmes, which in turn leads to lower costs and greater yield 
(Geng et  al., 2017). To conduct a GWAS experiment in non-
model species, genome-wide sampling of genetic variants is 
required. Application of double digest Random Amplified DNA 
(ddRAD) leads to thousands of polymorphic loci that require 
sophisticated strategies for data analysis (Catchen, 2013) and is 
widely used for GWAS studies (Baird et al., 2008; Etter et al., 
2011; Anderson et al., 2012; Palaiokostas et al., 2013). It is well 
known that biological datasets are susceptible to the curse of 
dimensionality (Lie, 2014; Stephens et al., 2015). Various methods 
have been developed to solve such complicated problems, such 
as feature selection (Tsagris et al., 2018a). Feature selection (FS) 
is used to identify the important, predictive genetic variants 
by removing the noise propagated by redundant features, i.e., 
markers that have the same genotypic profile across all samples. 
Several FS algorithms have been developed like (Fontanarosa 
and Dai, 2011), Orthogonal Matching Pursuit (OMP) (Cai 
and Wang, 2011), and Statistically Equivalent Signature (SES) 
(Lagani et al., 2017), differing mainly in the approach to discover 
associations and the computational efficiency.

In aquaculture breeding programs, these features-markers 
can be used for marker assisted selection (MAS) (Yue, 2014). 
However, genome-wide variants can also be used to directly 
evaluate breeders, the so-called genomic selection (GS) method 
(Yue, 2014). Genomic selection is a breeding value estimation 
methodology that aims to increase the rate of genetic gain, 
leading to improvement of certain phenotypes via genetic 
marker utilization (Heffner et al., 2011; Lorenz et al., 2011; 

Yue, 2014; Khatkar, 2017). Genetic markers associated with 
production traits are used to predict breeding values with high 
accuracy (Goddard and Hayes, 2007; Sonesson and Meuwissen, 
2009; Wang et al., 2017, Gutierrez et al., 2015). Although high 
availability of genetic markers (i.e., SNP markers) could be 
used for the improvement of the accuracy of breeding value 
estimation through the use of a Genomic Relationship matrix 
(i.e., GBLUP), some genetic markers that are also associated 
with production traits could further increase the accuracy of 
breeding value estimation and, moreover, allow for the inclusion 
of alternative models of inheritance, rather than only additive, 
in the genetic evaluation procedures. Genomic selection based 
on specific traits such as fat, weight, and disease resistance can 
have great effects on the productivity and profitability of several 
aquaculture species (Yue, 2014).

In this study, we sought to identify genetic markers associated 
with important phenotypes in sea bream. We used ddRAD 
sequencing to identify and genotype genome-wide single 
nucleotide polymorphisms (SNPs) in multiple sea bream 
families. We performed both GWAS and FS to test the association 
among a combination of loci and the phenotypes of fat, weight, 
tag weight, and length/width. Finally, genomic prediction of 
the phenotypes was tested using the selected polymorphisms to 
evaluate its potential in selection for improved phenotypic traits 
like weight in sea bream. Our ultimate goal was to construct a 
signature—a combination of genetic markers—that will lead to 
maximizing the sea bream aquaculture efficiency, by improving 
the selected phenotypic traits.

MATERIALS AND METHODS

Sample Collection
The fish used in this study were a subset of a larger experiment 
with progeny from 66 male and 35 female brooders constituting 
73 different full sib families from the breeding program of a 
commercial aquaculture company (Nireus Aquaculture S.A.). 
From those 73 full sib families, 14 families originating from 13 
males and 11 females were selected (selective genotyping), based 
on their within-family variation of bodyweight at harvest, for 
genotyping with microsatellite markers in order to perform a QTL 
confirmation experiment (Chatziplis et al. 2018, in preparation). 
Seven male and six female brooders with 105 progeny in total, 
constituting six full sib families and one maternal half sib family 
(10 progeny on average per family), were used for ddRAD 
library preparation and sequencing. These seven families were 
those exhibiting the greatest family variation of bodyweight at 
harvest out of 14 total families included in the QTL verification 
experiment (Chatziplis et al. 2018, in preparation). All progeny 
were reared in commercial conditions, and after PIT tagging, they 
were transferred to sea cages at 220 Days Post Hatching (DPH) 
for the growth period. For all progeny, the weight at tagging (g) 
(205 DPH), weight at harvest (g) (750 DPH), percentage (%) of fat 
at harvest (as measured in terms of body electrical conductivity, 
692 Distell) as described by Besson et al. (2019), the total length 
at harvest (cm) (750 DPH), and the width at harvest (cm) (750 
DPH) were measured.
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Library Preparation and Sequencing
Individual DNA library preparation and sequencing of the 
samples, which were extracted using a modified salt-based 
extraction protocol based on Miller et al. (1988) and treated 
with RNase to remove residual RNA, were performed. Genomic 
DNA was eluted in 5 mmol/L Tris, pH 8.5, and stored in 4°C. 
Each sample was quantified by spectrophotometry (Nanodrop 
1000–Thermo Fisher Scientific) and quality assessed by 0.7% 
agarose gel electrophoresis. To build the ddRAD library, we 
used the protocol described by Manousaki et al. (2016), with 
some minor modifications. Briefly, each of 144 DNA samples (13 
parents in triplicates and 105 offspring; 21 ng DNA per sample) 
was separately but simultaneously digested by two high-fidelity 
restriction enzymes (RE): SbfI (CCTGCA|GG recognition site) 
and SphI (GCATG|C recognition site), both sourced from New 
England Biolabs (NEB), UK. Digestions were incubated at 37°C 
for 90 min, using 10 U of each enzyme per microgram DNA 
in 1 CutSmart Buffer (NEB), in a 6 µl total reaction volume. 
The reactions were slowly cooled to room temperature, and 
3 µl of a premade adapter mix was added to the digested DNA 
and incubated at room temperature for 10 min. This adapter 
mix contained individual-specific combinations of P1 (SbfI-
compatible) and P2 (SphI-compatible) adapters at 6 and 72 nM 
concentrations, respectively, in 1· reaction buffer 2 (NEB). 
The ratio of P1 to P2 adapter (1:12) was selected to reflect the 
relative abundance of SbfI and SphI cut sites present. P1 and 
P2 adapter included an inline five- or seven-base barcode for 
sample identification. Ligations were implemented over 3 h at 
22°C by addition of a further 3 µl of a ligation mix comprising 
4 mM rATP (Promega, UK) and 2000 cohesive-end units of T4 
ligase (NEB) in 1· CutSmart buffer (NEB). The ligated samples 
were pooled together, and the single pool was column-purified 
(MinElute PCR PurificationKit, Qiagen, UK) and eluted in 70 µl 
EB buffer (Qiagen, UK). The size selection was performed by 
agarose gel separation, keeping the fragments between 400 and 
700 bp. Following gel purification (MinElute Gel Extraction Kit, 
Qiagen, UK), the eluted size-selected template DNA (68 µl in EB 
buffer) was PCR amplified (15 cycles PCR; 32 separate 12.5 µl 
reactions, each with 1 µl template DNA) using a high-fidelity Taq 
polymerase (Q5 Hot Start High-Fidelity DNA Polymerase, NEB). 
The PCR reactions were combined (400 µl total) and column-
purified (MinElute PCR Purification Kit). The 57 µl eluate, in EB 
buffer, was then subjected to a further size-selection clean-up 
using an equal volume of AMPure magnetic beads (Perkin-Elmer, 
UK) to maximize removal of small fragments. The final libraries 
were eluted in 24 µl EB buffer. Lastly, the ddRAD libraries were 
sequenced in one HiSeq 2500 lane (2x125 bp reads).

Raw Read Quality Control and 
Demultiplexing
We used FastQC v.0.11.5 software to check the quality control of 
the raw sequence data (Andrews and Babraham Bioinformatics 
Group, 2010). To recover the reads belonging to each individual, 
we then cleaned and demultiplexed the raw data using Process 
radtags program from STACKS v.1.46 software (Catchen, 2013). 
In this step, -c parameter was used to remove reads with an 

uncalled base, -q parameter was used to discard sequencing 
reads of low quality (below 20) using the Phred scores provided 
from the FASTQ files (Catchen, 2013), and -t parameter was set 
to 100 to truncate final reads length to 100 bp.

Data Alignment Against Sea Bream 
Reference Genome
The annotated reference genome of gilthead sea bream has been 
provided by Hellenic Centre for Marine Research (H.C.M.R.) 
(Accession Numbers: SRR6244977-SRR6244982) (Pauletto et  al., 
2018). To align our samples to the reference genome, we used 
Bowtie2 v.2.3.0 (Langmead and Salzberg, 2012) with the 
following parameters: {end-to-end {sensitive {no-unal. Then, 
we removed multi-aligned reads, reads with >3 mismatches, 
and reads with mapping quality lower than 20 with Samtools 
(Li et al., 2009).

Genotyping RAD Alleles
Genotypes of each sample were constructed using STACKS 
pipeline (Catchen, 2013). For each individual, pstacks program 
was used to build the rad loci based on the alignment on the 
reference genome, setting the minimum depth of coverage to 
create a stack (-m) equal to 3 (default) (Paris et al., 2017). Then, 
a catalogue of loci was constructed using only the parental reads 
on cstacks program, using default parameters. To match the data 
of each offspring separately against the respective catalogue, 
we used sstacks program with ––aligned parameter. Finally, to 
retrieve the vcf file with the genotypes, we used populations 
program.

Kinship
To check family relationship and indicate possible pedigree 
errors, we used KING v.2.1 software (Manichaikul et al., 2010). 
Kinship coefficients have been estimated by KING, setting 
the ––degree parameter equal to 10. Kinship coefficient is a 
measurement of kinship between two individuals; 1 means 
homozygous twins, 0 means unrelated (Manichaikul et al., 
2010). Finally, to see the genetic distances of studied individuals, 
we performed a Principal Components analysis (PCA) and 
Hierarchical clustering, using Euclidean distance. Both PCA and 
Hierarchical clustering were implemented in R using prcomp 
and hclust functions, respectively.

Linear Mixed Models
To fit the mixed model for every phenotype, we used the 
command lmer from the lme4 R package (Bates et al., 2014). 
Random effects were fitted for each family to control for the 
correlation within the families. In mathematical notation, the 
linear mixed model is written as

 y a X ei i

j

p

j j i= + + +
=

∑τ β
1

 (1)

where i = 1,…,K, with K denoting the number of families and 
yi is the vector of measurements of the i-th family containing ni 
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measurements with n ni
i

K
=

=∑ ( )1
, the overall sample size. The 

term τi is the overall constant term. The τi is the random effect of 
the i-th family, the deviation of the i-th family from the overall 
constant a. The term βj is the fixed regression coefficient of the 
variable Xj, and ei is the vector of residuals of the i-th family. 
The model has two sources of variation: one stemming from the 
residuals and one stemming from the repeated measurements, 
e Nij e  ,0 2σ( )  and τ σ τi N  ,0 2( ) , respectively. Residuals represent 
elements of variation unexplained by the fitted model. Since 
this is a form of error, the same general assumptions apply to 
the group of residuals that we typically use for errors in general: 
one expects them to be normal and approximately independently 
distributed with a mean of 0 with some constant variance (Bates 
et al., 2014). To compare two linear mixed models, we used the 
Bayesian information criterion (BIC). BIC is a criterion for model 
selection among a finite set of models; the model with the lowest 
BIC is preferred. It is based on the log-likelihood function and 
takes into account the number of estimated parameters. When 
fitting models, it is possible to increase the likelihood by adding 
parameters, but doing so may result in over-fitting (Vrieze, 2012). 
BIC attempts to resolve this problem by introducing a penalty 
term for the number of parameters in the model.

Genome Wide Association Study
A typical GWAS analysis tests for variant significance in a set 
of independent samples. The most common source of sample 
dependence is family relationships. Yet, our study is based on 
a family designed cohort. For this reason, we applied a family-
based test for variant significance. To perform this, we used lmer 
in order to create a linear mixed model for each phenotype. 
This model includes family id as a random effect. To correct for 
multiple testing, we set the significance threshold to 10–4, which 
is the typical significance level a = 0.05 divided to the number of 
independent SNPs (497) based on linkage disequilibrium (LD) 
(Johnson et al., 2010; Clarke et al., 2011). We used the plink tool 
v.1.90 in order to calculate the LD score (––indep-pairwise 50 5 
0.05) (Purcell et al., 2007). Finally, we presented the distribution 
of the p-values across the genome in Manhattan plots, and we 
tested for possible p-value inflation through Quantile–quantile 
(QQ) plots. For these plots, we used the GWASTools (Gogarten 
et al., 2012) library in R (scripts available upon request).

Feature Selection
The typical GWAS pipeline reveals individual SNPs that are 
associated with a specific phenotype. One limitation of this 
pipeline is that it cannot produce signatures that contain 
combinations of variants. This problem is commonly referred 
as SNP to SNP interaction induction (Balliu and Zaitlen, 
2016). The large number of tested genotypes in a typical GWAS 
experiment makes prohibitive the efficient computation of variant 
combinations. Also, the burden of multiple testing increases 
linearly to the number of combined variants. This means that a 
SNP–SNP interaction should be of extreme significance in order 
to be detected by a method that tests all possible combinations 
of variants. To tackle this problem, we employed a different 

approach. We considered SNPs as variables that describe a certain 
phenotype. We then applied methods that seek the optimum 
subset of variables with which we can construct a predictive 
model for a trait of interest (e.g., Weight). This approach is called 
Variable selection, or Feature Selection (FS). Solving the FS 
problem has numerous advantages (Tsamardinos and Aliferis, 
2003). Features in biology (e.g., SNPs and gene expressions) are 
commonly found to be expensive to measure, store, and process 
(Stephens et al., 2015). By reducing the number of measurable 
markers-loci via FS, one can reduce this cost. A high-quality FS 
algorithm improves the predictive performance of the resulting 
model by removing the noise propagated by redundant features. 
For our study, we used two different FS algorithms: The first is the 
statistically equivalent signature (SES) algorithm, and the second 
is the Orthogonal Matching Pursuit (OMP) algorithm.

The Statistically Equivalent Signature Algorithm
Commonly FS algorithms aim to find a single group of features 
that has the highest predictive power. On the contrary, SES 
algorithm introduced by Lagani et al. (2017) attempts to identify 
multiple signatures (feature subsets) whose performances are 
statistically equivalent. SES produces several signatures of 
the same size and predictive power regardless of the limited 
sample size or high collinearity of the data (Statnikov and 
Aliferis, 2010). It performs multiple hypothesis tests for each 
feature, conditioning on subsets of the selected features. For 
each feature, the maximum p-value of these tests is retained 
and the feature with the minimum p-value is selected. This 
heuristic has been proved to control the False Discovery Rate 
(Tsamardinos and Brown, 2008). SES is specially engineered 
for small sample sizes and eliminates the need for Bonferroni 
correction and/or FDR filtering (Lagani et al., 2017). Here, we 
used an adaptation of the SES algorithm that accommodates 
repeated measurements (Tsagris et al., 2018a). SES algorithm 
is influenced by the principles of constraint-based learning of 
Bayesian networks (Lagani et al., 2017). Bayesian networks 
are directed acyclic graphs that represent the dependency 
relationships between variables in a dataset. An edge A → B 
in a Bayesian graph represents the conditional dependence of 
variable B from variable A. There is a theoretical connection 
between S and the Bayesian (causal) network that describes best 
the data at hand (Tsamardinos and Aliferis, 2003). Following 
the Bayesian networks terminology, the Markov Blanket (MB) 
of a variable or node A in a Bayesian network is the set of nodes 
∂A composed of A’s parents (direct causes), its children (direct 
effects), and its children’s other parents (other direct causes 
of the A’s direct effects). Every set of nodes in the network is 
conditionally independent of A when conditioned on the 
Markov blanket of the node A (∂A as described in formula 2). 
Thus, the Markov blanket of a node contains the only knowledge 
needed to predict the behavior of that node.

 Pr ( | , ) Pr ( | )A A B A A∂ = ∂  (2)

Orthogonal Matching Pursuit Algorithm
Orthogonal Matching Pursuit is an iterative algorithm. At each 
iteration, it selects the column-marker of the SNP data matrix, 
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which has the greatest correlation with the current residuals (Cai 
and Wang, 2011). OMP updates the residuals by projecting the 
observation onto the linear subspace spanned by the columns 
that have already been selected and then proceeds to the next 
iteration. No column is selected twice because the residuals are 
orthogonal to all the selected columns. The algorithm stops when 
a criterion is satisfied. We have used its generalized form, gOMP, 
whose stopping criterion is based upon the difference of the BIC 
score between two successive models. If the difference is lower 
than a predefined threshold, the algorithm stops. The major 
advantage of OMP compared with other alternative methods is 
its simplicity and fast implementation (Cai and Wang, 2011).

Model Selection Through Cross Validation
The selection of the appropriate algorithm for each dataset is a 
challenging task. Commonly, a k-fold cross-validation (CV) is 
used in order to end up with the algorithm with the best fit in 
the examined dataset. Cross-validation is a model validation 
technique for assessing the results of a model. It is commonly 
used for estimating how precisely a predictive model 
performs in unknown data samples. The standard method of 
a prediction problem, where a dataset of known data is given, 
is to split data samples in folds and every time use the n-1 
folds as training dataset and the one fold that is left, as test 
dataset (“unknown data”). The goal of cross validation is to 
estimate the expected level of fit of a model to a data set that 
is independent of the data that were used to train the model. 
This approach limits problems like over-fitting and gives an 
insight on how the model will generalize to an independent 
dataset (Tibshirani and Tibshirani, 2009). To compare the 
algorithms and select the best model (including algorithm and 
parameters), we performed cross validation by using all but 
one sample as training set and the remaining sample as test set 
iterating over all samples, the so-called Leave-One-Out cross 
validation method.

The different models were assessed based on the sum or errors 
when assuming that the “unknown data” belong to each family 
(Equation 3). The model with the lowest mean sum of errors is 
selected as best model (Equation 4).

 ErrOB E y x z b
i

m

i n i n
T

i n
T

ii i i
= − −

=

+( ) +( ) +( )∑
1

1 1 1( )ˆ ˆβ 22 / ,m  (3)

where yi(ni + 1), xi(ni + 1) and zi (ni + 1) are, respectively, the 
outcome and predictors of the new observation in cluster i, and 
β̂  and b̂i  are, respectively, the estimates of β and bi based on all 
the training data. This can be estimated by the leave-one-out 
cross validation,

 LOOCV y x z b
i

m

j

n

ij ij
T i j

ij
T

i
i j

i

= − −
= =

∑∑
1 1

( )ˆ ˆ[ ] [ ], ,β 22 / ,N  (4)

where ˆ[ , ]β i j  and [̂ ],bi
i j  are, respectively, the estimates of β 

and bi based on the training data without subject j in cluster i 
(Fang 2011).

Selected SNP Annotation
To identify potential genes that might be affected by the retrieved 
SNPs, we searched the reference genome and classified the 
SNPs to those falling within a genic region (located within or 
in a window of 10Kb upstream or downstream of an annotated 
gene) and those that do not. If these regions were described as 
conserved at the genome browser of Gilthead sea bream (http://
biocluster.her.hcmr.gr/myGenomeBrowser?search=1&portaln
ame=Saurata_v1) in any of the following species: Stickleback, 
Asian sea bass, Medaka, Asian swamp eel and Amazon molly, 
they were considered as conserved.

RESULTS

Genotyping RAD Alleles
Illumina sequencing yielded 559,191,588 raw reads. Following 
quality control, we filtered out ~ 15.2% due to ambiguous 
barcodes, ~ 2.9% due to low quality, and 1% due to the lack of 
restriction sites. The rest were successfully assigned to individuals 
(Supplementary Table 1 with number of reads per individual). 
After the demultiplexing, the high-quality reads of each sample 
were aligned against the reference genome. In total, 93% of the 
reads were mapped. Downstream filtering resulted in further 
discarding of multi-aligned reads (~ 8%) and those with more 
than three mismatches (~ 2.96%), keeping finally 351,781,485 
reads for analysis. This resulted in an average coverage of 188.25. 
Although we did not experiment with greater values of m and 
used the default value proposed by STACKS, the sequencing effort 
was enough to have 188.25 coverage on average (s.e  +/−  9.68) 
for the loci in our study. However it has been suggested that 
moderate values of m (3–6) (Paris et al., 2017) might not have 
any effect on the mean coverage of the reconstructed loci on 
a teleost species. The ddRAD catalogue built from all parental 
samples consisted of 15,233 SNPs. The used ddRAD protocol 
has been applied in other sparids as well (Manousaki et al., 2016; 
Manousaki et al. unpublished data). In all cases, the number of 
produced SNPs was in the range of 5,000–10,000 per individual 
(Manousaki et al., 2016; Palaiokostas et al., 2018). In this study 
and in accordance to this protocol, the SNP catalogue was 
built using solely parental data. Thus, the discovered SNPs are 
within the expected range given the following ddRAD protocol. 
Variants with allele frequency lower than 0.05 (n = 2,065) were 
filtered out. From the remaining 13,168, we filtered out the SNPs 
with call rate lower than 90% (n = 7,882). From the remaining 
5,286 SNPs, 3,028 had at least one missing value and 2,258 had 
no missing values.

Kinship Assignment
To verify the family identity of the studied individual, we used 
three different methods: King kinship, Principal Component 
Analysis (PCA), and Hierarchical clustering (Supplementary 
Figure 1). All three resulted in similar results, and they 
confirmed the tagging family id, except for two samples, one 
placed in different family (sample 133 that was identified as 
a member of Family 2 instead of Family 3) and one that was 
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not placed in any family (sample 882). These two samples were 
discarded and not included in downstream analyses.

Association Analysis Through GWAS
The results from the GWAS test among all SNPs and the four 
phenotypes are shown in Table 1. In total, we found five SNPs 
associated with Weight, four SNPs with Tag Weight, and none 
for Fat and Length/Width. In Figure 1, we show the phenotype 
distribution, Manhattan plot, and QQ-plot for each phenotype. 
For illustration purposes, the Manhattan plot depicted was 
built with variants of known ordered positions on the reference 
genome. The Manhattan plot for the variants in scaffolds that we 
do not know the exact position in the genome is given in the 
Supplementary Figure 2. The QQ-plot of Weight revealed a 
systemic inflation of the observed p-values possibly attributed to 
the fact that families were selected in such a way as to maximize the 
weight variation within the cohort. Regarding the loci associated 
with weight and tag weight, we identified nine SNPs in total 
(Table 1). Five SNPs associated with weight at harvest have been 
retrieved from the typical GWAS analysis. The first was found 
in chromosome 1 (chr1:16636968) on “ethanolamine phosphate 
cytidylyltransferase-like” gene and the second (chr6:12617755) 
in a conserved region upstream of “myosin-7-like” gene. The 
third (chr16:2232897) was located on two overlapping genes 
acetylserotonin O-methyltransferase-like and LBH-like isoform 
X1. Another two SNPs were found in chromosome 1. The first 
(chr1.6970078) located downstream of “lymphoid enhancer-
binding factor 1” and the second (chr1:20827142) located 
upstream of “mucin-5AC-like isoform X1” (Table 1). Finally, 
four SNPs (in chromosomes 2, 13, and 22) were associated with 
weight at tagging. Two were found at “RNA-binding 27 isoform 
X1” gene (chr13:20975921,chr13:20975924), the third upstream 
from “Tetratricopeptide repeat 36” gene (Chr2:2623351), and the 
fourth upstream from “tectonin beta-propeller repeat-containing 
2” gene (chr22:18343985).

Association Analysis Through FS
Feature selection methods generate groups of SNPs that are 
associated with a phenotype en masse. Therefore, FS is a valuable 
family of methods for association analysis. We performed FS 
with 10 models (8 variants of SES and 2 variants of OMP), and 
from each model, we extracted the median squared error as an 
evaluation metric (Figure 2). All OMP models were inferior to 
SES. The best models for Fat and Weight have been constructed 
by SES algorithm (significance threshold equal to 0.01; number 
of condition set equal to three). The best model for Tag weight 
and Length/Width ratio prediction was the model constructed 
by variables retrieved from SES with size of condition set 
equal to two. The selected features of the best model, for each 
phenotype, are presented in Tables 2–5. SES produced different 
combination of SNPs (signatures) that have the same predictive 
strength on each one of the examined traits. In Tables 2–5, we 
illustrate one of these combinations, while the rest are illustrated 
in Supplementary Tables 2–5. Finally, the effects of all selected 
SES SNPs (17 in total, out of which 6 were also found in GWAS) 
from all traits are presented in Figures 3–6.

Selected SNPs for Fat Content
The selected variables/SNPs associated with Fat content (%) at 
harvest, retrieved from SES algorithm (threshold 0.01), recovered 
three SNPs, out of which two were located within or proximal to 
an annotated gene (Table 2). The first annotated SNP is located 
within “telomeres 1 (POT1)” gene (chromosome 8), a region 
found conserved in other species as well (Medaka, Asian swamp, 
Asian sea bass). The second SNP was located within the “Rho 
family GTP-binding” gene (chr13:1098152). However, when 
lowering the significance threshold to 0.05, the number of SNPs 
increased to six (Table 2).

Selected SNPs for Weight at Harvest
Four selected variables associated with weight at harvest (800 g 
average weight at harvest) have been retrieved from SES algorithm 

TABLE 1 | Selected SNPs from GWAs analysis using linear mixed models, with significance threshold equal to 10–4.

Position Gene P-value Beta coefficient Conserved Position

Weight

Chr1:6970078 Lymphoid enhancer-binding 
factor 1 isoform X1 

3.265E−5 174.721 – Downstream 

Chr1:16636968 Ethanolamine-phosphate 
cytidylyltransferase-like 

5.059E−5 189.556 ✓ 3’UTR 

Chr1:20827142 Mucin-5AC-like isoform X1 4.976E−5 −161.835 ✓ Upstream 
Chr16:2232897 Acetylserotonin 

O-methyltransferase-like, LBH-
like isoform X1 

4.648E−5 −338.149 ✓ 3’UTR 

Chr6:12617755 Transmembrane 199 3.838E−5 205.210 ✓ Upstream 
myosin-7 like Downstream 

Tag Weight
Chr13:20975921 RNA-binding 27 isoform X1 3.168E−5 4.748 – Intron 
Chr13:20975924 RNA-binding 27 isoform X1 3.168E−5 4.748 – Intron 
Chr2:2623351 Tetratricopeptide repeat 36 2.823E−5 6.183 – Upstream 
Chr22:18343985 tectonin beta-propeller repeat-

containing 2 
5.405E−5 −5.139 – Upstream 
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FIGURE 1 | (A) Distribution of each examined trait in our samples. (B) Manhattan plot demonstrating the locations across the chromosomes of the sea bream 
genome (horizontal axis) versus the –log (p-values) of the association between the genetic variants and phenotype (vertical axis). The higher the dots, the stronger 
the genetic association. The significance threshold was set to 10–4, in order to correct for multiple testing (dashed line). The different colors represent the different 
chromosomes. (C) Quantile–quantile (QQ) plot of the data shown in the Manhattan plot. The grey area represents the 95% simultaneous confidence bands. Red line 
is the diagonal (Y = X) or else how the observed data should be placed if they were normally distributed.

https://www.frontiersin.org/journals/genetics#articles
https://www.frontiersin.org/journals/genetics
www.frontiersin.org


Genetic Mapping in Gilthead Sea BreamKyriakis et al.

8 August 2019 | Volume 10 | Article 675Frontiers in Genetics | www.frontiersin.org

FIGURE 2 | Comparison of different algorithms predicting the traits of interest, based on median squared error, after leave one out cross validation. SES algorithm 
tested for different thresholds (Threshold equal to 0.01 or 0.05) and for different numbers of SNPs as condition set (k = 2, 3, 4, 5). OMP algorithm tested for different 
thresholds as stop criterion (Threshold = 2 or 4 units in BIC score).

TABLE 2 | Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Variables Locus P-value Beta coefficient Threshold GWAS Conserved Position 

Fat

Chr13:1098152 Rho-related GTP-binding -like 0.007 1.60 0.01 – – 3’ UTR 
Chr21:19924408 – 0.006 −1.238 0.01 – – –
Chr8: 1385781 Protection of telomeres 1 0.0024 1.55 0.01 – ✓ Intron 
Scaffol8147:18634 Death-associated kinase 3-like 0.015 0.7 0.05 – ✓ Intron 
Chr7:2453106 Solute carrier family 41 member 

1-like isoform X1-2 
0.046 0.86 0.05 – – Intron 

Chr4:23265532 NT-3 growth factor receptor 
isoform X1 

0.017 −2.25 0.05 – – Upstream 

TABLE 3 | Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error).

Variables Locus P-value Beta coefficient Threshold GWAS Conserved Position 

Weight

Chr1:16636968 Ethanolamine-phosphate, 
cytidylyltransferase-like 

0.0006 121.84 0.01 ✓ ✓ 3’ UTR 

Chr6:12617755 Myosin-7-like isoform X1,short 
transient receptor potential 
channel 4-associated 

0.0024 138.07 0.01 ✓ ✓ Upstream 

Chr8:11613979 Semaphorin-3A 0.0114 99 0.01 – ✓ Intron 
Chr16:2232897 Acetylserotonin 

O-methyltransferase-like, LBH-
like isoform X1 

0.0022 −193 0.01 ✓ – 3’ UTR 

Scaffold29:195838 Mitogen-activated kinase-
binding 1-like 

0.0285 64.669 0.05 – – Intron 

Chr24:8282385 STE20-related kinase adapter 
beta

0.0022 160.80 0.05 – ✓ Downstream 

Trafficking kinesin-binding 2 
isoform X1

Upstream 
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with number of condition set equal to three. The first was found 
in chromosome 1 (chr1:16636968) on “ethanolamine phosphate 
cytidylyltransferase-like” gene, the second (chr6:12617755) 
in a conserved region upstream of “myosin-7-like” gene, the 
third (chr8:11613979) was located in “semaphorin-3A” gene 
(Conserved in Asian sea bass, Asian swamp eel) and upstream of 
‘Piccolo’ gene, and another one (chr16:2232897) and the fourth on 
two overlapping genes acetylserotonin O-methyltransferase-like 

and LBH-like isoform X1. When lowering the significance 
threshold to 0.05, four SNPs were added to the signatures, 
retrieving two more annotated genes (Table 3).

Selected SNPs for Weight at Tagging
Five SNPs were associated with Tag Weight, as retrieved from 
SES algorithm (Table 4). The first was found at “RNA-binding 
27 isoform X1” gene (chr13:20975921), the second upstream 

TABLE 5 | Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Variables Locus P-value Beta coefficient Threshold GWAS Conserved Position 

Length/Width

Chr6:23799286 Phosphatase 1 regulatory subunit 3D-like 0.0052 0.0397 0.01 – ✓ 3d 
Chr1:20827142 Upstream: mucin-5AC-like isoform X1 0.049 0.026 0.01 – ✓ Upstream 
Chr13:9665394 ATP-dependent RNA helicase DHX33 0.0211 0.048 0.01 – ✓ 3d 
Chr3:9671223 A-kinase anchor 9 isoform X3 0.0144 −0.0597 0.01 – ✓ 2nd 
Scaffold13177:8369 Phosphatase 1 regulatory subunit 3C 0.015 0.057 0.01 – ✓ Downstream 
Chr8:11613979 Semaphorin-3A 0.0193 −0.025 0.05 – ✓ Intron 
Chr22:2545133 Neurexin-3b isoform X3 0.049 −0.029 0.05 – – Intron 
Scaffold5661:35982 – 0.049 0.031 0.05 – ✓ – 

TABLE 4 | Selected SNPs from SES algorithm with significance threshold equal to 0.05 (best method based on median squared error score).

Variables Locus P-value Beta coefficient Threshold GWAS Conserved Position 

Tag Weight

Chr2:2623351 Tetratricopeptide repeat 36 0.0019 4.577 0.01 ✓ – Upstream 
Chr13:20883924 DNA repair RAD50 0.0127 2.678 0.01 – ✓ Intron 
Chr13:20975921 RNA-binding 27 isoform X1 0.0073 1.810 0.01 ✓ – Intron 
Chr22:18343985 Zinc finger BED domain-containing 4-like 0.0117 −1.967 0.01 ✓ – Upstream 

Midasin isoform X2 Downstream 
Scaffold4139:36071 Predicted uncharacterized protein 

LOC106518831, partial 
0.033 −0.634 0.01 – ✓ Upstream 

Chr15:3260819 Follistatin-related 1-like 0.0124 3.106 0.05 – – Downstream 
Chr20:6671436 UBA-like domain-containing 1 0.021 2.665 0.05 – ✓ 2nd 
Chr22:14483563 Exostosin-1-like 0.0448 4.898 0.05 – – Intron 
Scaffold14083:12192 – 0.042 −1.349 0.05 – – - 

FIGURE 3 | The effect of each of the selected SES SNPs associated with fat content. (A-C) Boxplots of selected SNPs. (A) chr8:1385781, (B) chr13:1098152, 
(C) chr21:19924408.
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from “Tetratricopeptide repeat 36” gene (Chr2:2623351), the 
third at “DNA repair RAD50” gene (chr13:20883924), the fourth 
upstream from “tectonin beta-propeller repeat-containing 2” 
gene (chr22:18343985), and the fifth (scaffold4139:36071) was 
not in an annotated region. Lowering the significance threshold 
to 0.05, four annotated SNPs were added to the discovered 
signatures (Table 4).

Selected SNPs for Length/Width Phenotype
Finally, five SNPs were associated with Length/Width ratio (at 750 
DPH) as retrieved from SES algorithm (Table 5). The first SNP 
(chr6:23799286) was located on the “phosphatase 1 regulatory 
subunit 3D-like.” The second SNP (chr16:2232897) was located 
in two genes “acetylserotonin O-methyltransferase-like” 

and LBH-like isoform X1. The third SNP (chr13:9665394) 
was located in “ATP-dependent RNA helicase DHX33,” the 
next one in “A-kinase anchor 9 isoform X3,” and the last one 
(scaffold13177:8369) downstream of phosphatase 1 regulatory 
subunit 3C.

DISCUSSION

Here, we present a family-based approach for the discovery of 
genetic variants that are significantly associated with a set of 
phenotypes with economic importance for the farmed gilthead 
sea bream. The application of these methods on seven families, 
each measured on four phenotypes, revealed several genetic 

FIGURE 4 | The effect of each of the selected SES SNPs associated with weight at harvest. (A-D) Boxplots of selected SNPs. (A) chr1:16636968, (B) chr6:12617755, 
(C) chr8:11613979, (D) chr16:2232897
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signatures that may be used for genomic selection. Various 
QTL affecting growth, morphology, and stress-related traits 
have been detected using microsatellite markers in gilthead sea 
bream (Boulton et al., 2011; Loukovitis et al., 2011; Loukovitis 
et al., 2012; Loukovitis et al., 2013). Some of those QTL have 
been verified in genetically unrelated populations (Loukovitis 
et al., 2016). However, no association study using SNP markers 
was available for production traits in sea bream except this by 
Palaiokostas et al. (2016) on pasteurelosis. Our study fills this 
gap enabling for the first time a genomic scan for SNPs that are 
linked to important traits. We applied two intrinsically different 
methods. The first is a typical GWA study that examines variants 
independently, and the second is a family of methods (SES and 
OMP) that generates signatures with multiple variants.

The sample size of our study (N = 103) might indeed produce 
some artifacts of this kind. Nevertheless, the analysis pipeline 
that we apply (SES) is specially tailored for small or moderate 
sample sizes in order to detect statistically significant QTLs. We 
anticipate that a future study with greater sample size will refine 
our findings and might locate additional important QTLs.

In GWA analysis after the LD-pruning, we found 497 
independent SNPs. It expected the LD-pruning to reduce 
drastically the number of SNPs. Studies has shown that a strict 
LD filters like the one that we applied has minimal effect on the 
predictive accuracy of the remaining SNPs (Palaiokostas et al., 
2019). In general, we noticed a concordance between the SNPs 

discovered by GWAS and SES. Both methods include tests for 
SNP–phenotype statistical association, whereas OMP conducts 
residual-based tests for SNP association. SES algorithm attempts 
to identify specific sets of SNPs that model a specific phenotype, 
whereas the typical GWAS pipeline reveals statistical associations. 
An interpretation of the significance of the SNPs that were located 
from GWAS but not from SES is that these SNPs do not have a 
direct effect. Or else, the effect of these SNPs can be eliminated 
by conditioning on the SNPs that SES revealed. For example, two 
SNPs that were identified from the typical GWAS, to be associated 
with weight at tagging (chr13:20975921, chr13:20975924), were 
marked by SES as equivalents. SES was built upon MMPC algorithm 
(Tsamardinos et al., 2003). The difference between these two 
algorithms is that MMPC does not return multiple solutions. 
MMPC was shown to achieve excellent false positive rates (Aliferis 
et al., 2010). Seen from the biological perspective, multiple 
equivalent signatures may arise from redundant mechanisms, 
for example, genes performing identical tasks within the cell. 
For example, Ein-Dor et al. (2005) demonstrated that multiple, 
equivalent prognostic signatures for breast cancer can be extracted 
just by analyzing the same dataset with a different partition in 
training and test set, showing the existence of several loci that are 
practically interchangeable in terms of predictive power. SES was 
tested against LASSO (Lagani et al., 2017) with continuous, binary, 
and survival target variables, resulting in SES outperforming 
the LASSO algorithm (Groll and Tutz, 2014) both in predictive 

FIGURE 5 | The effect of each of the selected SES SNPs associated with tag weight. (A-E) Boxplots of selected SNPs. (A) chr2:2623351, (B) chr13:20883924, 
(C) chr13:20975921, (D) chr22:18343985, (E) scaffold4139:36071.
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performance and computational efficiency. Overall, SES seems to 
be performing well in smaller datasets, while OMP is known to 
perform better in larger datasets (Tsagris et al., 2018b). A known 
limitation in every GWA study is that the power to detect small 
QTL effects is limited by the number of samples. An under-
powered GWA study may fail to detect some associations, whereas 
the detected signals might be inaccurate in terms of location and/
or biological interpretation. The sample size of our study (N = 103) 
might indeed produce some artifacts of this kind. Nevertheless, the 
analysis pipeline that we applied (SES) is specially tailored for small 
or moderate sample sizes in order to detect statistically significant 
QTLs. We anticipate that a future study with greater sample size 
will refine our findings and might locate additional important 
QTLs. Our findings highlight novel SNPs found within or close 
to coding genes that are significantly associated with our focal 
traits of interest in sea bream. However, multiple of those genes 
have been linked with such traits in other species as well. Multiple 
interesting genes were associated with fat content. For example, 
one SNP locus is linked with the gene Rho-GTP binding, which 
is involved in adipogenesis in mice, (Sordella et al., 2003). This 
gene and its regulator (p190-B RhoGAP) seem to have a key role 
in the outcome of the differentiation of mesenchymal stem cells to 
either adipocytes or myocytes (Sordella et al., 2003). Another SNP 
associated with fat was located on neurotrophin-3 (NT-3), a gene 
with well-recognized effects on peripheral nerve and Schwann 
cells, promoting axonal regeneration and associated myelination 

(Yalvac et al., 2018). NT-3 increases muscle fiber diameter in the 
neurogenic muscle through direct activation of mTOR pathway 
and that the fiber size increase is more prominent for fast twitch 
glycolytic fibers. Thus, fat content seems to be influenced greatly 
by few genes with well-known role in adipogenesis.

Regarding the loci associated with weight and tag weight, we 
identified 15 genes in total. Interestingly, although those two 
traits represent the same trait at different stages, we found no 
gene associated with both. There are many reasons for such result. 
One reason may be due to the low power of the experiment and 
the differences in variation in the weight of the fish at different 
ages. Another reason may be because different genes are affecting 
growth at different stages of development. A third reason is that 
may be the gene action is not only additive and epistatic effects 
exist. In any case, all these scenarios should be further investigated 
in a more powerful experiment, which would be necessary in 
any case. The outcome of our analysis revealed SNPs close to 
very important genes with a well-known role in weight gain–
loss, such as Follistatin, myosin-7, and semaphorin (SEMA3A) 
genes. Follistatin binds and inhibits the activity of several TGF-
family members in mice (Lee and McPherron, 2001). Strikingly, 
follistatin knockout mice have reduced muscle mass at birth 
underlying the importance of this gene in muscle growth (Lee 
and McPherron, 2001). Apart from Follistatin, the significant 
association with Myosin, an actin-based motor molecule with 
ATPase activity essential for muscle contraction, shows the 

FIGURE 6 | The effect of each of the selected SES SNPs associated with length/width. (A-E) Boxplots of selected SNPs. (A) chr1:20827142, (B) chr3:9671223, 
(C) chr6:23799286, (D) chr13:9665394, (E) scaffold5661:35982.
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importance of regulation of muscle growth-related genes in 
weight. The third gene, semaphorin, is significantly associated 
with both weight and length/width. SEMA3A gene is involved 
in synapse development underlying the importance of genes 
in regulating the nervous system in length. Also, the same SNP, 
which is located on SEMA3A, was direct upstream of Piccolo gene. 
Piccolo play roles in regulating the pool of neurotransmitter-filled 
synaptic vesicles present at synapses. Mice lacking Piccolo are 
viable; nevertheless, each mutant displays abnormalities. Piccolo 
mutants reduced postnatal viability and body weight (Mukherjee 
et al., 2010). Another associated gene, ethanolamine phosphate 
cytidylyltransferase, plays a role in lipid metabolism and finally 
EXT1, a gene regulating important developmental pathways such 
as hedgehog (Siekmann and Brand, 2005).

The compilation of an annotated reference genome for this 
species has been recently published by the Hellenic Centre for 
Marine Research (H.C.M.R). (Pauletto et al., 2018) and is also 
available on the Genome Browser1. To our knowledge, this analysis 
is the first to use this genome as a reference for read alignment 
and variant calling. Moreover, a literature review did not reveal 
any study examining the same collection of traits on this species. 
As an effect, for the moment, we cannot provide a comparative 
analysis with other studies. Studies on related species include those 
of Yoshida et al. (2019), which examines weight paper on Nile 
tilapia, Nguyen et al. (2018), which examines weight on Yellowtail 
Kingfish, and Yu et al. (2018), which examines weight and total 
length on Epinephelus coioides. Although our study does not have 
any common gene with these studies, it is interesting that among 
these studies, there are also no common genes. This suggests the 
high genetic variability on these traits across different species and 
also the need for future studies with higher sample sizes and better 
coverage that can provide additional insights on the common 
genetic content of aquacultured species.

CONCLUSION

In this study, we employed two different approaches to identify 
variants associated with growth-related phenotypic traits. Our 
chosen selected panel combined with the vigorous bioinformatic 
analyses revealed the most significant SNP loci on the sea bream 
genome. The discovered candidates are located in the proximity 
of genes with known involvement in processes related to growth. 
The combination of these novel loci may lead to the selection of 
brooders based on specific genetic signatures and can have a great 
effect on the efficiency of the aquaculture. Moreover, these results 
could be used to verify or not putative QTL identified in previous 
studies and could also be used in order to fine map identified 
QTL in the same population using other types of genetic markers 
(Chatziplis et al, 2018, in preparation). Following this step, the 
use of these variants independently as individual SNP (or SNP 
haplotypes) and/or in combination with other marker information 
in a MAS program could be a form of direct application in the 
aquaculture breeding industry. When more dense SNP markers 
would be available (i.e., SNPchip) for the species and more families 

1 http://biocluster.her.hcmr.gr/myGenomeBrowser?portalname=Saurata_v 1

from more populations are genotyped (i.e., increase LD), then the 
application of Genomic Selection will be more feasible and cost 
effective in terms of any selection accuracy benefits. Nevertheless, 
our study presents, in a small scale example, the feasibility of GS 
application as well as the availability of the tools necessary before 
its application (i.e., GWAS using SNP markers) in an important 
Mediterranean aquaculture species such as gilthead sea bream.
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