Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,1'-(Ethane-1,2-diyl)bis(3-phenylthiourea)

Pramod B. Pansuriya, Holger B. Friedrich and Glenn E. M. Maguire*

School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa Correspondence e-mail: maguireg@ukzn.ac.za

Received 20 September 2011; accepted 28 September 2011

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.054 ; w R$ factor $=0.135$; data-to-parameter ratio $=19.0$.

The complete molecule of the title compound, $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2}$, is generated by crystallographic inversion symmetry. The dihedral angle between the phenyl ring and the thiourea group is $52.9(4)^{\circ}$. The crystal structure displays intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonding, which generates sheets in the $a b$ plane.

Related literature

Bisthiourea and urea derivatives with alkane bridges can adopt two general shapes, bent (Pansuriya et al., 2011a) or straight alkyl chains (Pansuriya et al., 2011b; Koevoets et al., 2005). For the synthesis see: Lee et al. (1985).

Experimental

Crystal data
$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$V=1581.79(10) \AA^{3}$
$M_{r}=330.46$
Orthorhombic, Pbca
$a=10.5823$ (4) A
$b=9.1053$ (3) A
$c=16.4163(6) \AA$
Mo $K \alpha$ radiation
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
$0.53 \times 0.26 \times 0.12 \mathrm{~mm}$
Data collection
Bruker APEXII CCD
diffractometer
22438 measured reflections
1902 independent reflections
1523 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054 \quad 100$ parameters
$w R\left(F^{2}\right)=0.135$
$S=1.13$
1902 reflections

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.55 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.38 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{~S}^{1}{ }^{\mathrm{i}}$	0.88	2.57	$3.379(2)$	153

Symmetry code: (i) $-x+\frac{3}{2}, y+\frac{1}{2}, z$.

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

The authors wish to thank Dr Manuel Fernandes from the Chemistry Department of the University of the Witwatersrand for his assistance with the data collection and the DSTNational Research Foundation, c^{*} change for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2349).

References

Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Koevoets, R. A., Versteegen, R. M., Kooijman, H., Spek, A. L., Sijbesma, R. P. \& Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 2999-3003.
Lee, K. N., Fesus, L., Yancey, S. T., Girardg, J. E. \& Chung, S. I. (1985). J. Biol. Chem. 260, 14689-14694.
Pansuriya, P., Friedrich, H. B. \& Maguire, G. E. M. (2011a). Acta Cryst. E67, o2380.
Pansuriya, P., Naidu, H., Friedrich, H. B. \& Maguire, G. E. M. (2011b). Acta Cryst. E67, o2552.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

1,1'-(Ethane-1,2-diyl)bis(3-phenylthiourea)

P. B. Pansuriya, H. B. Friedrich and G. E. M. Maguire

Comment

Thiourea and urea functionalized ligands play key roles in a wide range of catalytic reactions. Here we report the crystal structure of such a compound (Lee et al., 1985) (Fig. 1). We recently reported a similar thiourea structure, where the molecules were bent (Pansuriya et al., 2011a). Bisthiourea and urea derivatives with alkane bridges can adopt two general shapes, bent (Pansuriya et al., 2011a) or straight alkyl chains (Pansuriya et al., 2011b; Koevoets et al., 2005). The spacer length between the two terminal thiourea or urea groups does not appear to influence the shape the bridging atoms take. The closest structure to the title compound 1,1'-(butane-1,4-diyl)bis(3-phenylthiourea) (Pansuriya et al., 2011a) has also a transoid arrangement of the two thiourea groups. The asymmetric unit of the title compound is a half molecule and the complete molecule is generated by inversion symmetry (i): $1-x,-y, 1-z$. The structure shows intermolecular hydrogen bonding interactions between $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~S} 1,3.379$ (2) \AA, that creates sheets in the $a b$ plane(Fig. 2). The dihedral angle between the phenyl ring and the thiourea group is $52.9(4)^{\circ}$.

Experimental

A solution of phenyl isothiocyanate ($6.75 \mathrm{~g}, 50 \mathrm{mmol}$) in diethyl ether $(15 \mathrm{ml})$ was added dropwise at $15^{\circ} \mathrm{C}$ to a vigorously stirring solution of anhydrous ethane-1,2-diamine $(6.01 \mathrm{~g}, 100 \mathrm{mmol})$ in isopropyl alcohol $(100 \mathrm{ml})$ over a period of 30 min . The reaction mixture was stirred for 2 hrs at room temperature and quenched with water (200 ml). This reaction mixture was then maintained overnight at room temperature. Then the reaction mixture was acidified with conc. HCl up to pH 2.6 . The solvents were evaporated under reduced pressure, the residue was suspended in hot water for 30 min. The resulting precipitate was filtered by vacuum. The product was washed with ice cold water and dried. The yield was 2.90 g (35\%).

Crystals suitable for single-crystal X-ray diffraction analysis were grown in methanol: methylene chloride (1:2) at room temperature. M.p. $=462 \mathrm{~K}$.

Refinement

Hydrogen atoms were first located in the difference map then positioned geometrically and allowed to ride on their respective parent atoms with $\mathrm{C} — \mathrm{H}$ distances of $0.95 \AA\left(\mathrm{C}_{\mathrm{ar}} \mathrm{H}\right), 0.99 \AA\left(\mathrm{CH}_{2}\right)$ and $\mathrm{N} — \mathrm{H}$ distances of $0.88 \AA$. $\mathrm{U}_{\text {iso }}(\mathrm{H})$ values were set to $1.2 \mathrm{U}_{\mathrm{eq}}$ of the attached atom.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 40% probability level. The 1,1'-(ethane-1,2-diyl)bis(3-phenylthiourea) has inversion symmetry, so that unlabelled atoms are related by (1-x, $-\mathrm{y}, 1-\mathrm{z}$.

1,1'-(Ethane-1,2-diyl)bis(3-phenylthiourea)

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{~S}_{2}$
$M_{r}=330.46$

Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=10.5823$ (4) \AA
$b=9.1053$ (3) \AA
$c=16.4163(6) \AA$
$V=1581.79(10) \AA^{3}$
$Z=4$
$F(000)=696$
$D_{\mathrm{x}}=1.388 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 462 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 8682 reflections
$\theta=2.5-28.3^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Plate, colourless
$0.53 \times 0.26 \times 0.12 \mathrm{~mm}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube graphite
φ and ω scans
22438 measured reflections
1902 independent reflections

1523 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.078$
$\theta_{\text {max }}=28.0^{\circ}, \theta_{\text {min }}=2.5^{\circ}$
$h=-13 \rightarrow 13$
$k=-12 \rightarrow 12$
$l=-21 \rightarrow 21$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.135$
$S=1.13$
1902 reflections
100 parameters
0 restraints

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0373 P)^{2}+3.3624 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.55 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.38$ e \AA^{-3}

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
C1	$0.4907(2)$	$0.4345(3)$	$0.35565(15)$	$0.0229(5)$
C2	$0.4488(3)$	$0.3631(3)$	$0.28604(17)$	$0.0281(6)$
H2	0.4897	0.2763	0.2678	0.034^{*}
C3	$0.3463(3)$	$0.4196(3)$	$0.24308(18)$	$0.0329(6)$
H3	0.3161	0.3700	0.1961	0.039^{*}
C4	$0.2885(3)$	$0.5468(3)$	$0.26835(18)$	$0.0339(6)$
H4	0.2185	0.5848	0.2389	0.041^{*}
C5	$0.3321(3)$	$0.6195(3)$	$0.33647(18)$	$0.0321(6)$
H5	0.2932	0.7086	0.3530	0.039^{*}
C6	$0.4330(3)$	$0.5630(3)$	$0.38118(17)$	$0.0280(6)$
H6	0.4619	0.6121	0.4287	0.034^{*}
C7	$0.6127(2)$	$0.2403(3)$	$0.42665(15)$	$0.0226(5)$
C8	$0.5090(3)$	$0.0019(3)$	$0.45415(16)$	$0.0263(5)$
H8A	0.5891	-0.0479	0.4398	0.032^{*}
H8B	0.4389	-0.0520	0.4276	0.032^{*}
N1	$0.5975(2)$	$0.3795(2)$	$0.39925(14)$	$0.0246(5)$
H1N	0.6591	0.4418	0.4092	0.030^{*}
N2	$0.5118(2)$	$0.1523(2)$	$0.42399(14)$	$0.0258(5)$

H 2 N	0.4421	0.1877	0.4025	0.031^{*}
S 1	$0.75428(6)$	$0.18711(7)$	$0.46353(4)$	$0.0273(2)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0182(11)$	$0.0206(12)$	$0.0298(12)$	$-0.0016(9)$	$-0.0006(10)$	$0.0067(10)$
C2	$0.0263(13)$	$0.0241(13)$	$0.0338(13)$	$0.0016(11)$	$0.0008(11)$	$0.0000(11)$
C3	$0.0346(15)$	$0.0306(14)$	$0.0335(14)$	$-0.0042(12)$	$-0.0079(12)$	$0.0026(12)$
C4	$0.0268(14)$	$0.0340(15)$	$0.0407(15)$	$-0.0005(12)$	$-0.0072(12)$	$0.0107(12)$
C5	$0.0238(13)$	$0.0281(14)$	$0.0445(16)$	$0.0071(11)$	$0.0010(12)$	$0.0039(12)$
C6	$0.0265(13)$	$0.0266(13)$	$0.0309(13)$	$0.0009(11)$	$-0.0005(10)$	$-0.0005(11)$
C7	$0.0170(11)$	$0.0230(12)$	$0.0279(12)$	$0.0013(9)$	$0.0023(10)$	$0.0006(10)$
C8	$0.0229(12)$	$0.0184(11)$	$0.0376(14)$	$-0.0016(9)$	$-0.0004(11)$	$0.0030(10)$
N1	$0.0164(10)$	$0.0196(10)$	$0.0378(12)$	$-0.0019(8)$	$-0.0033(9)$	$0.0024(9)$
N2	$0.0152(10)$	$0.0219(11)$	$0.0403(12)$	$-0.0003(8)$	$-0.0024(9)$	$0.0084(9)$
S1	$0.0150(3)$	$0.0218(3)$	$0.0450(4)$	$0.0017(2)$	$-0.0026(3)$	$0.0001(3)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-C6	1.385 (4)	C6-H6	0.9500
C1-C2	1.387 (4)	C7-N2	1.336 (3)
C1-N1	1.428 (3)	C7-N1	1.354 (3)
C2-C3	1.393 (4)	C7-S1	1.687 (2)
C2-H2	0.9500	C8-N2	1.456 (3)
C3-C4	1.373 (4)	C8-C8 ${ }^{\text {i }}$	1.518 (5)
C3-H3	0.9500	C8-H8A	0.9900
C4-C5	1.379 (4)	C8-H8B	0.9900
C4-H4	0.9500	N1-H1N	0.8800
C5-C6	1.394 (4)	N2-H2N	0.8800
C5-H5	0.9500		
C6- $\mathrm{C} 1-\mathrm{C} 2$	120.3 (2)	C5-C6-H6	120.3
C6- $\mathrm{C} 1-\mathrm{N} 1$	119.6 (2)	N2-C7-N1	117.1 (2)
C2- $\mathrm{C} 1-\mathrm{N} 1$	120.1 (2)	N2-C7-S1	123.3 (2)
C1-C2-C3	119.5 (3)	N1-C7-S1	119.59 (19)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.2	N2-C8-C8 ${ }^{\text {i }}$	111.2 (3)
C3-C2-H2	120.2	N2-C8-H8A	109.4
C4-C3-C2	120.4 (3)	C8i-C8-H8A	109.4
C4-C3-H3	119.8	N2-C8-H8B	109.4
C2-C3-H3	119.8	C8i - C 8 - H 8 B	109.4
C3-C4-C5	120.0 (3)	H8A-C8-H8B	108.0
C3-C4-H4	120.0	C7-N1-C1	126.1 (2)
C5-C4-H4	120.0	C7-N1-H1N	117.0
C4-C5-C6	120.4 (3)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	117.0
C4-C5-H5	119.8	C7-N2-C8	124.7 (2)
C6-C5-H5	119.8	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	117.6
C1-C6-C5	119.4 (3)	$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	117.6
C1-C6-H6	120.3		

sup-4

supplementary materials

$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-1.5(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-178.6(2)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$1.3(4)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.1(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$-1.4(4)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.3(4)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$177.4(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$1.2(4)$
Symmetry codes: $(\mathrm{i})-x+1,-y,-z+1$.	

$\mathrm{N} 2-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$-11.0(4)$
$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$170.1(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$130.0(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7$	$-52.9(4)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$-177.1(2)$
$\mathrm{S} 1-\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$1.8(4)$
$\mathrm{C} 8-\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 7$	$80.6(4)$

Hydrogen-bond geometry ($\left(,^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~N} \cdots \mathrm{~S} 1^{\mathrm{ii}}$	0.88	2.57	$3.379(2)$	153

Symmetry codes: (ii) $-x+3 / 2, y+1 / 2, z$.

supplementary materials

Fig. 1

Fig. 2

