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Abstract: Diabetes mellitus is a major cause of chronic kidney disease and end-stage renal disease.
However, the management of chronic kidney disease, particularly diabetes, requires vast improve-
ments. Recently, sodium-glucose cotransporter-2 (SGLT2) inhibitors, originally developed for the
treatment of diabetes, have been shown to protect against kidney injury via glycemic control, as well
as various other mechanisms, including blood pressure and hemodynamic regulation, protection
from lipotoxicity, and uric acid control. As such, regulation of these mechanisms is recommended as
an effective multidisciplinary approach for the treatment of diabetic patients with kidney disease.
Thus, SGLT2 inhibitors are expected to become key drugs for treating diabetic kidney disease. This
review summarizes the recent clinical evidence pertaining to SGLT2 inhibitors as well as the mecha-
nisms underlying their renoprotective effects. Hence, the information contained herein will advance
the current understanding regarding the pleiotropic effects of SGLT2 inhibitors, while promoting
future research in the field.

Keywords: sodium-glucose cotransporter; diabetic kidney disease; steatonephropathy; diabetic
nephropathy; blood pressure; tubuloglomerular feedback; lipotoxicity; endoplasmic reticulum stress;
mitochondria; uric acid

1. Diabetic Kidney Disease and the Treatment Strategy

Diabetic kidney disease (DKD) is a progressive kidney disease caused by diabetes mel-
litus and is a major public health concern worldwide. Approximately 40% of patients with
diabetes develop chronic kidney disease (CKD) or end-stage renal disease [1,2]. Addition-
ally, diabetes mellitus leads to end-stage renal disease in 39–46% of patients [3,4]. Kidney
disease associated with diabetes typically presents as persistent albuminuria, resulting in
diminished renal function. However, impaired renal function without albuminuria has
also been reported [5]. Hence, the concept of DKD has emerged owing to this recent shift
in the clinical presentation of kidney disease caused by diabetes mellitus [6]. That is, DKD
is defined as CKD with diabetes-associated pathogenesis [7]. Considering that kidney
dysfunction may latently progress in patients with DKD, it is important to improve the
management of diabetes mellitus to prevent end-stage renal disease.

Persistent hyperglycemia causes inflammation, endothelial dysfunction, and oxidative
stress in the kidneys and, thus, is partly associated with DKD progression [8–10]. In
addition to traditional hypoglycemic agents and insulin, several agents targeting peptidyl
hormones, such as dipeptidyl peptide IV and glucagon-like peptide-1, have recently
been introduced for the treatment of hyperglycemia [11]. These therapeutic options have
improved the management of hyperglycemia in patients with diabetes mellitus. However,
as the pathogenesis of DKD is complex and multifactorial, a multidisciplinary approach is
necessary to manage patients with CKD and diabetes. Accordingly, the Kidney Disease:
Improving Global Outcomes (KDIGO) has recently proposed a clinical practice guideline
for diabetes management in CKD patients [12], in which the fundamental approaches for
all patients include glycemic and blood pressure control, as well as lipid management,
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whereas sodium-glucose cotransporter-2 (SGLT2) inhibitors and renin-angiotensin system
(RAS) inhibitors are recommended for most patients.

RAS inhibitors have been used for decades and have demonstrated favorable effects in
preventing CKD progression [13–15]. In contrast, SGLT2 inhibitors have only recently been
developed for the treatment of diabetes to reduce glucose reabsorption in the renal proximal
tubule. Clinical trials have shown that SGLT2 inhibitors prevent cardiovascular events
in diabetic patients with or without CKD. Interestingly, SGLT2 inhibitors can also reduce
cardiovascular events and prevent the progression to end-stage kidney disease in patients
without diabetes [16]. In addition, in vitro and in vivo experiments have demonstrated
that SGLT2 inhibitors exert renoprotective effects via various mechanisms independent of
glycemic control. Thus, SGLT2 inhibitors are expected to play a central role in managing
diabetes to overcome DKD. In this review, we summarize the clinical evidence related
to SGLT2 inhibitors. We then focus on examining the potential mechanisms underlying
their renoprotective effects in the context of glycemic control, blood pressure control,
and lipid management; representing the fundamental approaches recommended in the
KDIGO guideline. Of note, to achieve successful management of DKD, it is essential to
compile the current relevant evidence, particularly those associated with the mechanisms
of SGLT2 inhibitors.

2. Clinical Evidence on SGLT2 Inhibitors

To date, seven clinical trials have been conducted to investigate the effect of SGLT2
inhibitors on cardiovascular outcomes or CKD progression (Tables 1 and 2) [16–22]. In the
Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients
(EMPA-REG OUTCOME), empagliflozin significantly reduced cardiovascular events [17].
Empagliflozin also significantly reduced progression to macroalbuminuria, doubling of the
serum creatinine level, initiation of renal replacement therapy, or death from renal disease
in a post hoc analysis [23]. According to the Canagliflozin Cardiovascular Assessment
Study (CANVAS) and the Multicenter Trial to evaluate the effects of dapagliflozin on the
incidence of cardiovascular events (DECLARE-TIMI58), canagliflozin and dapagliflozin
showed renoprotective effects [18,19]. These favorable effects of SGLT2 inhibitors on renal
outcome were also demonstrated by a meta-analysis of these clinical trials [24]; however,
patients included in these three studies were at low risk for renal failure, and the renal
outcome was not validated as the primary outcome.

Table 1. Characteristics of patients in SGLT2 inhibitor clinical trials.

Clinical Trial Year Drug
(Dose) N Age

(Years)

Median
Follow-Up Period

(Years)
CVD DM Mean eGFR

(mL/min/1.73 m2)

EMPA-REG 2015 Empagliflozin
(10 mg, 25 mg) 7020 63.1 3.1 100% 100% 74.1

CANVAS 2017 Canagliflozin
(100 mg, 300 mg) 10142 63.3 2.4 65.6% 100% 76.5

DECLARE-
TIMI 58 2019 Dapagliflozin

(10 mg) 17160 63.9 4.2 40.6% 100% 85.2

CREDENCE 2019 Canagliflozin
(100 mg) 4401 63.0 2.6 50.40% 100% 56.2

DAPA-HF 2019 Dapagliflozin
(10 mg) 4401 66.3 1.5 100% 41.8% 65.8

EMPEROR-
Reduced 2020 Empagliflozin

(10 mg) 4401 66.8 1.3 100% 49.8% 62.0

DAPA-CKD 2020 Dapagliflozin
(10 mg) 4401 61.9 2.4 37.4% 67.5% 43.1

N, number; CVD, cardiovascular disease; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate.
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Table 2. Renal outcome in clinical trials.

Clinical Trial Definition of Renal Outcome HR (95% CI)

EMPA-REG Progression to macroalbuminuria, doubling of sCr,
initiation of RRT, or death from renal disease 0.61 (0.53–0.70)

CANVAS 40% reduction in eGFR, requirement for RRT, or death
from renal causes 0.60 (0.47–0.77)

DECLARE-TIMI 58 40% decrease in eGFR, ESRD, death from renal or
cardiovascular causes 0.76 (0.67–0.87)

CREDENCE ESRD, doubling of the sCr, or death from renal or
cardiovascular causes 0.70 (0.59–0.82)

DAPA-HF 50% decline in the eGFR, ESRD, or renal death 0.71 (0.44–1.16)

EMPEROR-Reduced Hemodialysis, renal transplantation, or profound
sustained reduction in eGFR 0.50 (0.32–0.77)

DAPA-CKD Sustained decline in the eGFR, ESRD, or death from
renal or cardiovascular causes 0.61 (0.51–0.72)

HR, hazard ratio; CI, confidence interval; sCr, serum creatinine; RRT, renal replacement therapy; ESRD, end-stage renal disease.

Meanwhile, the Canagliflozin and Renal Events in Diabetes with Established Nephropa-
thy Clinical Evaluation (CREDENCE) trial recruited patients with overt albuminuria and
an estimated glomerular filtration rate (eGFR) of 30–90 mL/min/1.73 m2 and included
the following primary outcomes: composite outcome of end-stage renal disease, doubling
of serum creatinine, and renal or cardiovascular death [20]. This trial confirmed that
canagliflozin prevents renal outcomes in patients with advanced DKD and demonstrated
that combination therapy with SGLT2 and RAS inhibitors is beneficial for preventing kid-
ney disease progression. Interestingly, empagliflozin in the EMPA-REG OUTCOME and
canagliflozin in the CREDENCE trial prevented cardiovascular or renal outcomes despite
the small reduction in glycated hemoglobin level in many participants, suggesting that the
pleiotropic effects of SGLT2 inhibitors reach beyond glycemic control [17,20].

Remarkably, the efficacy of SGLT2 inhibitors has been reported in patients without
diabetes. For instance, the Dapagliflozin and Prevention of Adverse Outcomes in Heart
Failure (DAPA-HF) and the Empagliflozin Outcome Trial in patients with chronic heart
failure with reduced ejection fraction (EMPEROR-Reduced) trial targeted patients with
heart failure regardless of diabetes status [16,21]. Although composite renal outcome, as
the secondary endpoint, was not significantly reduced in DAPA-HF, cardiovascular events
were significantly reduced by dapagliflozin regardless of concomitant diabetes [16]. In
the EMPEROR-Reduced trial, empagliflozin prevented renal function decline in patients
without diabetes. Taken together, these recent trials indicate that SGLT2 inhibitors exert
protective effects on both cardiovascular and renal events, regardless of diabetes status.

3. Mechanisms Underlying the Renoprotective Effect of SGLT2 Inhibitors

Clinical evidence has indicated that the renoprotective effect of SGLT2 inhibitors
depends not only on glycemic control but also on other unknown effects, the detailed
mechanisms of which are not fully understood. We propose that SGLT2 inhibitors protect
against the progression of kidney disease through pleiotropic effects (Figure 1). In this
section, we summarize the mechanisms associated with the renoprotective effect of SGLT2
inhibitors, primarily focusing on the multidisciplinary approach recommended in the
KDIGO guidelines.
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Figure 1. Summary of the potential mechanisms underlying the renoprotective effect of SGLT2 inhibitors. SGLT2 in-
hibitors potentially protect the progression of diabetic kidney disease through pleiotropic effects. SGLT2; sodium-glucose
cotransporter-2.

3.1. Glycemic Control

Plasma glucose is freely filtered at the glomerulus and then reabsorbed by the proxi-
mal tubule. Under physiological conditions, urinary glucose excretion occurs when the
filtered glucose level exceeds the maximum reabsorptive capacity of the proximal tubule.
Luminal glucose filtered through the glomerulus is reabsorbed into the proximal tubular
epithelial cells via the carrier-mediated transporters, SGLTs, and subsequently transported
to the basolateral aspect of the epithelial cells through glucose transporters (GLUTs) 1 and
2. SGLTs are a family of glucose transporters encoded by SLC5. To date, seven SGLTs
have been identified [25,26], among which SGLT1 and SGLT2 are the major isoforms in-
vestigated. SGLT1 is abundant in the small intestine and expressed in the kidney, whereas
SGLT2 is exclusively expressed in the kidneys [25]. Both isoforms are localized in the apical
membrane of the proximal tubule. Particularly, SGLT1 is expressed in the S3 segment of
the proximal tubule, whereas SGLT2 is localized to the S1 segment. The maximum glucose
reabsorption capacity of the S1 segment is higher than that of the S2 and S3 segments [27].
Therefore, the selective inhibition of SGLT2 causes glucose overload that exceeds the reab-
sorptive capacity of downstream segments, leading to glucosuria. Although compensatory
upregulation of SGLT1 exists [28], SGLT2 inhibition increases net urinary glucose excretion
to approximately 200–300 kcal of daily energy loss [29]. Thus, dual inhibitors of SGLT1
and 2 may be more effective in terms of glycemic control. However, their efficacy and
safety must be confirmed in clinical trials. In addition, because SGLT1 is distributed in the
intestine, gastrointestinal symptoms, such as diarrhea and dehydration, may occur [30].

3.2. Glomerular Hemodynamics, Natriuresis, and Tubuloglomerular Feedback

The current paradigm for the renoprotective mechanism of SGLT2 inhibitors is consid-
ered to have an effect on renal hemodynamics, including natriuresis and tubuloglomerular
feedback [31,32]. Diabetes causes glomerular hypertension by impairing the renal hemo-
dynamic autoregulation system. This involves the dilatation of the arteriole connecting
to the glomeruli, with a more pronounced effect on the afferent arteriole than the efferent
arteriole [33]. The dissociation of this vasodilatory change in afferent and efferent arterioles
causes a proportionally greater increase in efferent arteriolar resistance and a decrease in
afferent arteriolar resistance, resulting in increased intraglomerular pressure. Furthermore,
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nephron loss, that accompanies the progression of kidney disease, causes compensatory
hyperfiltration in the remaining nephrons. This compensatory increase in single nephron
GFR observed in diabetic patients subsequently leads to podocyte loss and albuminuria,
thereby accelerating kidney disease progression. Therefore, a reduction in intraglomerular
pressure is beneficial for renoprotection. RAS inhibitors induce vasodilation of the efferent
arteriole, which attenuates kidney disease progression [34]. Although the reduction in
intraglomerular pressure by RAS inhibitors was reflected in the initial decrease in GFR,
long-term GFR levels were stable in diabetic patients treated with RAS inhibitors [35].

Glomerular arteriolar resistance is finely adjusted via tubuloglomerular feedback [36].
Urinary flow and the NaCl concentration in the tubular lumen at the end of the loop of
Henle are sensed by the macula densa through the Na+, K+, Cl- cotransporter isoform
2 (NKCC2) and the renal outer medullary potassium (ROMK) type K+ channels. The
transition segment of the loop of Henle to the distal convoluted tubule lies adjacent to the
afferent and efferent arterioles of the same nephron, and the increased delivery of NaCl to
this segment triggers the vasoconstriction of afferent arterioles with relative relaxation of the
efferent arteriole, leading to reduced single nephron GFR [31]. Under diabetic conditions,
augmented Na reabsorption, coordinated with increased glucose reabsorption via SGLT1
and 2, reduces NaCl delivery to the macula densa and increases GFR via tubuloglomerular
feedback [37]. Considering that SGLT2 blockade not only leads to glucosuria, but also
natriuresis, SGLT2 inhibitors can achieve NaCl delivery to the distal portion of the nephron.
This natriuretic effect of SGLT2 inhibitors regulates tubuloglomerular feedback, resulting
in decreased intraglomerular pressure.

Indeed, SGLT2 inhibition causes the compensatory upregulation of SGLT1 [28,38].
The reabsorptive capability of sodium differs between SGLT1 and 2; that is, SGLT2 has a
coupling stoichiometry of 1 Na:1 glucose, whereas SGLT1 has 2 Na:1 glucose [25]. There-
fore, the enhanced sodium reabsorption coordinated with glucose reabsorption through
SGLT1 may theoretically diminish, or even invert, the natriuretic effect of SGLT2 inhibition.
A recent investigation suggested the involvement of Na+/H+ exchanger 3 (NHE3), which
colocalizes with SGLT2, in SGLT2 inhibitor-mediated natriuresis. In fact, within animal
studies, SGLT2 inhibitors were reported to alter NHE3 to a natriuretic profile via an indirect
effect through intracellular glucose metabolism and changes in osmolarity, resulting in
reduced sodium reabsorption at the proximal tubule [38,39]. This resulted in decreased net
reabsorption of sodium in the proximal tubular segment via SGLT2 inhibition. In patients
with diabetes, the administration of SGLT2 inhibitors increased urinary sodium excre-
tion [40,41]. These natriuretic effects, together with the modulation of tubuloglomerular
feedback after SGLT2 inhibition, may depend on the regulation of NHE3 activity (Figure 2).

Changes in single nephron GFR have been investigated in a micropuncture study
in diabetic rats. Results for which indicate that SGLT2 inhibition increases the chloride
concentration in the early distal tubule, while reducing single nephron GFR [42]. A similar
phenomenon has been observed in diabetic mice, i.e., reduction in single nephron GFR
and contraction of the afferent arteriole after empagliflozin injection [43]. In contrast to the
reduction in single nephron GFR observed in the type 1 diabetes model, administration
of dapagliflozin did not impact glomerular size in BSA-injected type 2 diabetes mouse
model [44]. Meanwhile, in db/db mice treated with luseogliflozin, the glomerular volume
increased [45]. Therefore, the effect of SGLT2 inhibition on glomerular or kidney size
depends on the type of diabetes and stage of kidney disease. Kidney length increased after
6 months of dapagliflozin treatment in patients with type 2 diabetes [46]. Because a single
nephron GFR is defined by the relative flux between the afferent and efferent arterioles,
single nephron GFR may not directly correlate with glomerular size. Kidney volume,
particularly cortical volume where glomeruli are distributed, is positively correlated with
GFR and predicts kidney disease progression [47,48]. Further investigation is required to
determine the association between glomerular hemodynamic changes and glomerular or
kidney size after SGLT2 inhibition.
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concentration and increased luminal flow activate the tubuloglomerular feedback and decrease intraglomerular pressure.
SGLT2; sodium-glucose cotransporter-2, NHE3; Na+/H+ exchanger 3.

Clinical trials have shown that SGLT2 inhibitors affect GFR in patients with diabetes.
Similar to RAS inhibitors, SGLT2 inhibitors cause an initial decrease in the acute phase,
followed by sustained renal function during the chronic phase [20,22]. In addition to
GFR changes, according to the CREDENCE trial, canagliflozin can also reduce urinary
albuminuria and prevent the progression of micro/macroalbuminuria [20].

3.3. Protection from Lipotoxicity

Dyslipidemia, characterized by hyperlipidemia, hypercholesterolemia, and hyper-
triglyceridemia, is an important therapeutic target for patients with DKD [12]. Abnormal
lipid metabolism, as evidenced by quantitative and qualitative changes in lipoprotein
composition, promotes the progression of kidney disease in DKD [49]. Similar to the liver,
the major organ affected in steatosis, dyslipidemia accelerates ectopic lipid deposition in
the kidney [50]. Ectopic lipid droplets in the glomeruli and tubular cells induce inflam-
mation, ROS production, and endoplasmic reticulum (ER) stress [51–53], which plays a
central role in the progression of kidney disease in steatonephropathy. ER stress-mediated
cellular apoptosis occurs via induction of glucose-regulated protein-78 (GRP78), a master
regulator of ER stress. Three different pathways have been identified as downstream
of GRP78-mediated apoptosis, in which the activating transcription factor 4 (ATF4) and
C/EBP homologous protein (CHOP) act as mainstream intermediates (Figure 3) [54,55].
Recent investigations have suggested that SGLT2 inhibitors can attenuate renal tubular
injury caused by ER stress. In a mouse model of induced renal steatosis, ipragliflozin
reduced lipid deposition in renal tubules, which was associated with decreased expression
of GRP78 and CHOP and cellular apoptosis [56]. Similarly, dapagliflozin ameliorated
ER stress-mediated cell death in diabetic mice and in proximal tubular cells through the
GRP78-ATF4-CHOP pathway [57,58].
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PERK, PKR-like endoplasmic reticulum kinase; IRE1, inositol requiring 1; and CHOP, C/EBP homol-
ogous protein.

Mitochondrial dysfunction is another pathophysiology that is closely associated with
lipotoxicity. Mitochondria are intracellular organelles that play a pivotal role in main-
taining the energy supply via fatty acid β-oxidation. Fatty acids are the most powerful
substrates for adenosine triphosphate production, while the kidney is one of the major
organs with a high demand for energy to maintain its metabolic activities. In particular,
the renal proximal tubule, which contains abundant mitochondria, primarily relies on
fatty acids as an energy source [59]. Therefore, proximal tubular cells are vulnerable to
dysregulated mitochondrial fatty acid oxidation. Excess fatty acids induce intracellular
accumulation of free fatty acids and triglycerides that induce ROS production in the mi-
tochondria [60]. Disturbed mitochondrial fatty acid oxidation causes energetic failure of
proximal tubules [61]. Furthermore, mitochondrial dysfunction results in decreased lipid
oxidation followed by lipid accumulation, which leads to a vicious cycle of mitochondrial
dysfunction and lipotoxicity [62].

SGLT2 inhibitors are expected to improve mitochondrial energetics in diabetic kidneys.
In a mouse model of DKD, canagliflozin was shown to ameliorate mitochondrial fatty
acid oxidation and improve mitochondrial biogenesis and function [63]. Another SGLT2
inhibitor, ipragliflozin, restores mitochondrial morphology by maintaining the expression
of Opa1 and Mfn2, the key molecules for mitochondrial fusion, in mice fed a high-fat
diet [64]. Although the full mechanism is under debate, SGLT2 inhibitors indisputably
exert renoprotective effects by ameliorating cellular stress or improving metabolism in
intracellular organelles, including the ER and mitochondria.

3.4. Uric Acid Control

Hyperuricemia is associated with an increased risk of DKD progression in patients
with type 1 or type 2 diabetes [65]. Uric acid induces inflammation, ROS production,
and endothelial dysfunction [66], which accelerate kidney disease and increase the risk of
cardiovascular disease in patients with CKD. Therefore, uric acid is a target for preventing
the progression of kidney disease [67,68]. Xanthine oxidase inhibitors or urate transporter
1 inhibitors have been used as standard therapies for hyperuricemia. SGLT2 inhibitors
are expected to be an alternative option for the treatment of hyperuricemia by increasing
the urinary excretion of uric acid. A meta-analysis of randomized controlled trials in
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patients with type 2 diabetes showed that SGLT2 inhibitors lowered serum uric acid levels
from baseline [69]. SGLT2 inhibitors have also been reported to reduce the risk of gout in
patients with type 2 diabetes [70]. The effect of SGLT2 on the downregulation of serum
uric acid levels is associated with reduced reabsorption of uric acid in the kidneys. Uric
acid filtered through the glomerulus is primarily reabsorbed in the proximal tubule. The
glucose transporter 9 (GLUT9), encoded by SLC2A9, which causes renal hypouricemia,
is reportedly involved in SGLT2 inhibitor-mediated uric acid excretion. GLUT9 has two
subtypes: GLUT9b localizes in the apical membrane and acts as a transporter for glucose
and uric acid, whereas GLUT9a is distributed in the basolateral membrane of the S1
segment of the proximal tubule [71,72]. Therefore, an increase in intraluminal glucose after
SGLT2 inhibition leads to increased reabsorption of glucose via GLUT9b, thus disturbing
the reabsorption of uric acid [73].

4. Conclusions

SGLT2 inhibitors were originally developed for glycemic control in patients with
diabetes mellitus. As they have shown promising benefits in nearly all clinical trials, SGLT2
inhibitors are expected to serve as the “magic bullet” for patients with or without diabetes.
Increasing clinical evidence has revealed the renoprotective effects of SGLT2 inhibitors
primarily via glycemic control and hemodynamic regulation. Here, we propose that SGLT2
inhibitors also exert pleiotropic effects related to the fundamental approach for treatment
of patients with or without diabetes and CKD. Thus, SLGT2 inhibitors can be administered
to a broad range of patients with a risk of CKD. Moreover, although the physiological
and pharmacological mechanisms of SGLT2 inhibitors are not fully characterized, current
progress identifying the roles played by SGLT2 inhibitors also supports their use for
treatment of DKD.
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