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Abstract

Successful categorization requires listeners to represent the incoming sensory information, resolve 

the “blooming, buzzing confusion” inherent to noisy sensory signals, and leverage the 

accumulated evidence towards making a decision. Despite decades of intense debate, the neural 

systems underlying speech categorization remain unresolved. Here we assessed the neural 

representation and categorization of lexical tones by native Mandarin speakers (N = 31) across a 

range of acoustic and contextual variabilities (talkers, perceptual saliences, and stimuluscontexts) 

using functional magnetic imaging (fMRI) and an evidence accumulation model of decision-

making. Univariate activation and multivariate pattern analyses reveal that the acoustic-variability-

tolerant representations of tone category are observed within the middle portion of the left superior 

temporal gyrus (STG). Activation patterns in the frontal and parietal regions also contained 

category-relevant information that was differentially sensitive to various forms of variability. The 

robustness of neural representations of tone category in a distributed fronto-temporoparietal 

network is associated with trial-by-trial decision-making parameters. These findings support a 
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hybrid model involving a representational core within the STG that operates dynamically within 

an extensive frontoparietal network to support the representation and categorization of linguistic 

pitch patterns.
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Categorization decision; Lexical tones; Neural decoding; Neural representation; Perceptual 
constancy; Speech categorization

1. Introduction

Categorization involves mapping continuous and highly variable sensory information into 

discrete behavioral classes. Speech perception is construed as a particularly challenging 

categorization problem (James, 1890; Diehl et al., 2004; Holt and Lotto, 2010; Liberman et 

al., 1967). Neural systems mediating speech perception are tasked with mapping continuous, 

variable, and noisy acoustic signals to discrete long-term stored representations of speech 

categories. The neural mechanisms underlying the representation and categorization of 

speech categories are unresolved and will be the focus of this study. We examine the neural 

regions that robustly represent speech category information in the face of various forms of 

sensory-perceptual variability. We then assess the extent to which the robustness of neural 

category representation relates to the trial-by-trial fluctuations of categorization decision, 

modeled by a single-trial evidence accumulation model. Our goal is to provide an integrative 

account of how the human brain extracts relevant speech category information from noisy 

and variable acoustic signals and accumulates this information in making efficient category 

decisions.

Auditory associative regions within the middle STG are hypothesized to be functionally-

specialized in representing familiar auditory categories, including speech (Arsenault and 

Buchsbaum, 2015; Chevillet et al., 2013; Desai et al., 2008; Feng et al., 2018; Formisano et 

al., 2008; Liebenthal et al., 2010; Xin et al., 2019; Yi et al., 2019). While most neural 

models attribute a key role for the STG in speech categorization, there is increasing evidence 

that speech category information is also present in the frontal and parietal regions (Cheung 

et al., 2016; Correia et al., 2015; Du et al., 2014; Evans and Davis, 2015; Myers et al., 2009; 

Raizada and Poldrack, 2007). An emerging hypothesis is that the STG may be a functionally 

specialized ‘core’ region that subserves speech representation and categorization in optimal 

listening environments; under less supportive (e.g., noisy or greater perceptual confusability) 

listening conditions, achieving perceptual constancy and categorization involve 

frontoparietal networks in addition to the STG (Alain et al., 2018; Alavash et al., 2019; Feng 

et al., 2018).

Current models have mostly focused on the neural substrates underlying the perception of 

segmental units (consonants and vowels) in speech (e.g., Du et al., 2014; Yi et al., 2019). In 

the current study, we assess the neural mechanisms underlying the representation and 

categorization of a critical speech feature in tone languages —lexical pitch patterns. In tone 

languages, pitch contours play a similar role as consonants and vowels in altering lexical or 

word meaning (Yip, 2002). Extracting pitch contours from the incoming speech stream and 
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mapping key pitch features to tone categories are critical for speech communication in a tone 

language. Prior neuroimaging studies have shown that lexical tone perception involves 

activation of a network across inferiorfrontal, precentral, inferior-parietal, and temporal 

cortices (Feng et al., 2018; Liang and Du, 2018; Si et al., 2017; Zatorre and Gandour, 2008). 

Regions within the bilateral STG and left inferior parietal lobule (IPL) have been proposed 

to be functionally specialized in the multidimensional representations of lexical tone 

categories (Feng et al., 2018). Inferior frontal regions contained limited information 

regarding tone categories but were more active for tones that are perceptually confusable 

(Feng et al., 2018). To our knowledge, no study has systematically examined the robustness 

of lexical-tone categories in the STG and frontoparietal regions across various forms of 

acoustic and perceptual variability. Further, the role of the neural representations within the 

distributed frontoparietal-STG regions in mediating lexical tone-category decision is 

unresolved.

Here we conducted functional magnetic resonance imaging (fMRI) while native Mandarin 

speakers listened to various acoustic exemplars of Mandarin lexical tones and categorized 

them based on their pitch patterns. The stimuli were designed to introduce various forms of 

acoustic variability: talker (male vs. female fundamental frequencies), a range of pitch 

saliency (from noisy to robust pitch patterns), and stimulus context (speech vs. non-speech 

exemplars). In the speech conditions, the pitch contours were produced by male and female 

talkers; in the non-speech conditions, the pitch contours were iterative ripple noise (IRN) 

analogs of the pitch contours produced by the talkers. IRN stimuli have been extensively 

used in auditory neuroscience research focused on pitch processing. These stimuli afforded 

us a unique opportunity in parametrically varying pitch perceptual salience. Increasing 

iteration steps systematically increases the temporal regularity that is generated by 

broadband noise. Higher iteration steps correspond to systematic increases in pitch saliency 

and robustness in the representation of lexical pitch contours at the level of the auditory sub-

cortex (Krishnan et al., 2010). The continuum of IRN steps (2–32) allowed us to examine 

the robustness of neural representations of tone categories in the face of varying pitch 

saliency. Importantly, while IRN stimuli faithfully retain pitch, they are less confounded by 

variability associated with waveform periodicity and segmental cues inherent to speech 

signals, thus providing us with a well-controlled non-speech context, devoid of lexical-

semantic confounds. In addition to examining univariate activations across the various 

conditions, we used multivariate representational similarity analysis (RSA) to examine the 

variability-tolerant core neural representation of tone category by controlling for variance 

across acoustic (talker variability and pitch salience) and contextual (speech vs. non-speech) 

factors. We predict that core regions mediating tone perceptual constancy would be highly 

sensitive to between-category changes while tolerant of different forms of within-category 

variability. We further examined to what extent the robustness of neural representations of 

tone category was influenced by the different forms of variability using machine-learning 

classification (MVPC) with various cross-validation procedures.

Finally, we examined to what extent the neural representations contribute to the 

categorization decision by examining the association between trial-by-trial robustness of 

neural category representations and decision-making components that are involved in the 

accumulation of sensory evidence in support of categorization decisions. Previous studies 
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have demonstrated that a distributed frontoparietal network subserves efficient decision-

making across different modalities and tasks (Busemeyer et al., 2019; Frank et al., 2015; 

Mulder et al., 2014; van Maanen et al., 2011). Most of these studies investigated the 

association between univariate activations (i.e., blood-oxygen-level-dependent [BOLD] 

responses) and decision-making parameters across trials or subjects. While some studies 

revealed positive correlations, others have found negative correlations even for the same 

decision parameter (Heekeren et al., 2004; Ho et al., 2009; Mulder et al., 2014; Noppeney et 

al., 2010). This inconsistency may be due to the differences in task used and the nature of 

the task-induced BOLD responses between studies. In contrast to prior studies, here we used 

a multivariate neural category index (NCI) that reflects the amount of category information 

represented in the neural patterns at the single-trial level to assess the extent to which the 

robustness of the representations relates to categorization decision. We test a hypothesis that 

the robustness of neural representations of tone category, as reflected by the NCI metric 

contributes to online categorization decisions. To estimate latent decision components, we 

employed a widely adopted, parsimonious response-choice model: the linear ballistic 

accumulator (LBA) (Brown and Heathcote, 2008). LBA provides a simple computational 

framework to tease apart different cognitive processes underlying decision-making. These 

cognitive processes are modeled with a fixed set of parameters (e.g., starting point and 

accumulation rate) that can serve as an explainable latent middle ground between the 

observed behavioral data (i.e., accuracy and reaction time) and its underlying neuronal 

processing (Forstmann et al., 2011; Mulder et al., 2014). We assessed the relationship 

between decision-making parameters and the NCI to examine how the neural representations 

relate to the latent categorization decision components. Using converging behavioral, 

computational modeling, and neuroimaging approaches, we examine the extent to which 

tone-category representation and decision are achieved by a functionally-specialized 

representational ‘core’ within the STG and a distributed frontoparietal network.

2. Material and methods

2.1. Participants

Native speakers of Mandarin (N = 31, 14 males; right-handed; age = 20.9 ± 2.3 [mean ± SD] 

years) were recruited from the neighboring communities of South China Normal University 

to participate in this study. We selected candidates who were originally from the middle and 

north of China because dialects in those areas (e.g., Beijing, Hebei, Liaoning, Tianjin, etc.) 

are very close to standard Mandarin. These dialects have the same tonal inventory as the 

Mandarin. We excluded candidates who can speak Cantonese, Teochew, and other southern 

Min dialects. All participants demonstrated high proficiency in spoken standard Mandarin 

(higher than second-class upper-level on a standardized spoken Mandarin proficiency test 

[]). Participants reported no neurological or hearing-related impairment and had normal or 

corrected to normal vision. All participants signed written informed consent approved by the 

Institutional Review Board of School of Psychology at South China Normal University and 

The Joint Chinese University of Hong Kong – New Territories East Cluster Clinical 

Research Ethics Committee. They were monetarily compensated for their participation.
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2.2. Stimulus construction

Two native Mandarin speakers (one female) produced speech sounds of three tones (i.e., T1: 

high-flat tone; T2: low-rising tone; T4: high-falling tone) in the syllable context of /di/ (see 

Fig. 1A for spectrograms of the sample stimuli). We used the three Mandarin tones to reduce 

the listener fatigue and confusion between the dipping tone (i.e., T3) and the other tones 

(Xie et al., 2018). The stimuli were recorded using 16-bit quantization and a 44.1-kHz 

sampling rate in a sound-treated booth. The speech stimuli were normalized to the same 

duration (300 ms) and intensity (72 dB). The non-speech iterated ripple noise (IRN) 

homologs of the three Mandarin tones were then synthesized with broadband noise using a 

delay-and-add procedure described by Swaminathan et al. (2008). The fundamental 

frequency (F0) of the IRN stimuli mimicked natural citation-form productions of the three 

tones (Swaminathan et al., 2008). The procedure is briefly described as follows. A 

polynomial was interpolated across five F0 values, equally spaced in time, of the estimated 

contour derived from the citation-form speech production. The resulting polynomial was 

used to create IRNs of the corresponding speech utterance with a different number of 

iterations (i.e., 2, 4, 8, 16, and 32). An increasing number of iterations is associated with 

increased pitch perceptual salience. Therefore, stimuli of six conditions (i.e., Speech, IRN 2, 

4, 8, 16, and 32) were constructed for the fMRI experiment where each condition consists of 

a female and a male version of the sounds.

2.3. Experimental procedure

We conducted functional magnetic resonance imaging (fMRI) while participants performed 

a tone categorization task. Participants were instructed to listen to sounds and categorize 

them into one of the three categories based on their pitch patterns by pressing a “1”, “2”, or 

“4” button, which corresponded to their left middle, index, and right middle fingers (or right 

middle, index, and left middle fingers), respectively. Therefore, fingers and hands were not 

only counterbalanced across participants but also within each participant (i.e., the pair of 

tone categories 1 and 2 shared the same hand but differed in fingers, while the pair of tone 

categories 1 and 4 shared the same finger but differed in hands). Participants practiced 

before scanning to establish the category-response mapping. Auditory stimuli were 

presented and controlled using E-Prime (Psychology Software Tools, Inc.; version 2.0). The 

stimulus presentation schema and fMRI acquisition procedure are described in Fig. 1B. To 

reduce the interference of scanner noise on auditory perception, a customized sparse-

sampling fMRI sequence was employed, during which stimuli were presented within an 

800-ms silent interval between each of the imaging acquisitions (Feng et al., 2018). The 

onset of each trial was synchronized to the onset of each image acquisition to ensure the 

stimuli were presented during the silence gap. To minimize the forward masking effect 

induced by the scanner noise, we presented a sound stimulus 100 ms after each of the 1700-

ms imaging acquisition. The stimulus set consists of a speech and five non-speech IRN 

conditions (i.e., Speech, IRN 2, 4, 8, 16, and 32). Each condition reflects F0 contours 

(original and modeled) from male and female talkers, resulting in 36 unique stimuli items 

(six conditions, two talkers [male and female], and three tones). In each block (i.e., an fMRI 

run or session), we presented the 36 stimuli four times in random order controlled by E-

prime. Participants categorized these stimuli across six blocks resulting in 864 trials per 

subject in total. Therefore, there were 24 repetitions per sound item during the fMRI 
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experiment. To efficiently estimate the hemodynamic response to each stimulus item, 40 null 

trials (i.e., silence trial) were randomly inserted between sound trials as jittered intertrial 

intervals in each block. The above randomization procedure ensures that the stimulus 

presentation order was different between blocks and participants, while the silent trials were 

randomly distributed within each block. For each trial, the participant’s categorization 

response and reaction time (RT) were recorded.

2.4. MRI data acquisition

All MRI data were acquired using a Siemens 3-Tesla Tim Trio MRI system with a 12-

channel head coil in the Brain Imaging Center at South China Normal University. Functional 

MRI images were acquired with the T2*-weighted gradient echo-planar imaging pulse 

sequence using the following parameters: repetition time (TR) = 2500 ms with 800-ms 

silence gap, TE = 30 ms, flip angle = 90°, 31 slices, field of view = 224 × 224 mm, in-plane 

resolution = 3.5 × 3.5 mm, slice thickness = 3.5 mm with 1.1 mm gap. T1-weighted high-

resolution structural images were acquired using a magnetization prepared rapid acquisition 

gradient echo sequence (176 slices, TR = 1900 ms, TE = 2.53 ms, flip angle = 9°, voxel size 

= 1 × 1 × 1 mm).

2.5. MRI data preprocessing

MRI data were preprocessed using SPM12 (Wellcome Department of Imaging 

Neuroscience; www.fil.ion.ucl.ac.uk/spm/). For univariate activation analysis, raw functional 

images were corrected for head movement using a least-squares approach and a six-

parameters (rigid body) spatial transformation (Friston et al., 1995). A two pass procedure 

was used to spatially register all the images to the mean of the images after the first 

realignment (i.e., the register to mean approach). The slice-time correction was not 

implemented. The high-resolution T1 image was then co-registered with the mean functional 

image (i.e., reference image) using the Normalized Mutual Information algorithm 

(Separation = [4 2]; Histogram Smoothing = [7 7]) (Studholme et al., 1999). The co-

registered T1 image was processed with the unified segmentation procedure (Ashburner and 

Friston, 2005). The deformation fields estimated in the segmentation procedure were used 

for normalization by converting the realigned functional images in native space to the 

Montreal Neurological Institute (MNI) space. The normalized functional images were 

resampled to 3 mm3 voxel size and smoothed with a Gaussian kernel of 6-mm full width at 

half maximum. For the multivariate pattern analysis, the preprocessing steps for the 

functional images included head movement correction and co-registration but without 

normalization and smoothing.

2.6. Univariate activation analysis

Univariate voxel-wise activation analysis was conducted with the general linear model 

(GLM) to identify brain regions that are commonly responsive to tone categorization across 

talkers (female vs. male), pitch salience (different IRN iterations), and stimulus contexts 

(speech vs. non-speech) and to examine brain responses that are modulated by the three 

factors. For the subject-level analysis, a GLM with a design matrix including 12 sound 

regressors of interest (i.e., two talkers by six stimulus conditions [Speech, IRN, 2, 4, 8, 16, 

and 32]) was constructed for each participant. Trials of incorrect or missing responses were 
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put into a controlled regressor. The silent trials were considered as a part of the model 

baseline and not modeled explicitly in the GLM. These regressors corresponding to the onset 

of each trial were convolved with the canonical hemodynamic response function. Low-

frequency drifts were removed by a temporal high-pass filter (cutoff at 128 s). The AR(1) 

approach was used for autocorrelation correction. The six parameters derived from head 

movement correction and the session mean were also added into the GLM model as 

nuisance regressors. The gray-matter image generated from the segmentation step was 

converted as a binary inclusive mask for each participant to restrict voxels of interest.

For the group-level analysis, an overall categorization-related brain activation map (i.e., all 

sounds vs. baseline) and four conjunctive brain maps were generated. The conjunctive maps 

were computed by using a conjunction analysis procedure to identify regions that 

demonstrated significant overlapping activations across talkers (talker-general regions), pitch 

salience (salience-general regions), stimulus contexts (context-general regions), and all 

forms of variability (variability-general regions). For example, to identify the talker-general 

regions, brain maps of female talker’s items and male talker’s items were generated 

separately with voxel-level P = 0.001. Overlapping regions that survived with a cluster-level 

threshold (family-wise error [FWE] rate = 0.05) were considered as talker-general 

categorization regions. In addition to the conjoint activations across these factors, activations 

modulated by the talker variability (male vs. female talkers), pitch salience, and stimulus 

context (speech vs. non-speech) were examined separately. Changes in activation as a 

function of pitch salience were assessed using parametric modulation analysis (described in 

the next section). Contrast images from the subject-level analysis were entered into the 

group-level one-sample t-test or repeated measures one-way analysis of variance (ANOVA). 

Brain maps were initially thresholded at voxel-level P = 0.001, and all reported brain areas 

were corrected at the cluster-level P = 0.05 using the FWE rate approach implemented in the 

SPM package.

2.7. Parametric modulation analysis in pitch salience

The relationship between the pitch salience (i.e., IRN iteration steps) and the level of brain 

activation was examined using the trial-by-trial parametric modulation analysis (Buchel et 

al., 1996). We aimed to identify brain regions that systematically vary with pitch salience. To 

this end, in the subject-level GLM analysis, we constructed a design matrix with a 

parametric modulation regressor in which the weights were coded as a linear function (i.e., 

−2, −1, 0, 1, 2) for IRN 2, 4, 8, 16, and 32 trials, respectively. Quadratic function (i.e., mean-

centered [2, 4, 8, 16, 32]) was used in a separate parametric analysis. A speech condition 

regressor, a button-press regressor, and six head movement parameters were included as 

nuisance regressors in the design matrix to control for the related effects. At the group-level 

analysis, a one-sample t-test was used to identify significant voxels that parametrically vary 

with pitch salience.

2.8. Multivariate pattern analysis (MVPA)

Firstly, to identify the core neural representations of tone category across different forms of 

variability (i.e., talker, pitch salience, and stimulus context), we used representational 

similarity analysis (RSA) (Kriegeskorte and Kievit, 2013; Kriegeskorte et al., 2008) while 
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controlling for the variance of acoustic, perceptual, and contextual variabilities. Secondly, to 

examine to what extent these factors influence the robustness of the representation, 

multivariate pattern classification (MVPC) analysis was used in the combination of different 

cross-validation (CV) procedures. The searchlight-based (Kriegeskorte et al., 2006) RSA 

and MVPC were conducted. Detailed methodological steps consisting of the construction of 

the RSA models, feature space (feature construction and extraction), and CV procedures are 

described in the next section.

2.9. Representational similarity analysis (RSA)

The RSA analysis was used to reveal the variability-tolerant neural representations of tone 

category by controlling for the variance of other acoustic and non-acoustic variables (i.e., 

variations in pitch height, pitch direction, pitch salience, talker, stimulus context, and motor 

response). Seven stimulus-derived and behavior-derived representational dissimilarity 

matrices (RDMs) were constructed according to discrete tone category, fundamental 

frequency (F0) height (i.e., pitch height), F0 slope (i.e., pitch direction), talker (i.e., female 

and male), stimulus context (i.e., speech and non-speech stimuli), stimulus condition (i.e., 

IRN 2, 4, 8, 16, 32 and speech conditions), and motor response (i.e., hands and fingers for 

button presses), respectively (see Fig. S1 in Supplementary Materials for graphical 

illustrations). The construction procedure of the RDMs has been described in previous 

studies (Feng et al., 2018). The procedure was briefly described below. The tone-category 

RDM was constructed based on the combinations of the three tones (i.e., 0 s for sound pairs 

of the same tone, 1 s for sound pairs of different tones). The stimulus-context, stimulus-

condition, and talker RDMs were constructed with the same procedure. To construct the F0-

height RDM, the standardized Euclidean distance was calculated between each pair of 

sounds according to their mean F0. The F0 slope was accessed by estimating a simple 

regression slope based on the F0 time-varying pattern of each sound using a linear fitting 

function in Mathlab (R2016a). The F0-slope RDM was created by calculating the 

differences in F0-slope estimates between each pair of sounds. The two F0 RDMs were 

normalized by scaling the distance or difference values between 0 (low dissimilarity, i.e., 

close in the distance) and 1 (high dissimilarity, i.e., far from each other in the distance). To 

create the motor-response RDM, we first constructed two vectors representing hands and 

fingers used for responses. We coded 1 s for the sounds using the left hand while coded 2 s 

for the sounds using the right hand. The same procedure was used to generate the finger 

vector (i.e., 1 s for the middle finger and 2 s for the index finger). We created the motor-

response RDM by estimating the weighted Euclidean distances between each pair of sounds 

based on the hand (weighted score = 1) and finger (weighted score = 0.5) vectors using the 

‘pdist’ function. The unweighted motor-response RDM was also created for comparison. A 

certain degree of correlation between these RDMs was found. Spearman’s rank correlations 

between the tone-category and F0-slope RDMs (r = 0.80), between the tone-category and 

(weighted) motor-response RDMs (r = 0.83), and between the F0-height and talker RDMs (r 
= 0.87) were relatively higher compared to that of other pairs of RDMs (see Fig. S1 for more 

details).

The searchlight-based RSA analyses were conducted for each subject on the functional 

images following realignment but without normalization or smoothing. Firstly, sound-
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induced item-based statistical brain activation maps were generated with the GLM approach 

for each subject for the RSA. The unsmoothed images in the subject’s native space were 

analyzed using a GLM with individual regressors for each item (i.e., collapsed the same item 

across repetitions within a block) to calculate single-item t-statistic maps for each block, 

while other items were pooled into a regressor of non-interest. This Least Squares Single 

(LSS) approach was designed to model brain activities for each item while controlling for 

the variance of other covariant items in the same block (Mumford et al., 2014, 2012). 

Specifically, for each sound item, a design matrix was constructed with a regressor of 

interest for that item; a regressor of non-interest consisted of other items, six head movement 

regressors, and a session mean regressor for each block individually. Therefore, 216 subject-

level GLM models (36 unique items per block; six blocks in total) were constructed and 

estimated for each subject. The t-statistic image was calculated for each item by contrasting 

the item regressor with the baseline and further used for the RSA and MVPC analyses. The 

t-statistic was used because it combines the effect size weighted by error variance; therefore 

t-statistic is less affected by highly variable item estimates than that of the beta estimation 

(Misaki et al., 2010).

Secondly, the searchlight algorithm (Kriegeskorte et al., 2006) implemented in the 

CoSMoMVPA toolbox (Oosterhof et al., 2016) was used to identify brain areas where their 

neural RDMs were correlated with the tone-category RDM. The searchlight analysis was 

restricted to broad brain regions of interest using a mask (see Fig. S2 for the brain mask, 

Supplementary Materials) generated by a meta-analysis from Neurosynth.org (http://

neurosynth.org/). We aimed to include all possible brain regions that relate to auditory and 

speech perception. Thus, we searched the Neurosynth topic dataset with keywords 

“auditory” and “perception”. The dataset consists of 400 topics extracted with Linear 

Discriminant Analysis (LDA) from the abstracts of all articles in the Neurosynth database as 

of July 2018. This automatic meta-analysis included 269 studies (Topic 180) with a list of 

highly related topic words, including auditory, perception, speech, non-speech, sound, 

processing, categorization, and so on. The resulting “auditory-perception” brain map 

includes distributed fronto-temporoparietal regions, consisting of the bilateral inferior frontal 

gyrus (IFG), insula, middle frontal gyrus (MFG), precentral gyrus (preCG), inferior parietal 

lobule (IPL), superior temporal gyrus (STG), superior temporal sulcus (STS), middle 

temporal gyrus (MTG), and supplementary motor areas (SMA). Activation clusters less than 

80 voxels (corresponding to the average searchlight sphere) in the brain mask (3 mm3 voxel 

size) were removed for the searchlight-based analyses.

For the searchlight-based RSA, at each voxel, sound-induced activation patterns (i.e., t 
statistic values) within each spherical searchlight (three-voxel-radius sphere) were extracted 

for all items to generate a neural representational dissimilarity matrix (nRDM) by 

calculating the dissimilarity (i.e., 1 - Pearson’s correlation) between each pair of items (i.e., 

a 36-by-36 matrix). Different spherical sizes (e.g., four-voxel-radius sphere) were also tested 

to ensure the RSA results were not significantly different between the size chosen. The tone-

category RDM was then correlated with the nRDM (both RDMs were first vectorized) for 

each spherical searchlight by using Spearman’s rank correlation. The correlation values were 

normalized using Fisher’s r-to-z transformation.
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For the partial RSA analysis, the unique contribution of the tone-category RDM in 

explaining the variance of the nRDM was examined by correlating the tone-category RDM 

with the nRDMs while controlling for the variances of other RDMs (i.e., F0 slope, F0 

height, talker, stimulus type, stimulus condition, and motor response) using the partial 

Spearman’s rank correlation. This analysis has been previously used to separate different 

contributing factors of the neural representations (Cichy et al., 2019; Feng et al., 2018; 

Kriegeskorte and Kievit, 2013). All the RDMs were first vectorized using the ‘squareform’ 

function. The rank partial correlation coefficients were calculated between the tone-category 

RDM and nRDMs while the other vectorized RDMs were controlled using the “partialcorr” 

function in MATLAB (R2016a). This partial RSA approach can reveal the neural 

representations of tone categories that are linearly independent of the experimenter-induced 

acoustic and contextual variabilities. For the group-level analysis, the individual RSA maps 

in the native space were first normalized to MNI space and then fed to a one-sample t-test 

against chance.

2.10. Multivariate pattern classification (MVPC) analysis

The searchlight-based MVPC of tone category was employed with different CV procedures 

to examine variability-tolerant neural representations of tone category and access the extent 

to which acoustic, perceptual, and contextual variables modulate the robustness of the neural 

representations of category information. We operationally define the variability-tolerant 

neural representation of tone category as significantly above-chance tone classification 

performances that emerge from multivoxel activation patterns across repetitions (i.e., cross-

block), acoustic variants (i.e., cross-talker and cross-IRN), and stimulus contexts (i.e., cross-

stimulus-type). Therefore, four leave-one-X-out (X denotes block, talker, IRN step, and 

stimulus context, respectively) CV procedures were used to establish classifier 

generalizability and estimate the robustness of variability-tolerant neural representation of 

tone category. The leave-one-block-out (i.e., cross-block) CV procedure was used to gain the 

overall effect of the neural representations of tone category, testing generalizability of the 

trained classifier across item repetitions (i.e., overall tone decoding performance). The leave-

one-talker-out (i.e., cross-talker) CV procedure was used to identify talker-general neural 

representations. Classifiers were trained on items from a male talker and subsequently tested 

on the items from a female talker, and vice versa. The leave-one-IRN-step-out (i.e., cross-

IRN) CV procedure was used to identify the neural representations that are tolerant of 

variability in perceptual pitch salience. The final approach was the leave-one-stimulus-

context-out (i.e., cross-stimulus-type) CV procedure, wherein the classifier was trained on 

data from the speech items and subsequently tested on the non-speech (IRN) items, and vice 

versa. Thus, only the tone-category information general across item variants (i.e., talker, 

pitch salience, or stimulus context, respectively) was informative to the classifier. For more 

rigorous MVPC analyses, we combined the cross-block CV procedure with each of the other 

three CV procedures (e.g., “cross-block&talker” CV: the trials for classifier training and 

testing are differed both in block and talker) to further demonstrate the extent to which these 

acoustic and contextual variabilities modulate the robustness of neural representations of 

tone-category respectively.
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For the searchlight MVPC analysis, a V × I × B matrix was generated for each spherical 

searchlight, where V referred to the number of voxels, I referred to the number of items and 

B referred to the number of blocks (e.g., 80 × 36 × 6). This matrix was entered into a linear 

support vector machine (SVM) classifier implemented in the LIBSVM toolbox (Chang and 

Lin, 2011) for training and testing with the CV procedures, respectively. The mean 

classification accuracy was calculated and mapped back to the voxel at the center of each 

sphere. The same classification procedure was conducted across all voxels of interest and 

generated classification accuracy maps for each subject. The classification accuracy maps 

were contrasted with chance accuracy maps that were generated by the same MVPC analysis 

with a permutation procedure, in which the tone category labels were shuffled independently 

for each subject. For the group-level analysis, the resulting MVPC maps were first 

normalized to the MNI space and then fed into a one-sample t-test. All group statistical 

maps from the multivariate analyses were thresholded at the voxel-level P = 0.001, with 

cluster-level FWE-corrected P = 0.05.

2.11. Model-based estimation of categorization decision variables

The Linear Ballistic Accumulator (LBA) model (Brown and Heathcote, 2008; Donkin et al., 

2011) was employed to examine decision-making components underlying tone 

categorization that is not directly observable with raw reaction times (RTs) or accuracies and 

to examine whether the robustness of the neural representations of tone category relates to 

the trial-by-trial fluctuations of the decision parameters.

For each categorization, the LBA model defines three processing components (see Fig. 5A 

for schematic illustration), including sensory (yellow), decision (white), and motor (gray) 

processes. The stimulus initially undergoes sensory processing and the tone-category 

information (i.e., evidence) is accumulated toward one of the possible stimulus-response 

mappings until the response threshold (b) is reached. In the LBA modeling, the decision 

(reaction) time of a choice is modeled as an evidence accumulation process. The 

accumulation process terminates when the amount of evidence accumulated in support of 

given a choice (e.g., the low-rising tone) reaches the response threshold before other 

competing choices (e.g., the high-falling tone). The LBA has four parameters that are linked 

to categorization processes: the initial amount of evidence in support of a choice selection 

(i.e., starting point [SP]); the amount of evidence needed from the SP to reach the response 

threshold (i.e., response caution [b-SP]); the rate at which evidence accumulates (i.e., 

accumulation or drift rate [AR]); and the processing time t0 spent in non-decisional 

processing (e.g., sensory encoding and motor response). The SP and AR characterize two 

critical aspects of the decision-making process reflecting the amount of category information 

and information accumulation processing, which we hypothesized to be associated with the 

multivoxel representations of tone category information (Fig. 5A). Therefore, we focused on 

the two decision components in the current study, corresponding to the parameter A and v in 

the model. The LBA model assumes the SP of each accumulator has a uniform distribution 

between 0 and an upper limit A. The ARs are normally distributed across trials with a mean 

v and variance sv. In Fig. 5A, the two red lines denote the evidence accumulation process at 

different rates. The red dash line denotes a higher AR than the solid line, while they have 

different SP (green lines). A higher SP (the green dash line in Fig. 5A) is typically 
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associated with more initial evidence for a particular choice selection and a more confident -

less conservative- decision strategy. An increase in SP could result in more (correct) choices 

are made for the biased alternative and faster responses. In contrast, a lower SP (the green 

solid line) results in that accumulators are required to accumulate more evidence for a 

decision, which could require relatively longer decision times and lower AR. If SP stays 

constant, higher ARs are typically associated with more accurate responses, as a greater 

amount of evidence informs decisions (Brown and Heathcote, 2008; Mulder et al., 2014). 

Therefore, a higher AR reflects more efficient in evidence accumulation for decision-

making.

We fit an LBA model to each subject’s behavioral data (both RTs and accuracy) using the R 

library glba (Ingmar Visser, 2015). Trials with no response or RTs shorter than 200 ms or RT 

higher than 2.5 SD of the mean were removed from the modeling because these trials are not 

likely related to decisional processes. The mean removal rate was 8.90% (SD = 6.13) of total 

trials across subjects. We estimated the four LBA parameters (A, v, b, and t0) with the 

maximum likelihood estimation approach (van Maanen et al., 2011). The parameters were 

free to vary across the six stimulus conditions and the two talkers (with initial values of the 

parameters: v = 0.5, A = 0.1, b = 0.3, and t0 = 0.1). The sv of the accumulation rate was 

fixed to 0.2 to improve model fitting. To assess the goodness-of-fit of the model, we 

calculated the optimized log-likelihood and correlations between the model-predicted (i.e., 

simulated) behavioral performance and the observed behavioral performances. The model-

predicted and the observed behavioral data were highly correlated for both ACC (r = 0.97, P 
< 0.001) and RT (r = 0.91, P < 0.001) across variability instances (Fig. 2B). These results 

indicate that the models accounted for a large proportion of the variance of interest. In 

addition, to test the model generalization ability across speech and non-speech items, we fit 

LBA models with speech and non-speech data separately and compared the model-predicted 

RTs of the non-speech model with the observed RTs of the speech condition, and vice versa. 

Significant correlations between predicted and observed RTs across contexts would suggest 

good generalizability of the estimated model to novel stimulus contexts. We confirmed a 

robust generalizability of the models across contexts (mean r = 0.82, P < 0.001).

In addition to the standard LBA modeling described above, we used a maximum likelihood 

approach to (re)estimate the LBA parameters at the single-trial level (single-trial LBA, 

STLBA) (van Maanen et al., 2011) for further neural-behavioral correlation analysis. Our 

goal here was to examine to what extent the robustness of multivoxel representations of 

tone-category information was associated with categorization decision processes. For the 

estimation of single-trial LBA parameters, the subject-level LBA parameters were used as 

initial input parameters to evaluate the parameter values of vi and ai (i denotes trial i) for 

each trial following the criteria and equations described in van Maanen et al. (2011). We 

used the single-trial SP (ai) and AR (vi) as two decision parameters of interest for the neural-

behavioral correlation analysis described in the next section.

2.12. Trial-by-trial model-based neural-behavioral correlation analysis

We examined to what extent the robustness of the neural representations of tone category 

relates to decision components by calculating the inter-trial correlations between a neural 
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category index (NCI) and the two decision parameters (i.e., SP and AR). The NCI is a 

multivariate neural index measuring the robustness of tone category representation. We 

quantified the NCI by estimating the difference in neural-pattern dissimilarity between 

within-category and between-category trial pairs (see Fig. 5B for a graphical illustration). 

Similar measures have been created and used in prior studies (e.g., phoneme or tone-

category selectivity) (Du et al., 2014; Feng et al., 2018). The NCI reflects the neural 

sensitivity in differentiating tone categories based on their activation patterns. To calculate 

single-trial NCIs, we modeled single-trial brain activities by using the LSS approach 

described above. Trials with no response and RTs lower than 200 ms or RTs higher than 2.5 

SD of the mean were removed from the LSS estimation and the neural-behavioral 

correlation analysis. We constructed an nRDM using single-trial activation patterns for each 

block and searchlight sphere individually. We then computed the NCI for each trial 

according to the following equation:

NCIi = 1
N ∑

i ≠ j
BCDij − 1

n ∑
i ≠ k

W CDik

The n denotes the number of trials that belong to the same category as trial i (i.e., within-

category trials), and the N denotes the number of trials that belong to different categories 

(i.e., between-category trials). BCDij refers to the between-category neural pattern 

dissimilarity between trial i and j, while WCDik refers to the within-category neural pattern 

dissimilarity between trial i and k. Therefore, NCIi is a weighted summarized neural 

representation value of tone category for the trial i, where a higher NCI reflects a greater 

tone-category selectivity. We calculated the NCI for each trial and z-transformed the NCI 

values for each block separately. The NCIs derived from a specific brain area were then 

correlated with the single-trial decision parameters across blocks for each subject. The NCI-

decision-parameters correlation analysis was conducted with the searchlight approach to 

identify regions that their local representations contribute significantly to categorization 

decision processes. Therefore, we used the same brain mask as the MVPA to restrict the 

searchlight areas. Finally, a group-level t-test was used to test whether the neural-behavioral 

correlations were significantly higher than chance.

3. Results

3.1. Behavioral categorization performance

Participants were highly accurate in identifying native Mandarin tone categories across 

talkers, pitch salience, and stimulus contexts (mean accuracy [ACC] = 96.5%) (Fig. 1C). 

Behavioral accuracies were impressively resistant to the various forms of variability (talker, 

iteration steps, stimulus types). We did not find a significant difference between female and 

male talker items (ACC: t(30) = 1.23, P = 0.228; reaction time [RT]: t(30) = 1.59, P = 0.122). 

Examining effect of stimulus context, we did not find any significant difference in ACC or 

RT between the speech and non-speech condition (collapsed across IRNs) (ACC: t(30) = 

0.27, P = 0.783; RT: t(30) = 0.93, P = 0.361). Similarly, we did not find a main effect of pitch 

salience in terms of ACC (F(4,30) = 0.75, P = 0.554). However, we found a significant main 

effect of pitch salience in RT (F(4,30) = 6.96, P < 0.001). Planned posthoc pairwise 
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comparisons showed that participants were slower in responding to the IRN2 condition 

relative to the other IRN conditions (Ps < 0.05), while the comparisons for other pairs of 

IRN conditions in RT were not significant (all Ps > 0.1). We further conducted linear mixed-

effects modeling with the talker (female vs. male) and stimulus conditions (i.e., IRN2, 4, 8, 

16, 32 and speech) as two fixed-effect variables and the subject, subject-by-talker, and 

subject-by-condition as random-effects variables (the coefficients were set to be summed to 

0) to validate the above main effects and examine the interaction effects between the factors. 

We found a significant main effect of stimulus condition in RT (F(5,1080) = 3.19, P = 0.007) 

but not in ACC (F(5,1080) = 0.357, P = 0.878). We did not find any significant main effect of 

talker for ACC (F(1,1080) = 0.672, P = 0.412) or RT (F(1,1080) = 2.09, P = 0.148). No talker-

by-stimulus condition interaction effect was found. In summary, the talker variability, pitch 

salience (iteration step), and stimulus context did not significantly modulate the tone 

categorization accuracy, but subtle effects were evidenced in the RT.

3.2. The categorization decision processing is similar across talkers, pitch salience, and 
stimulus contexts

We applied the LBA model (Brown and Heathcote, 2008; Donkin et al., 2011) to examine 

the extent to which categorization decision components (e.g., starting point [SP] and 

accumulation rate [AR]) are modulated by variations in talker, pitch salience and stimulus 

context. LBA enables us to isolate the decision components from the non-decisional 

sensory-motor processes. For the raw RT responses, we found that the RT distributions were 

substantially similar across talkers, IRN steps, and stimulus contexts (Fig. 2A). The model 

accounted for a substantial proportion of the behavioral response variance, which evidenced 

by a robust model predictive performance, shown by strong inter-individual correlations 

between the model-predicted behavioral performance (i.e., RT and ACC) and the observed 

performance across talkers, IRN steps, and stimulus contexts (Fig. 2B; mean r = 0.91 for RT 

and r = 0.97 for ACC). Note that the goodness-of-fit of the model fittings (i.e., prediction) 

were similar across takers, IRN steps, and stimulus contexts (shown in Fig. 2B, regression 

lines with different colors and lightnesses). A linear mixed-effects modeling analysis further 

revealed that the SP and AR, two critical model parameters reflecting two decision 

components, were not significantly modulated by talkers, IRN steps, or stimulus contexts 

(Ps > 0.1) (Fig. 2C&D). No significant main effect of the variability factors was found for 

the other two model parameters (i.e., response threshold and non-decision time) (Fig. 

2E&F). Note that there was a positive correlation between SP and AR across subjects and 

stimulus conditions (r = 0.46, P < 0.001).

3.3. Variability-tolerant multivariate neural representations of tone category

We used a multivariate pattern analysis approach, RSA, to identify brain regions 

representing the tone-category information that was tolerant of different forms of inter-item 

variability. We calculated the partial correlations between the tone-category representational 

dissimilarity matrix (RDM) to the neural RDMs (nRDMs) derived from the activation 

patterns while controlling for the variance of all other relevant factors (i.e., RDMs). We 

constructed a binary tone-category RDM and another six RDMs according to the distances 

or differences in fundamental frequency (F0) slope, mean F0 height, stimuli type or context 

(speech vs. non-speech), stimulus condiction (Speech, IRN 2, 4, 8, 16, and 32), talker, and 
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motor response (see Fig. S1 for the RDM graphs). With the standard RSA, we found that the 

tone-category RDM model was significantly correlated with the local nRDMs in a 

distributed fronto-temporoparietal network, including the left inferior frontal gyrus (IFG), 

left precentral gyrus (preCG), bilateral inferior parietal lobule (IPL) and bilateral STG/STS 

(Fig. 3A). This RSA brain pattern is visually dominant in the left STG and IPL. With the 

partial RSA approach, we identified significant partial correlations of tone-category RDM in 

the left middle STG/STS (LmSTG/STS; Peak MNI coordinates: x = −51, y = −19, z = 2; 

peak t-value = 4.84; cluster size = 93 voxels) exclusively when the variances of the other six 

RDMs were controlled for (Fig. 3B). These results demonstrate a critical role for the 

LmSTG/STS in representing tone-category information irrespective of all potential sources 

of experimental-induced inter-item variability. Meanwhile, these results also indicate that 

different forms of variability modulated the robustness of neural representations of tone-

category prominently in the bilateral IFG, preCG, IPL, and right STG. Further control 

analyses demonstrated that the neural representations of tone categories in these fronto-

temporoparietal regions were primarily driven by acoustic and contextual factors instead of 

motor response differences (see Supplementary control analyses and results section and Fig. 

S4; Supplementary Materials).

3.4. Neural representations of tone category are differentially sensitive to various forms 
of variability

We used MVPC with different cross-validation (CV) procedures to examine the extent to 

which the fronto-temporoparietal tone-category representations identified by the RSA were 

modulated by the acoustic and contextual factors. Tone categories were classified (T1 vs. T2 

vs. T4) significantly above chance from local activation patterns in the bilateral STG, IFG, 

IPL, and the left preCG with leave-one-block-out (i.e., “cross-block”) CV procedure (Fig. 

4A). Brain regions demonstrating greater tone differentiation were relatively dominant in the 

left hemisphere compared to the right counterparts. This result demonstrates the overall 

tone-decoding brain pattern, which is similar to the RSA correlation pattern with the tone-

category RDM shown in Fig. 3A. To identify neural representations of tone categories that 

were general across talkers, we conducted another searchlight classification analysis with the 

cross-talker CV procedure, where the support vector classification model was trained and 

tested on different talker items. Thus, tone-category information shared across talkers were 

captured by this CV procedure and reflects on the classification accuracy. We found that the 

talker-general (or talker-invariant) tone-decoding maps were similar to the one identified by 

the cross-block CV approach but with less robust in extent, especially in the bilateral IFG 

and preCG (Fig. 4B; also see Fig. S6B for results using the “cross-block&talker” CV 

procedure). To examine the neural representations that were resistant to the variability of 

pitch salience, we conducted a searchlight classification analysis with the cross-IRN CV 

procedure for the IRN items exclusively. We found that the searchlight tone-decoding brain 

pattern was similar to the one derived from the cross-talker CV approach in the 

temporoparietal regions but less robust in the bilateral frontal areas (e.g., the IFG) (Fig. 4C; 

also see Fig. S6C for similar RSA patterns using the “cross-block&IRN” CV procedure). 

Finally, we identified significantly above-chance tone-category information only in the 

bilateral middle portion of STG (mSTG) and the LIPL with the cross-stimulus-type CV 

procedure (Fig. 4D; also see Fig. S6D for similar RSA patterns using the “cross-
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block&stimulus-type” CV procedure). The only similarity between speech and IRN stimuli 

is restricted to the commonalities in time-varying F0 (pitch) patterns. Therefore, these cross-

stimulus-type tone-decoding results indicate that the local activation patterns in the bilateral 

mSTG and LIPL represent neural ensembles that are finely tuned to representing dynamic 

pitch patterns. In summary, these results are not only converged with the partial RSA results 

but also demonstrate that the neural representations of tone category, especially in the 

bilateral frontal regions are differentially sensitive to different types of variability.

With the univariate voxel-wise conjunction activation analysis, we revealed common 

categorization-related activations in the inferior frontal, precentral, inferior parietal, and 

temporal areas across talkers (Fig. 4F, talker conj. map), which was similar to the overall 

categorization activations (Fig. 4E). Similar brain activation patterns, but with less extent in 

frontal and precentral areas, were found to be tolerant of variability in pitch salience (Fig. 

4G, Pitch-salience conj. map). Importantly, we identified brain activations that were tolerant 

of all the three forms of variability (Fig. 4H, common activations across all conditions), 

including bilateral STG, left IPL, and bilateral supplementary motor areas (SMA). In 

addition, we found that the levels of univariate activation across fronto-temporoparietal 

regions were differentially modulated by the three factors. No region showed significant 

talker modulation effect (i.e., female vs. male; Fig. S3A, Supplementary Materials). In 

contrast, significant stimulus-context modulation effects were found in the bilateral fronto-

temporoparietal areas (see Fig. S3B). The speech items elicited greater activations compared 

to the non-speech items in the bilateral IFG, STG, posterior middle temporal gyrus (pMTG), 

left IPL, anterior cingulate cortex, and the left insula. For the pitch-salience modulation 

effect, parametric modulation analysis with the linear modulation function revealed two 

brain areas showed significant effects (Fig. S3C). The left precentral gyrus (LpreCG) and the 

left anterior inferior parietal lobe (LIPLa) exhibited a linear effect of reduced activations 

with increasing IRN steps (Fig. S3D). We did not find any region shown a significant 

quadratic modulation effect.

3.5. The neural representations of tone category in a distributed fronto-temporoparietal 
network contribute to categorization decision

To investigate to what extent the neural representations of tone category contribute to 

categorization decisions, we correlated the neural representations (i.e., NCI) with the two 

LBA parameters (i.e., SP and AR) separately. That is, we examined how trial-by-trial 

fluctuations in the robustness of neural representations of tone category related to the 

fluctuations in categorization decision. We conducted the NCI-SP and NCI-AR correlation 

analyses with the searchlight approach (see Fig. 5B). For the NCI-SP correlation, we found 

significant positive correlations (voxel-level P < 0.001, FWE-corrected P < 0.05) in the 

bilateral IFG (including the orbital and opercular part of IFG), left preCG, bilateral IPL, and 

posterior and anterior STG (Fig. 5C; also see Fig. S5A for the NCI-SP correlation results 

after controlling for the motor responses; Supplementary Materials), which indicate that 

more robust tone-category representations in these regions were associated with more initial 

evidence (information) supporting choice selection during online categorization decision. 

This NCI-SP network was partially overlapped with the variability-tolerant LmSTG/STS in 

the superior temporal cortex with a less conservative threshold (voxel-level P = 0.005; 31 
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voxels overlapped). Similarly, we identified a distributed fronto-temporoparietal network 

that showed significant positive NCI-AR correlations, including the left IFG (opercular), 

right IFG (orbital, triangular, and opercular parts), left preCG, bilateral IPL, and bilateral 

anterior-mid STG/STS (Fig. 5D; also see Fig. S5B for the NCI-AR correlation results after 

controlling for the motor responses; Supplementary Materials). This NCI-AR network was 

also partially overlapped with the variability-tolerant LmSTG/STS in the temporal cortex 

with a less conservative threshold (voxel-level P = 0.005; 76 voxels overlapped). We did not 

find any region that showed significant negative NCI-SP or NCI-AR correlation. These 

findings together demonstrated that more robust tone-category representations in the fronto-

temporoparietal regions are associated with higher efficiency in categorization decisions.

4. Discussion

We assessed the neural systems underlying representation and categorization of a critical 

feature in tone languages: lexical pitch patterns. Our behavioral results demonstrate that 

native listeners are highly adept at tone categorization. The ability to categorize 

linguistically-relevant pitches is highly tolerant of various forms of variability. Neural 

activation patterns within the left mid-STG region are highly sensitive to tone-category 

changes while resistant to acoustic and contextual variabilities. A distributed frontoparietal 

representational network is differentially and dynamically involved in the face of different 

forms of variability. On a single-trial level, the robustness of neural category representations 

within the distributed fronto-temporoparietal network is strongly associated with the 

efficiency of categorization decision processes. Our findings point to a specialized, 

variability-resistant representational core within the left STG and a distributed frontoparietal 

network that dynamically supports efficient tone-category representation and decision in 

native listeners.

4.1. Variability-tolerant representation of lexical tones in the left middle STG

Multivariate pattern analyses revealed that local activation patterns in the LmSTG/STS 

represent tone categories with high tolerance to different forms of variability. The partial 

RSA enables us to identify the core tone-category representation areas by controlling for the 

variance of all other acoustic and non-acoustic factors. Importantly, this approach revealed 

that only the local activation patterns in the LmSTG/STS were highly sensitive to between-

category changes while tolerant of within-category inter-item variabilities induced by 

acoustic and contextual factors. This key property of perceptual constancy reflecting in the 

activation patterns demonstrates that the LmSTG/STS plays a key role as a core region in 

mediating tone perceptual constancy. The current findings are consistent with previous 

findings that the middle STG is a critical node along the ventral auditory stream involved in 

representing abstract category information (Desai et al., 2008; Liebenthal et al., 2010) that 

are tolerant of acoustic variabilities (Feng et al., 2018). Response properties in the middle-

anterior STG show a greater propensity towards sustained neuronal responses rather than 

onset sensitivity (Hamilton et al., 2018). This functional specialization in the middle-anterior 

STG may be crucial for representing longer-duration suprasegmental information compared 

to segmental units representing in more posterior sections (Feng et al., 2018). These findings 

suggest that the local activation patterns in the LmSTG/STS may be important in 
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representing abstract-level native lexical tone categories while resistant to various forms of 

variability induced by the current experiment. It is worth noting that other acoustic factors 

(e.g., nonlinear changes in F0) and contextual factors (e.g., task demands) unaccounted for 

in the present setting may mediate the robustness of the tone-category representations in the 

LmSTG/STS. Further studies are needed to assess the extent to which these factors interact 

with each other in mediating speech perception and the formation of the neural 

representations.

In the current study, we generated well-controlled non-speech analogs of lexical tone-

category-like pitch patterns and manipulated variations in talker, pitch salience, and stimulus 

context within the same experiment. While the neural representations in the LmSTG/STS 

are tolerant of these variations, the robustness of representations in the dorsal fronto-motor 

stream is differentially modulated by the three factors. Among the three types of variability, 

stimulus context variability (speech vs. non-speech stimuli) modulated most the robustness 

of the neural representations of tone category in the bilateral frontal and precentral regions 

revealed by both univariate activation and multivariate classification analyses. The left 

inferior frontal and precentral areas, bilateral primary auditory regions and STG vary in their 

sensitivity to speech relative to non-speech stimuli (e.g., Binder 2001). Our univariate 

activation results corroborate these findings (see Fig. S3B, Supplementary Materials). 

However, prior neural and behavioral studies have also shown that processing of non-speech 

is similar to that of speech stimuli when they share critical temporal acoustic properties 

(Leech et al., 2009; Miller et al., 1976; Pisoni, 1977; Stevens and Klatt, 1974). Consistent 

with these findings, our univariate conjunction and multivariate classification analyses 

demonstrated that the left mSTG/STS, IPL, and right STG robustly represented tone 

categories irrespective of stimulus context. These findings suggest that these temporoparietal 

regions are highly sensitive to changes to pitch features that distinguish lexical-relevant tone 

categories while representations in the dorsal fronto-motor regions are more vulnerable to 

various forms of variability.

4.2. Multivariate neural representations of tone category dynamically contribute to 
categorization decision

One of the aims of this study is to examine the extent to which the multivariate neural 

representations of tone category contribute to categorization decision processes. In our 

decision modeling, the starting point (SP) reflects the amount of initial evidence for choice 

selection after the sensory-processing component, while accumulation rate (AR) reflects the 

efficiency in the evidence accumulation process for decision-making. Higher SP is typically 

associated with more prior information related to the task-relevant decision, which results in 

more confident (less conservative) choice selection strategies (Brown and Heathcote, 2008). 

We found significantly positive correlations between the neural category index (NCI) and SP 

across inferior frontal, parietal, and temporal regions (dominant in the bilateral frontoparietal 

network). These NCI-SP associations remained after controlling for the motor-response 

differences between categories within participants (Fig. S5A). This result suggests that the 

robustness of tone-category representations in the network is associated with the amount of 

initial category information for choice selection in category decision instead of motor 

processing. Previous behavioral decision-making studies have demonstrated that when the 
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task becomes more challenging and subjects are instructed to produce fast responses, 

reaction time is typically reduced at the expense of accuracy (i.e., speed-accuracy tradeoffs) 

(Brown and Heathcote, 2008; Forstmann et al., 2010). In this case, lower SP typically results 

in less confident and incorrect choice behavior because of less prior evidence informing 

decisions. When the task is not difficult or subjects are not instructed to prioritize speed over 

accuracy, higher SP is typically associated with more confident -less conservative- decisions. 

Incorporating these prior behavioral findings, the strong positive NCI-SP correlations in the 

fronto-temporoparietal regions suggest a potential link between the more robust neural 

representations and more confident tone categorization decision-making processes. 

Moreover, the NCI-SP associations were mainly found in the bilateral IFG, left preCG, 

bilateral IPL, posterior and anterior STG, with minimal overlap with the variability-tolerant 

LmSTG/STS region. These results altogether suggest that the fronto-temporoparietal NCI-

SP correlation regions may play an important role in utilizing the amount of category 

representations for categorization decision-making, complementing the role of the ‘core’ 

LmSTG/STS. The dynamic interplay between the core and the extended frontoparietal 

regions may be crucial for efficient tone perception and categorization decision-making 

under high-variability conditions.

In addition, we observed strong NCI-accumulation rate (AR) associations in the fronto-

temporoparietal areas, especially the bilateral temporoparietal regions, which indicates the 

multi-function of these regions in tone-category representation and categorization decision. 

The NCI-AR associations indicate that more robust neural representations of tone category 

were associated with higher rates in evidence accumulation (i.e., higher efficiency) for 

categorization decisions. These results support our prediction that trial-by-trial fluctuations 

in the robustness of neural representations of tone category contribute to the fluctuations in 

the efficiency of evidence accumulation for categorization decisions. We posit that trial-by-

trial acoustic and contextual variations of sounds and/or other factors such as attention and 

consciousness dynamically modulate the robustness of the neural representations which 

impacts both initial evidence (i.e., SP) and the efficiency of evidence accumulation for 

perceptual decision. Across different decision-related cognitive models, evidence 

accumulation is a common and important latent process for decision-making (Mulder et al., 

2014). Decisions are made based on the amount of accumulating perceptual evidence. 

Higher AR is usually associated with more robust evidence, which results in more accurate 

and faster responses. More robust neural representations of tone category may provide 

sharper category distinction, which could more efficiently guide the selection of the correct 

category response while inhibiting or rejecting incorrect responses. Importantly, brain areas 

demonstrating significant NCI-AR correlations included a portion of the core category 

representation in the left mSTG/STS as well as a distributed frontoparietal network 

involving the bilateral ventrolateral prefrontal cortex (VLPFC) (e.g., IFG), preCG, IPL, 

anterior and posterior STG. Prior studies in animal models have demonstrated a high degree 

of category selectivity within the VLPFC (Rauschecker and Scott, 2009; Romanski et al., 

2005). The VLPFC, preCG, IPL, and STG have been identified as important nodes of a 

distributed speech-motor system and sensorimotor interface (Hickok and Poeppel, 2007; 

Liebenthal et al., 2013). These systems are hypothesized to constrain speech perception by 

generating internal models involving an articulatory code (IFG) and matching the internal 
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models with the incoming auditory signals via a sensorimotor interface (IPL) (Du et al., 

2014). Accumulating linguistically relevant category-related representations in these regions 

may further facilitate optimal speech categorization decisions.

It is worth noting that there are overlaps in the frontoparietal regions between the NCI-SP 

and NCI-AR correlations, which may suggest that the SP and AR have similar sources in 

neural representations in tone categorization decision. Conceptually, the LBA is an 

evidence-accumulation-based decision-making model where the SP and AR parameters are 

linked with each other. The SP refers to the initial amount of evidence and the AR refers to 

the rate at which evidence accumulates. In the model, they are two intercorrelated 

parameters that both contribute to evidence accumulation. A lower SP results in that 

accumulators are required to accumulate more evidence, which could require relatively 

longer decision times and lower AR (see Fig. 5A). The correlations between AR and SP 

have been commonly found in previous studies (see Mulder et al., 2014 for a review). 

Consistent with the model description and previous observations, we found that the AR and 

SP parameters are significantly correlated with each other (r = 0.46, P < 0.001). Therefore, 

partially overlaps in neural category representations were expected due to the theoretical 

interrelation and the statistical correlation between AR and SP parameters. This is also 

consistent with a previous meta-analysis that the univariate activation correlations of AR and 

SP have common regions in the bilateral frontal and parietal regions (Mulder et al., 2014). 

Further studies need to examine whether the neural correlates of SP and AR change 

differently according to the demand and nature of decision tasks.

4.3. Dynamic network mechanism subserves lexical-tone representation and 
categorization

We demonstrate that the human brain utilizes a flexible and dynamic mechanism to achieve 

perceptual constancy and efficient categorization of lexical tones. Previous studies show that 

the frontoparietal regions are associated with executive control processes, such as inhibition 

and selection (Braver, 2012; Braver and Barch, 2006). The LBA decision parameters have 

been associated with BOLD activities in this frontoparietal network (Mulder et al., 2014; van 

Maanen et al., 2011). Moreover, previous studies have demonstrated that the frontoparietal 

regions are dynamically involved when the participants categorize confusable lexical tones 

(Feng et al., 2018), undertake a difficult linguistic or non-linguistic task (Cocchi et al., 2013; 

Waskom et al., 2014), effortfully process a non-native language (Abutalebi and Green, 2008; 

Feng et al., 2015), or switch between tasks (Cole et al., 2013). Therefore, the differential 

representations and dynamical representation-decision relationships found in the 

frontoparietal network suggest that additional executive processes (e.g., inhibition and 

attention selection) may be recruited when facing challenging perception situations (e.g., in 

a noisy and confusable context).

Prior work has examined the neural circuitry underlying auditory categorization behavior 

under various degrees of variability (Arsenault and Buchsbaum, 2015; Binder et al., 2004; 

Bizley and Cohen, 2013; Noppeney et al., 2010; Tsunada et al., 2016; Xin et al., 2019; Yi et 

al., 2019). Variability arises due to perceptual noise induced by various factors (e.g., talker, 

listening context, and/or listeners’ encoding of the sensory signal) (Mattys et al., 2012), 

Feng et al. Page 20

Neuroimage. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which induce challenges to the auditory perceptual systems. While some studies advocate a 

critical role for sparse units in the STG in driving auditory decisions (Tsunada et al., 2016; 

Yi et al., 2019), others contextualize the STG within a more extensive fronto-

temporoparietal network (Russ et al., 2007, 2008) in resolving variability and driving 

categorization. We posit that dynamic interactions between a representational core and an 

extended executive network are an effective neural mechanistic solution to increase accuracy 

and efficiency in categorization decisions under different forms of acoustic and perceptual 

variability. Consistent with this viewpoint, ensembles within the bilateral STG and inferior 

parietal cortex are tolerant of talker variability and contextual variables (i.e., segmental 

contexts and task demands) (Feng et al., 2018) but are susceptible to perceptual noise (Du et 

al., 2014, 2016). In contrast to temporal regions, representations of speech category within 

the dorsal fronto-motor network are more resistant to noise (Du et al., 2014, 2016) but may 

be sensitive to the talker and contextual variables (Feng et al., 2018, 2019; Myers et al., 

2009; Salvata et al., 2012). Our findings in lexical-tone representation and categorization 

extended these previous findings and further demonstrated that the perceptual relevance of 

the fronto-temporoparietal representations of speech category is dynamically contributing to 

different levels of perceptual constancy and online categorization decision. Increased 

robustness of neural representations is dynamically associated with increased efficiency in 

categorization decisions.

It is worth considering the extent to which the dynamic representation mechanism identified 

in the fronto-temporoparietal network can be generalized to other scenarios or tasks. In the 

current study, participants performed an explicit categorization task that requires attention 

and executive-control-related decision processes. Listeners are unlikely to engage in this 

kind of explicit metalinguistic task during ecological speech processing. Nevertheless, in 

natural speech perception and daily communication, listeners often engage in various 

challenging listening situations (e.g., low signal-to-noise ratio [e.g., noisy environments], the 

high degree of talker variability [i.e., listening to multiple talkers], degraded speech, and 

ambiguous or complex linguistic contexts, etc.). Previous neuroimaging studies have shown 

that speech perception in challenging contexts additionally recruits a fronto-temporoparietal 

network while different regions within the network are differentially sensitive to various 

sources of variability as well as different experimental and task settings (Alain et al., 2018; 

Alho et al., 2016; Bonte et al., 2014; Du et al., 2014; Evans and Davis, 2015; Feng et al., 

2018; Hickok and Poeppel, 2007). Therefore, the dynamic representational and decisional 

mechanisms found in the fronto-temporoparietal network in response to various forms of 

variability may be operational during speech processing. Explicit processing (e.g., 

categorization task) may enhance the engagement of this network. Future studies need to test 

the generalization of the current findings in ecologically valid conditions.

Conclusion

We show that native listeners are highly proficient at categorizing lexical tones in Mandarin 

Chinese. Efficient categorization is associated with the robustness of the representation in a 

distributed fronto-temporoparietal network that includes a core neural representation in the 

left mSTG/STS that is tolerant of variabilities in surface acoustic properties, perceptual 

salience, and linguistic context. Converging evidence from univariate activation analysis, 
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multivariate pattern analysis, and computational modeling point to a variability-tolerant 

‘core’ STG that dynamically operates within a widely-distributed fronto-temporoparietal 

network in mediating efficient tone categorization.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Stimuli, fMRI protocol, and behavioral categorization performance. A, the spectrogram of 

sample stimuli for the speech (S) sounds produced by a male (M) and a female (F) speaker 

and iterative ripple noise (IRN) homologs generated with five different iteration steps (i.e., 

IRN 2, 4, 8, 16, and 32, modeled with a female talker [male talker stimuli were not shown]). 

B, the customized fMRI sparse-sampling scanning procedure. The stimuli were presented in 

the silence gaps between imaging acquisitions to minimize the impact of scanner noise on 

perception/categorization. C, behavioral categorization accuracy, F score (a composite 

measure reflects tone identification sensitivity and specificity), and reaction times were 

displayed across talkers, IRNs, and stimulus contexts. S, speech condition.

Feng et al. Page 26

Neuroimage. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Behavioral reaction-time (RT) distributions and LBA model parameters across talkers, pitch-

salience conditions, and stimulus contexts. A, the RT distributions are highly overlapped 

across talkers and conditions. Talker: F = female; M = male. Conditions: S = speech 

condition; 2 – 32 = IRN steps. The distribution lightness denotes stimulus conditions. B. the 

goodness-of-fit of the LBA modeling was measured by calculating the inter-individual 

correlations between model-predicted and observed RTs across talkers and stimulus 

conditions. The mean Pearson correlation coefficient r = 0.91. The lightness denotes 

stimulus conditions (i.e., Speech, IRN 2, 4, 8, 16, and 32). Each dot in the scatterplot 

represents the mean reaction time of a subject in a condition. **, P < 0.001. C&D, the two 

model parameters of interest (i.e., starting point and accumulation rate) did not show 

significant difference across talkers or stimulus conditions (Ps > 0.1). E&F, the other two 

related model parameters, response threshold and non-decision time did not show significant 

difference across talker or stimulus conditions (Ps > 0.1).
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Fig. 3. 
Neural representations of tone category revealed by the representational similarity analysis 

(RSA). A, the searchlight-based RSA maps showed significant correlations between the 

tone-category (TC) RDM and neural RDMs in the bilateral fronto-temporoparietal regions. 

B, the partial RSA revealed that the left middle portion of the STG/STS (LmSTG/STS) 

remained significant after controlling for the variance of other predefined RDMs. These 

control RDMs from left to right refer to F0 slope (FS), F0 height (FH), motor response 

(MR), stimulus type/context (ST), stimulus condition (SC), and talker (TL), respectively (see 

more details in Material and methods section and Fig. S1). All searchlight RSA maps were 

initially thresholded at voxel-level P < 0.001 and FWE-corrected P < 0.05.
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Fig. 4. 
Multivariate pattern classification (MVPC) analysis (left panel A-D) with different cross-

validation (CV) procedures and univariate activation analysis with different conjunction 

procedures (right panel E-H). Left panels: A-D, searchlight-based tone-category 

classification maps derived from four CV procedures. A, tone-classification (i.e., tone-

decoding) maps derived from “cross-block” (i.e., leave-one-block-out) CV procedure, in 

which classifiers were trained and tested on the same sets of stimuli but from different 

blocks. B&C, tone-classification maps derived from the “cross-talker” (B) and “cross-IRN” 

(C) CV procedures (i.e., training and testing classifiers with data that are different in surface 

acoustic properties, i.e., talker and pitch salience). D, context-invariant tone-classification 

maps were generated by using “cross-stimulus-type” CV procedure (i.e., classifiers were 

trained with speech stimuli and tested with the IRN stimuli, and vice versa). Right panels: 
E, distributed fronto-temporoparietal regions were activated during tone categorization 

(relative to baseline). F, the talker-conjunction analysis revealed that the fronto-

temporoparietal regions were commonly activated during categorization across talkers (i.e., 

talker-general areas). G, common categorization-related activations were found across IRN 

steps (i.e., pitch-salience-general areas). H, the overall conjunction analysis revealed that 

only the temporoparietal regions were commonly activated across all the three types of 

variants (i.e., all-variability-general regions). All brain maps were initially thresholded at 

voxel-level P < 0.001 and cluster-level FWE-corrected P < 0.05.
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Fig. 5. 
Graphical illustration of LBA components and parameters and trial-by-trial model-based 

behavioral-neural (i.e., NCI-decision) correlation analysis. A, LBA model components and 

parameters illustration. For each categorization, LBA defines three processing components, 

including sensory (yellow), decision (white), and motor (gray) processing. The stimulus 

initially undergoes sensory processing and the tone-category information (i.e., evidence) is 

then accumulated toward one of the possible stimulus-response mappings until the response 

threshold (b) is reached. The two red lines denote the accumulation process at different rates. 

The red dash line denotes a higher accumulation rate (AR) than the solid line, while they 

have different starting points (SP) (green lines). The fMRI category representations 

measured by the neural category index (NCI) are hypothesized relating to the amount of 

initial evidence and evidence accumulation process of decision-making (i.e., SP and AR). B, 

a graphical illustration of the trial-by-trial NCI-decision correlation analysis procedure. At 

each local searchlight sphere, the single-trial NCIs were calculated and then were correlated 

with the SP and AR separately across trials. C, searchlight-based NCI-SP correlation brain 

maps. Significant positive NCI-SP correlations were identified across the fronto-

temporoparietal areas, which demonstrate that more robust neural category representations 

are associated with higher SP. D, searchlight-based NCI-AR correlation brain maps. A 

distributed bilateral fronto-temporoparietal network was also identified showing significant 

positive NCI-AR correlations, which indicate that more robust neural representations of tone 

category in these regions are associated with higher efficiency in evidence accumulation for 

decision. All brain maps were initially threshold at the voxel-level P < 0.001 and cluster-

level FWE-corrected at P < 0.05.
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