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Abstract

Research on distributed task planning model for multi-autonomous underwater vehicle

(MAUV). A scroll time domain quantum artificial bee colony (STDQABC) optimization algo-

rithm is proposed to solve the multi-AUV optimal task planning scheme. In the uncertain

marine environment, the rolling time domain control technique is used to realize a numerical

optimization in a narrowed time range. Rolling time domain control is one of the better task

planning techniques, which can greatly reduce the computational workload and realize the

tradeoff between AUV dynamics, environment and cost. Finally, a simulation experiment

was performed to evaluate the distributed task planning performance of the scroll time

domain quantum bee colony optimization algorithm. The simulation results demonstrate

that the STDQABC algorithm converges faster than the QABC and ABC algorithms in terms

of both iterations and running time. The STDQABC algorithm can effectively improve MAUV

distributed tasking planning performance, complete the task goal and get the approximate

optimal solution.

Introduction

The Autonomous Underwater Vehicle Task Planning (AUVTP) is based on the AUV task,

AUV task load and quantity, pre-setting and coordinating the specific combat mission. Task

planning includes task allocation, route planning, sensor planning and link planning. From

time division, AUVTP can be divided into real-time planning and pre-planning. Real-time

planning is a viable route for AUV during the voyage, based on actual navigation conditions

and subsea environmental changes, including options for pre-planned revisions and contin-

gency plans[1,2]. Pre-planning is AUV pre-sailing to develop, comprehensive mission require-

ments, the marine environment and communication conditions and other information, the

development of long-term mission planning. Real-time mission planning, due to the process
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of navigation, emphasizes real-time planning capabilities in dynamic, uncertain battlefield

environments, and faces more complex and greater challenges than pre-planning.

In the high combat environment, the battlefield information changes, the need for AUV to

reduce the manual participation and reduce the dependence on other systems, can indepen-

dently adjust the program and re-planning, to achieve truly intelligent self-planning. Intelli-

gent autonomous planning is the further development of artificial intelligence technology, is

the ultimate goal of mission planning. At present, some local independent planning and con-

trol technology has made some development, such as autonomous search, autonomous target

recognition, autonomous fire distribution and so on [3–5].

Beyond achieving various underwater applications, the motion control of AUV is one of

the essential problems in attaining underwater operational objectives [6,7]. However, the

modelling parameters of the underwater vehicle is difficult to be accurately acquired and the

vehicle is also vulnerable by environmental disturbances including ocean currents and waves

[8]. These internal and external uncertainties along with the nonlinearity of the vehicle dynam-

ics render the AUV control problem difficult.

With the rapid development of swarm intelligence algorithms, many researchers have sim-

ulated insect foraging behavior and have introduced a response threshold model to assign

tasks; other experts have introduced the ant colony algorithm to solve the large-scale task allo-

cation problem based on the time series [9–11]. Some experts have also designed a task model

and proposed an improved discrete particle swarm optimization algorithm to solve the prob-

lem [12,13]. These methods provide a new way to solve the problem of allocating tasks among

multiple robots. The present paper explores multi-AUV autonomous task planning, especially

the rolling time domain AUV mission planning in uncertain environment, and use the bionic

task planning method of quantum bee optimization algorithm to explore the AUV autono-

mous mission planning theory.

Quantum bee colony optimization algorithm

Quantum artificial bee colony algorithm

The bee colony optimization algorithm is a type of meta-heuristic optimization method to

imitate the behavior of natural bees. Ferrante et al. [14] proposed a self-organization model,

which was applied to task partitioning. Grozinger [15] proposed a self-organizing model,

which showed the communication in the bee colony through many methods, including "swing

dance" and odor. This self-organization model can complete different tasks in different social

classes. Karaboga et al. [16] successfully applied the colony algorithm to the problem of func-

tion extremum optimization and systematically introduced the artificial bee colony (ABC)

model. Civicioglu and Besdok [17] analyzed a conceptual comparison of the Cuckoo search,

particle swarm optimization, differential evolution and artificial bee colony algorithms. Lou-

bière et al [18] proposed a sensitivity analysis method for driving the artificial bee colony

algorithm’s search process, a new approach to random selection in neighborhood search.

Quantum calculation is a new computational method based on quantum mechanics theory.

Quantum Artificial Bee Colony Algorithm (QABC) uses the quantum revolving door to realize

the optimal position search of the bee, and uses the qubit to encode the current position of the

bee. The quantum bezel is used to realize the variation of the bee position and avoid premature

convergence Phenomenon occurs.

In the quantum space, the particle state ih l

lt φðX; tÞ ¼ HφðX; tÞ is represented by the wave

function φ(X,t), where H is the Hamiltonian operator and h is Planck’s constant. If the particle

undergoes a one-dimensional potential well movement at the center point of Q, the position
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determined by the stochastic equation is X ¼ Q� h2

2mg
lnð1=uÞ, where m is the particle mass

and u is a random number in the interval of (0, 1) [19].

Thus, we can obtain a formula of the quantum bee colony optimization algorithm:

Xi;jðt þ 1Þ ¼ Qi;jðtÞ � ljXi;jðtÞ � Xi6¼j;jðtÞjlnð1=ui;jðtÞÞ ð1Þ

In the formula, i is the bee number, j is the dimension, Xi,j is the bee optimization position,

and λ is a constant. In addition,

Qi;jðtÞ ¼ ajðtÞ � Qi;jðtÞ þ ð1 � φjÞ � GjðtÞ ð2Þ

In the formula, αj is a random number in the interval of (0, 1), Qi,j(t) is the best estimate of

the current position of an individual bee, and Gj(t) is the best estimate of the current position

of all bees.

The best estimate of the position of the i-th bee is

QiðtÞ ¼
XiðtÞ f ½XiðtÞ� < f ½Qiðt � 1Þ�

Qiðt � 1Þ f ½XiðtÞ� � f ½Qiðt � 1Þ�
ð3Þ

(

The best estimate of the global position is determined by g ¼ arg min
1�i�m
ff ½QiðtÞ�g and

G(t) = Qg(t).

Task allocation model based on quantum bee colony optimization

algorithm

The managers are denoted by AUVα in the distributed contract net. They are responsible for

managing the task, and the other AUVi are responsible for bidding the task. The task allocation

process includes four steps: task bidding, bid, bid winning and task execution based on the

contract net. The contract net task allocation model based on the differential evolution quan-

tum bee colony algorithm is as follows:

Assume that there are NV AUVs, Task ¼ fTask1;Task2; � � � ;TaskNM
g, the number of

task targets is NM, V ¼ fV1;V2; � � � ;VNV
g, the number of AUVs is NV, Menace ¼ fMenace1;

Menace2; � � � ;MenaceNQ
g, and the number of threat sources is NQ. The AUVs, task targets,

and threat sources can include many types. If the same type of task is performed by different

AUVs, the implementation effect is different. Assuming that the task set assigned to AUVi is

Ti ¼ fTask1
i ;Task

2
i ; � � � ;Task

ni
i g, the multi-AUV distributed task allocation problem can be

translated as follows: Assign the existing tasks to multiple AUVs in the shortest possible time,

i.e., [
NV

i¼1
Ti ¼ Task; each AUV has only one task, i.e., 8i,j 2 {1,� � �,NV}, i 6¼ j, and Ti\Tj = ;. If the

maximum number of tasks executed by the multi-AUV system is less than the number of tasks

that should be allocated, the assignment can be optimized to improve the overall efficiency of

the multi-AUV task allocation system according to the following objectives.

Objective one: To maximize the overall effectiveness
XNV

i¼1

yiðTiÞ of the AUV after finishing

the task, θi(Ti) is the performance after the task set Ti is completed by Vi.

Objective two: To minimize the required time maxi2V Timei(Ti) of the task to be completed

by the AUV, Timei(Ti) is the time at which the task set Ti is finished by Vi.
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Objective three: To balance the task load of each AUV,
XNV

i¼1

jTloadiðTiÞ � Tloadj is mini-

mized, where Tloadi(Ti) is the task load of Vi and Tload is the average task load for each AUV.

Multi-AUV autonomous task planning in uncertain environment

Scroll time domain task allocation model

Scroll time domain control is a numerical optimization problem in a reduced time range. For

multi-AUV applications, rolling time domain control is one of the better task planning tech-

niques. In an uncertain environment, since the sensor information can be embedded in the

online solution, the task execution can be handled very well; at the same time, because only the

local information is embedded, the calculated workload can be greatly reduced. The cost func-

tion is weighed between the AUV dynamics state, the environment and the cost, and the final

cost function is submitted to the online task planning to ensure that the task objectives are

completed and the approximate optimal solution is obtained.

The scroll time domain task assignment is a given task set T, The distance between tasks d
(i,j), And lists the specified length Lc the sequence of tasks in memory[20, 21]. The estimate of

each task sequence is

RVP ¼
X

lTipRwd ð4Þ

Where Tip is the time at which task p is completed in task sequence i, Rwd is the assigned

task weight, and λ is the time scale factor.

When the values of all task sequences RVP are given, the scrolling time domain task alloca-

tion algorithm can select the optimal task sequence for AUV.

maxL ¼
XNVP

P¼1

XNV

V¼1

RVPXVP

XNV

V¼1

XNVP

P¼1

AVPXVP � 1ðXVP 2 f0; 1gÞ

XNVP

p¼1

xvp � 1ð8v 2 1; � � � ;NvÞ

ð5Þ

Where xvp is a binary variable, its value is 1 when the Pth task sequence is selected, otherwise

its value is 0; when task P in the task sequence i is searched, the value of AVP is 1, otherwise it is

0.

Time adjustment parameter setting, parameter λet indicates Kth update task arrival time

estimation value, completion time of task time depends on test state time Tc, h is the time

value given by the bottom clock. If λet> δmin, it will be updated, where δmin is a relatively fixed

user fixed value.

let ¼ jT
k � Tc � hj ð6Þ

Space adjustment parameter setting, Xt for the reference configuration; X for the measured

configuration value.

ls ¼ jXt � Xj ð7Þ

If λs> αmin, it will be updated, and parameters δmin and αmin affect the number of updates.
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Multi-AUV distributed task allocation with balanced coefficient

To enable multiple AUVs to quickly complete the task and achieve global optimization, first,

the task is distributed to the entire AUV team with the smallest cost using the contract net to

ensure the global optimization of task implementation. Then, the balance coefficient is used to

make the entire AUV team distribute and achieve the tasks in the shortest time.

The balanced coefficient BR
eq is introduced in the contract net distributed robot task alloca-

tion. Each robot uses its cost function to count the workload: the workload is the cost of robot

R in the entire process of the work. Each robot broadcasts its workload to the entire team and

calculate its Beq. The formula of the balance coefficient for robot R is as follows:

BR
eq ¼

waðRÞ � wa
wa

ð8Þ

where wa is the average workload of all robots in the team.

BReq<0: robot R has a lighter workload than the other robots;

BReq>0: robot R has a heavier workload than the other robots;

BReq>BR1
eq 0: robot R has a heavier workload than robot R1;

In the contract net, the robot can take the task at the minimum cost, and the workload to be

obtained should not be excessive. Thus, the task can be estimated from the balance coefficient

Beq. The formula of the task is estimated by robot R as follows:

rt0RðT1Þ ¼ rtRðT1Þ � BR
eq � jrt

RðT1Þj ð9Þ

The task can be estimated using the balance coefficient Beq of robot R. The following effects

can be obtained:

1. A robot with a larger workload cannot easily obtain new tasks, and its tasks are more likely

to be reassigned because its task utility is low.

2. A robot with a smaller workload easily obtains new tasks and does not easily give up its task

because its task utility is high.

AUV autonomous learning mechanism

AUV has an autonomous learning mechanism that needs to include an implementation com-

ponent, Multi-Level Executive (MLE) and Deliberative Layer (DL). Including two major exe-

cution instruction mechanisms.

First, the dynamic task is inserted. Insert the new task into the relative position that has

been ranked in the task sequence according to the insertion model.

Second, the dynamic task is terminated. If the task has not yet started running, the termina-

tion of the task is canceled. If the task has already started running, the termination of the task

is interrupted.

Multi-AUV system flexibility and openness, multi-AUV system can be combined with the

group of swarm intelligence algorithm. AUV as an agent can not only interact with the optimal

AUV in the current population, but also can self-study in multiple iterations to complete the

accumulation of knowledge, so as to improve the ability to solve the problem, to achieve group

intelligence optimization.
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Let the position of AUV Sij in the solution space be Si,j = (s1,s2,� � �,sn), the size of the solution

space is mSsize × mSsize, and the position formula of each AUV mSi’j’(i’,j’ = 1,2,� � �,mSsize) is:

mSi0 j0 ¼
Si;j i0 ¼ 1; j0 ¼ 1

SSi0 ;j0 Other
ð10Þ

(

Formula SSi’,j’ = (SSi’,j’,1SSi’,j’,2� � �SSi’,j’,n), where SSi’,j’,n is:

SSi0;j0;n ¼

Lnmin; Snrandð1 � mR; 1þmRÞ < Lnmin

Lnmax; Snrandð1 � mR; 1þmRÞ > Lnmax

Snrandð1 � mR; 1þmRÞ; Other

ð11Þ

8
><

>:

In the formula, mR is the local search radius,and mR2 [0,1], rand(1−mR1+mR) is a random

number of (1−mR1+mR).

Because AUV has the ability of autonomous learning mechanism, so as long as the optimal

state of each iteration process of self-learning, you can achieve their own task control ability to

improve. This not only improves the efficiency of the algorithm, but also re-searches the cur-

rent optimal state to improve the accuracy of the search algorithm.

Experimental results and analysis

Experimental parameter assignment

To evaluate the performance of the Multi-AUV autonomous task planning based on the scroll

time domain quantum bee colony optimization algorithm in uncertain environment. The sim-

ulation experiment were performed on a laptop computer which has a dual core 3.2 GHz CPU

and 8 GB RAM using MATLAB. The MATLAB parallel computing toolbox is used to execute

the algorithm for all clusters in parallel. The conditions of the simulation experiment are as

follows:

A set of thirty task items to be assigned is selected. The thirty tasks can be divided into three

categories: T1, T2, and T3. AUV1, AUV2, and AUV3 are involved in the bidding of the AUVs

and all tasks of the bid. The bid value of the completed task, trust and initial ability are shown

in Table 1. The influence factors of the AUV load, ability and trust degree are 0.5, 0.3and 0.2,

respectively, in the bidding strategies of the contract net task allocation based on the scroll

time domain quantum bee colony algorithm.

The simulation experiment has 2 objectives. When the bidding and tendering stage are

identical, the first objective is to test and compare the contract net model based on the scroll

time domain quantum bee colony algorithm and the traditional contract net model. The

second objective is to compare the performance in four aspects: efficiency of task allocation,

average AUV load, number of bid AUV allocated tasks, and proportion relation of the cor-

responding type of task ability.

Table 1. Initial value of the completed task, trust and ability.

T1 T2 T3

Bidding

value

Trust

degree

Ability Bidding

value

Trust

degree

Ability Bidding

value

Trust

degree

Ability

AUV1 3 0.7 0.8 2 0.9 0.9 2 0.8 0.7

AUV2 4 0.8 0.6 3 0.8 0.8 3 0.7 0.9

AUV3 5 0.6 0.7 3 0.7 0.7 4 0.6 0.8

https://doi.org/10.1371/journal.pone.0188291.t001
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Experimental verification

After the experiment, the simulation results are as follows. Fig 1 shows the average load of

AUV1, AUV2 and AUV3 in the traditional contract net model AUV1 AUV2 AUV3. Fig 2 shows

the reduced proportion (%) when AUV1, AUV2 and AUV3 AUV2 AUV3 execute tasks in the

traditional contract net model.

Fig 3 shows the average load of the AUVs in the contract net model based on the differential

evolution quantum bee colony algorithm. Fig 4 shows the reduced proportion (%) of execution

time in the contract net model with the introduced balance coefficient based on the differential

evolution quantum bee colony algorithm.

Comparing the front and back images, we observe that the traditional contract net does

not consider the load balance of the bidding AUV, which causes a large load difference for the

bidding AUV. The improved contract net model satisfies the requirement of load balance

because the proportions of load and task execution time of three bidding AUVs are basically

equivalent.

Fig 5 shows that the comparison of the executive entirety effectiveness of multiple AUVs in

the distributed task planning experiment in the traditional contract net model and the contract

net model with the introduced scroll time domain balance coefficient based on the quantum

bee colony algorithm.

Fig 6 shows the comparison of the convergence performance of the ABC, QABC, and

STDQABC algorithms in the process of multi-AUV distributed task planning.

Figs 7 and 8 show the comparison of the number of iterations and running time when the

ABC, QABC, and STDQABC algorithms are used to solve 10 task allocation cases to obtain the

optimal solution.

Fig 1. Average load of AUV1, AUV2 and AUV3 in the traditional contract net model AUV2 AUV3.

https://doi.org/10.1371/journal.pone.0188291.g001
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Fig 2. Reduced proportion (%) of AUV1, AUV2 and AUV3 AUV2 AUV3 when they executed tasks in the

traditional contract net model.

https://doi.org/10.1371/journal.pone.0188291.g002

Fig 3. Average load of AUV1, AUV2 and AUV3 in the improved contract net model AUV3.

https://doi.org/10.1371/journal.pone.0188291.g003
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Fig 4. Reduced proportion (%) of AUV1, AUV2, and AUV3 tasks in the improved contract net model.

https://doi.org/10.1371/journal.pone.0188291.g004

Fig 5. Comparison of the executive entirety effectiveness of the multi-AUV distributed task planning.

https://doi.org/10.1371/journal.pone.0188291.g005
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For the test functions with both unimodal and multi modal regions F1ðxÞ ¼
Xn� 1

i¼1
½100ðxiþ1 � x2

i Þ
2
þ ðxi � 1Þ

2
�, DIM = 30, Range = [–100,100], fmin = 0 and F2ðxÞ ¼

Fig 6. Comparison of the convergence performance of the ABC, QABC, and STDQABC algorithms.

https://doi.org/10.1371/journal.pone.0188291.g006

Fig 7. Comparison of the number of iterations for the ABC, QABC, and STDQABC algorithms.

https://doi.org/10.1371/journal.pone.0188291.g007
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� 20expð� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
x2

i

q

� expð1n
Xn

i¼1
cosð2pxiÞÞ þ 20þ e, DIM = 30, Range = [–30,30],

fmin = 0, Fig 9 and Fig 10 These results again demonstrate that DEQABC efficiently bal-

ances exploration and exploitation to approximate the global optimum.

The experimental results demonstrate that the STDQABC algorithm is faster than the

QABC algorithm in terms of both number of iterations and running time and Get global opti-

mal. Thus, the STDQABC algorithm can effectively improve the performance of the multi-

AUV task planning. The STDQABC algorithm has faster and better stability than the ABC

algorithm and STDQABC algorithm in solving the task planning problem for multiple AUVs

and improving the system performance.

Conclusion

In this paper, we propose a distributed task planning model based on the scroll time domain

quantum bee colony algorithm to allow more rapid task planning for a greater number of

AUVs and achieve global optimization in the multi-AUV distributed task planning. The bal-

ance coefficient is introduced to distribute the AUV task planning of the traditional contract

net. The unbalanced load and other defects are improved in the multi-AUV distributed task

planning of the traditional contract net. The scroll time domain quantum bee colony algo-

rithm is applied to the process of multi-AUV dynamic distributed task planning in Uncertain

Environment. The simulation experiment verifies that the quantum bee colony based on scroll

time domain can avoid falling into local optima; shorten the convergence time; reduce the

number of iterations; enhance the global, dynamic and adaptive capability of the bee colony

Fig 8. Comparison of the running time for the ABC, QABC, and STDQABC algorithms.

https://doi.org/10.1371/journal.pone.0188291.g008
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Fig 9. STDQABC algorithm single peak area test function F1 effect.

https://doi.org/10.1371/journal.pone.0188291.g009

Fig 10. STDQABC algorithm multi-peak area test function F2 effect.

https://doi.org/10.1371/journal.pone.0188291.g010
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algorithm; and effectively improve the overall performance of distributed task planning for

multiple AUVs.
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