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In recent years, the use of recombinant interferon-alpha 
(rIFNα) as the initial treatment of the myeloproliferative 
neoplasms (MPNs), essential thrombocythemia, polycythe-
mia vera and myelofibrosis, has been increasing. In a subset 

of patients, treatment with rIFNα for approximately 5 years may 
result in minimal residual disease (MRD) characterized by hema-
tologic remission, a low JAK2V617F allele burden, and normal 
bone marrow morphology. The important role of chronic inflam-
mation as the driving force for clonal evolution and disease 
progression and the impact of chronic inflammation upon symp-
tom burden have been substantiated. Here, we highlight timely 
research questions regarding the use of rIFNα in the future MPN 
landscape and underscore the importance of early diagnosis 
and treatment with it to achieve MRD. Based upon the highly 
encouraging results from combination therapy of stem cell-tar-
geted therapy with rIFNα and the potent anti-inflammatory drug, 
ruxolitinib, we also place in perspective studies of combinations 
with older, inexpensive agents (eg, statins, N-acetylcysteine, and 
colchicine), which have well-established anti-inflammatory and 
antithrombotic capabilities. Mathematical modeling studies have 
substantiated the concept that chronic inflammation is a trig-
ger and driver of MPN development, and stress the importance 
of initiating rIFNα treatment as early as possible. Studies of the 
impact of rIFNα in individuals carrying the JAK2V617F or the 
CALR mutation as clonal hematopoiesis of indeterminate poten-
tial (CHIP) are urgently needed to determine whether rIFNα 
treatment at this early CHIP stage may eradicate the malignant 
clone. We foresee a bright future for patients with an MPN, in 
whom early intervention with stem cell-targeted therapy, rIFNα, 
alone or in combination with drugs targeting the chronic inflam-
matory state, may allow many to achieve MRD, thus becoming 
candidates for clinical trials employing vaccines leading to the 
possibility of cure.

Interferon-alpha2 in the myeloproliferative 
neoplasms

In 1985, Linkesch et al reported for the first time that rIFNα con-
trolled myeloproliferation in patients with an MPN accompanied 

with severe thrombocytosis.1,2 A few years later, Silver3 demon-
strated the safety and efficacy of rIFNα treatment in patients with 
polycythemia vera (PV) and afterward, its value in the prolifera-
tive phase of myelofibrosis (MF) was reported,4 resulting in nor-
malization of marrow architecture and cellularity, and reduction 
in degree of fibrosis to normal.5 Many subsequent studies in more 
than a thousand patients have confirmed that rIFNα is safe and 
effective for treating essential thrombocythemia (ET), PV, and ear-
ly-stage MF patients: in ET, it normalizes elevated platelet counts 
within weeks to months in the large majority of patients; in PV, it 
reduces or eliminates the phlebotomy requirement and the degree 
of pruritus, normalizes elevated leukocyte and platelet counts and 
reduces spleen size; in MF patients, it reduces or normalizes ele-
vated leukocyte- and platelet counts and—as noted above—may 
also induce regression of bone marrow fibrosis in some patients 
after long-term treatment.5 All these studies have been thoroughly 
described in several recent reviews.6–14 In a single-arm study of 55 
patients with PV, rIFNα therapy resulted in significant reduction 
in need for phlebotomy and in thrombotic events.15 In the largest 
retrospective study of 470 PV patients from the same institution, 
improved myelofibrosis-free survival and probably overall sur-
vival were observed in rIFNα-treated patients compared to those 
treated with hydroxyurea (HU) or phlebotomy only (PHL-O).16

Recent studies have elucidated novel mechanisms of action 
of rIFNα therapy in the MPNs, which basically and simplis-
tically depends on physiological stem cell exhaustion and/or 
depletion. In MPN mice, rIFNα can directly eliminate malignant 
disease-initiating cells by inducing changes in the cell cycle and 
apoptosis.17–19 Tong et al, by single-cell transcriptomic profiling 
coupled with mutation detection, showed that in patients with 
ET, JAK2V617F megakaryocytic stem cells had elevated inter-
feron signaling. Upon treatment, homozygous mutant HSCs had 
a quiescent signature in comparison to heterozygous stem cells, 
which underwent enhanced apoptosis.20

The interest in using rIFNα long-term was abetted by the 
reports of it decreasing the JAK2V617F allele burden in PV.21–26 
MRD, noted in a subset of patients, was defined as clinical and 
hematologic remission, a JAK2V617F allelic burden <1% and 
normalization of marrow morphology.23,24,27 These results could 
be sustained after discontinuation of rIFNα for more than 2–3 
years.23,24,27 The long-term impact of rIFNα in patients following 
discontinuation of therapy may reflect rIFNα reprogramming 
defective immune cells and restoring competent “tumor immune 
surveillance.”13,28–30

Despite these impressive results, these were primarily based 
upon phase 2 or single-arm studies and did not satisfy regulatory 
requirements.11,31 Accordingly, rIFNα was used off label and in 
the United States, required tedious insurance company approval 
prior to its use. This has recently changed in Europe because 
of the licensing of ropeg-rIFNα-2b (Besremi) for the treatment 
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of European LeukemiaNet (ELN) defined high-risk PV patients 
without symptomatic splenomegaly. The safety and efficacy of 
this novel drug characterized by a proline pegylated bond have 
been demonstrated in several studies; it has the advantage of 
administration every second or third week.32–35 Its toxicity pro-
file may be less than with either pegylated rIFNα-2a (Pegasys) or 
pegylated rIFNα-2b (PegIntron). However, there have been no 
comparative trials to verify this presumption.

The future interferon-MPN landscape

In the future, several research questions regarding the use of 
rIFNα will hopefully be addressed:

How does chronic inflammation, caused by 
smoking, impact the response to rIFNα?

Smoking elicits a massive systemic inflammatory stimulus, 
causing leukocytosis and, sometimes, thrombocytosis.36 The 
JAK-STAT and NF-kappaB signaling pathways are activated in 
both smokers and in patients with MPNs. Both share elevated 
levels of several pro-inflammatory cytokines, in vivo activation 
of leukocytes and platelets, endothelial cell dysfunction, and 
increased systemic oxidative stress.36 In this context, it has been 
suggested that smoking may trigger MPN development and 
may also enhance clonal evolution as a consequence of inflam-
mation-mediated genomic instability.36 Indeed, the concept of 
smoking as a risk factor for the development of an MPN has 
been substantiated in recent studies.37–40 Since smoking may be 
a likely trigger and driver of clonal evolution in patients with 
an MPN and since smoking, per se, gives rise to erythrocytosis, 
leukocytosis, and sometimes thrombocytosis,37 it increases the 
thrombotic risk associated with an MPN. A recent study has 
shown that smoking impairs molecular response and reduces 
overall survival in MPN patients treated with rIFNα.41

What are the reasons for rIFNα resistance or 
intolerance in the MPNs?

In some patients rIFNα may elicit a sustained “inflammatory 
syndrome,” characterized by fatigue and muscle and joint pain, 
necessitating its dose reduction, thereby perhaps leading to its 
discontinuation because of diminishing efficacy. Currently, it is 
unknown which mechanisms are responsible for the emergence 
of this “inflammatory syndrome,” but several may be opera-
tive. First, our clinical experience indicates that patients with 
advanced MPN-disease and a large tumor burden, for example, 
patients with myelofibrosis and massive splenomegaly, do not 
tolerate rIFNα well, owing to its side effects. Perhaps, this intol-
erance might be explained by a rIFNα-induced cytokine storm. 
This increase may be temporary and may decline in concert with 
rIFNα-mediated reduction in tumor burden. In this time-frame, 
adding a potent anti-inflammatory drug (eg, ruxolitinib or pred-
nisolone) might be a rational approach as addressed below. 
Second, studies are ongoing to explore whether such autoim-
mune and inflammatory side effects may be associated with a 
particular human leukocyte antigen (HLA) tissue type. In this 
regard, it is worth considering whether MPN patients intolerant 
to rIFNα may have a predisposition for developing autoimmu-
nity which then is elicited or exacerbated during treatment with 
rIFNα. There are reports that patients with TET2-mutations 
have impaired response to treatment with rIFNα.42–45 Recently, 
Stetka et al46 demonstrated that genetic loss of DNMT3A con-
ferred resistance to treatment with rIFNα in a JAK2V617F 
driven MPN mouse model. An association between DNMT3A-
mutations and impaired response to rIFNα is supported by the 
Danish DALIAH-trial, in which DNMT3A-mutations emerged 

on treatment more frequently than non-DNMT3A-mutations 
among patients not achieving complete hematological remis-
sion  (CHR).47 Third, as alluded to previously, inflammatory 
signaling is associated with a diminished effect of rIFNα.48 
All rIFNα effects are elicited through interaction with type I 
IFNα receptors, the IFNα-2AR1 and IFNα-2AR2 chains. 
Inflammation-mediated downregulation of IFNα-2AR1 is asso-
ciated with refractoriness to rIFNα.49 Noteworthy in this context 
is that the inflammatory cytokines interleukin 1-alpha (IL-1-α) 
and tumor necrosis factor alpha (TNF-α) stimulate IFNα-2AR1 
degradation and accordingly attenuate IFNα-2a signaling.48 
Similarly, unresponsiveness to rIFNα-2a in hepatitis patients 
may be explained by oxidative stress, also impairing IFNα-2a 
signaling.50 MPNs are associated with increased levels of several 
inflammatory cytokines, including IL1-α and TNF-α, the highest 
levels have been reported in patients with advanced myelofibro-
sis.51 Thus, treating patients with rIFNα at the earliest disease 
stage possible, when inflammation is less pronounced, seems a 
more rational approach rather than a “watch and wait policy,” 
which permits the malignant clone to expand, thus increasing 
its inflammatory load.13 The early intervention with rIFNα has 
recently been supported by mathematical modeling studies. 
These show that the earlier rIFNα is started in PV and related 
neoplasms, the more rapid the decline in the JAK2V617F allele 
burden. This results in a shorter treatment period in order to 
obtain a major molecular remission.52 Early rIFNα treatment of 
patients with primary and secondary myelofibrosis may result 
in regression of bone marrow fibrosis and improved marrow 
architecture and cellularity.44,53 Recently, germ-line genetic fac-
tors have been shown to influence rIFNα-response in patients 
with PV, which may affect rIFNα resistance or intolerance.54,55

How does rIFNα-2a impact the chronic 
inflammatory state and defective tumor immune 
surveillance in the MPNs?

By normalizing elevated leukocyte and platelet counts, 
rIFNα helps minimize the sustained release of inflammatory 
cytokines and chemokines and concurrently improves immune 
cell function which is important for intact tumor immune sur-
veillance.56–58 Patients with MPNs are subject to an increased 
risk of second cancers,59–63 which have an inherently worse 
prognosis compared to the same cancer as in an MPN-naive 
person.60 Thrombocytosis is a worse prognostic factor in sev-
eral cancers, and platelets enhance cancer invasiveness and 
metastatic potential.64 Thus, leukocytosis and thrombocytosis 
in patients with MPNs may contribute to the increased risk of 
second cancers and inferior survival, both by eliciting defective 
tumor immune surveillance and by increasing cancer invasive-
ness.60,63,64 rIFNα may restore normal tumor surveillance by 
increasing the number of several types of immune cells, includ-
ing dendritic cells, T-cells and natural killer (NK)-cells.13,28,30 In 
addition, rIFNα upregulates previously downregulated HLA-
genes, thereby improving tumor cell killing.65,66 Furthermore, 
rIFNα also downregulates or normoregulates JAK2V617F-
induced expression of the immune check point programmed-
cell-death-ligand 1 (PD-L1),67 thereby impairing PD-L1 
mediated immune escape.68 Whole blood gene expression stud-
ies indicate that rIFNα treatment decreases expression of genes 
involved in regulation of inflammation and enhances expres-
sion of genes of importance for immune cell function.69 Whole 
blood transcriptional profiling studies have also shown that 
rIFNα has a major impact upon deregulated oxidative stress 
genes and antioxidative defense genes.70 Importantly, down-
regulation of several upregulated thromboinflammatory genes, 
including the PADI4 gene has been demonstrated. This gene 
is required for neutrophil extracellular trap (NET) formation 
and thrombosis development.71
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Interferon-alpha2 combination therapies: 
combination with ruxolitinib

In PV, rIFNα-2a monotherapy, together with targeted ther-
apeutic phlebotomy, normalizes elevated blood cell counts 
within a few months, often accompanied by a decrease in the 
JAK2V617F allele burden.21–26,32–35,43 However, major molecu-
lar remissions are rare within the first 2 years of therapy and a 
minority of patients with PV may require a few phlebotomies 
per year despite 2–3 years of treatment. We prefer to gradu-
ally increase the dose of rIFNα, starting with a low dose of  
pegIFNα-2a 45 µg/week; if no normalization of peripheral cell 
counts after 1–2 months, we increase the dose to 90 µg/week. 
Rarely, patients need 135 or 180 µg/week. About 15%–40% of 
patients do not tolerate rIFNα because of symptoms of toxic-
ity, usually because the doses used have been too high.16,21,22,25 
However, even with low-dose pegIFNα-2a, 45 µg/week, the 
discontinuation rate in the DALIAH-trial reached 50%.72 Since 
intolerance may be partly explained by rIFNα-exacerbated 
inflammation, combination therapy of rIFNα with an anti-in-
flammatory drug such as ruxolitinib may dampen inflammation 
and restore its sensitivity and enhance efficacy.73,74 Taking into 
account that ruxolitinib inhibits canonical type 1 IFN-signaling 
through JAK1 inhibition, such a combination therapy might 
theoretically have antagonistic effects. However, our clinical 
trials in PV and MF patients who had been previously intol-
erant or refractory to rIFNα-2a monotherapy have shown this 
combination therapy to be both safe and effective.75–77 These 
highly interesting and encouraging findings may be explained 
by several mechanisms, including the fact that ruxolitinib has a 
half-time of only a few hours leaving an open window of sev-
eral hours per day for IFN-signaling. Other mechanisms might 
be that JAK/STAT inhibition dampens inflammation, which 
has been reported to impair IFN-signaling by degradation of 
the IFN-receptor as alluded to above.48,49 The rationale for this 
combination has been substantiated by in vivo murine studies 
of JAK2V617F hematopoietic stem cells, demonstrating distinct 
effects of ruxolitinib and rIFNα.19 However, the results require 
validation in both newly diagnosed PV and MF patients.14,75–78

Since statins may enhance the efficacy of ruxolitinib79 and 
rIFNα,80 triple therapy of rIFNα + ruxolitinib + statin may 
be a highly effective triplet, but obviously requires evaluation 
in future trials.13,74 A recent study indicates hypoxia-inducible 
factor 1 (HIF-1) as a new therapeutic target in JAK2V617F-
positive MPNs, demonstrating the potential of the peptide anti-
biotic, echinomycin, alone and in combination with ruxolitinib, 
to selectively target JAK2V617F-positive cells inducing apopto-
sis and cell cycle arrest.81 In this context, it may be interesting 
to combine a HIF-1-inhibitor and JAK1-2 inhibitor with rIFNα, 
which might further enhance the synergistic effects of combin-
ing ruxolitinib and rIFNα.

Combination with statins

Statins have been suggested as potentially useful enhancers of 
rIFNα in treating MPNs, owing to their antiproliferative, antian-
giogenic, proapoptotic, and anti-inflammatory attributes.82,83 A 
recent study showed that PV patients who are treated with statins 
require fewer phlebotomies than those who are not.84 Although 
the underlying mechanisms are elusive, a statin-induced lowering 
of inflammation in JAK-STAT signaling is a possible explana-
tion.82,83 In this context, we note that low-density lipoproteins 
(LDLs) amplify cytokine-signaling in chronic lymphocytic leu-
kemia cells.85 Thus, future studies should address whether LDLs 
enhance proliferation of MPN cells in response to inflammatory 
signals. Because patients with MPNs have an increased risk 
of second cancers59–63 and because statins have been shown to 
reduce cancer-associated mortality by 15%,86 their role in the 
treatment of MPNs is currently under investigation.

Combination with HU

HU is the drug most often used in the treatment of patients 
with MPNs. However, concern has been raised regarding its 
leukemogenic potential for treatment exceeding 10–15 years.87 
Therefore, physicians at many MPN centers are cautious about 
using HU in patients <60 years. Theoretically, combination 
therapy of rIFNα with HU might nevertheless be a relevant 
approach. By inducing so-called immunogenic cell death, HU 
may expose tumor antigens to the immune system. Studies have 
shown that HU upregulates the immunoreceptor, natural-killer 
group 2, member D (NKG2D), originally identified in NK cells.88 
This immunoreceptor recognizes ligands that are upregulated 
on tumor cells. Accordingly, HU may enhance the susceptibility 
of clonal MPN cells to NK-mediated cytolysis.88 Since rIFNα 
both upregulates NKG2D89 and increases NK-cell cytotoxic 
activity, the combination of rIFNα and HU might exert a syner-
gistic immune killing effect on the malignant clone in excess of 
their direct cell killing effects. HU potently lowers elevated lev-
els of inflammatory cytokines in patients with sickle cell anemia 
(SCA), thereby decreasing the inflammatory state and reduc-
ing the risk of thrombosis.90 Although the impact of HU upon 
increased inflammatory cytokines has not been studied system-
atically in patients with MPNs, HU could reduce cytokines in 
MPN patients, and enhance the efficacy of rIFNα, dampened by 
concurrent inflammation. HU might also alleviate the inflamma-
tion-mediated flu-like symptoms elicited by rIFNα. Preliminary 
data indicate that fluctuating cell counts during treatment of PV 
with HU may contribute to an increased thrombotic risk within 
the first 3–6 months after starting the drug.91 Since rIFNα causes 
normalization of elevated cell counts without such oscillations, 
a combination of both drugs during the first months after diag-
nosis might offer less toxicity than single drug treatment and 
perhaps reduce further the increased risk of thrombosis.91

Combination with vaccination and immune 
checkpoint inhibitor strategies

Recently, the CALR and the JAK2V617F mutations, present 
in >90% of MPN patients, have been shown to be immuno-
genic neo-antigens.92–95 Importantly, the immune responses 
in JAK2V617F-positive patients are minor compared to 
those of CALR-positive patients. This small discrepancy may 
be related to the single amino acid difference between the 
mutant JAK2V617F epitope and the wild type JAK2 epitope, 
whereas the mutant CALR C-terminus spans 36 amino acids.94 
Furthermore, patients with MPN display frequent and strong 
T-cell responses against the PD-L1 and arginase-1.96,97 Thus, 
peptide vaccination with either JAK2 mutant or CALR mutant 
epitopes in combination with vaccination against PD-L1 and/or 
arginase may be a new and potentially curable treatment modal-
ity for MPN patients.98 This requires pretreatment with rIFNα, 
either as monotherapy or in combination with ruxolitinib, to 
achieve MRD, a prerequisite for eliminating the residual clone 
by vaccination strategies.99 Studies of the safety and efficacy of 
immune checkpoint inhibitors, for example, blocking PD-L1, 
are currently under investigation in patients with myelofibro-
sis.100 PD-L1 is upregulated on JAK2V617F mutated cells,67,68 
prohibiting a tumor-specific immune response against the malig-
nant JAK2V617F-mutated cells by binding to tumor-specific T 
cells, resulting in their inactivation.68 The JAK2V617F mutation 
also generates reactive oxygen species,101,102 which inhibit T-cell 
function.103 Accordingly, there are several rationales for includ-
ing rIFNα in future studies of vaccine and immune checkpoint 
inhibitors. rIFNα would enhance the tumor-specific immune 
responses by boosting immune cell function and lowering the 
JAK2V617F allelic burden resulting in a decreased generation 
of reactive oxygen species, which in turn impairs T-cell function, 
as mentioned above.103
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Discussion

The impact of chronic inflammation as an important driv-
ing force for clonal expansion and evolution in patients with 
MPNs opens a new horizon for combination studies. Such 
studies preferentially should include rIFNα, which is the 
only disease-modifying drug that can induce deep molecu-
lar remission and normalization of marrow morphology in a 
subset of patients. We believe these beneficial effects are likely 
attributed to the stem-cell targeting potential of rIFNα which 
boosts virtually all immune cells engaged in “tumor immune 
surveillance.” The encouraging results of combining rIFNα 
with ruxolitinib73–78 may introduce combination studies with 
currently available and inexpensive drugs, such as statins, and 
N-acetylcysteine, which all have shown potent anti-inflamma-
tory, antithrombotic, and anticancer capabilities.82–84,104 The 
intriguing combination of rIFNα and arsenic may have the 
potential to eradicate the JAK2V617F clone.105 Since HU does 
not induce sustained normalization of elevated cell counts in 
PV patients, it may be rational to combine lower doses of HU 
with rIFNα, thereby reducing the increased thrombotic risk in 
PV and reducing rIFNα toxicity. Mathematical modeling stud-
ies have shown that the earlier treatment with rIFNα is insti-
tuted the more likely the chance of obtaining rapid and deep 
molecular responses.52

It would be interesting to study the impact of rIFNα treat-
ment in the CHIP phase to determine whether inhibiting 
JAK2V617F would also inhibit prodromal thrombotic events 
and overt MPN disease development. Similarly, studies of the 
impact of IL-1b or IL-6R blockade upon the kinetics of the 
JAK2V617F mutation in the CHIP phase might unravel the 
important role of chronic inflammation for abetting clonal 
expansion. Future research should also focus on the use of 
colchicine. This old and inexpensive drug has recently been 
shown to decrease the risk of cardiovascular events,106 likely 
owing to its impact upon circulating inflammatory cyto-
kines, the inflammasome, and subsequently NETosis gener-
ation.107 Studies on the impact of colchicine on the kinetics 
of the driver mutations, JAK2V617F and CALR, and blood 
cell counts both in the CHIP stage and in MPN patients are 
urgently needed.

In conclusion, MPNs are not truly orphan diseases because 
they are frequently underdiagnosed.108 MPNs carry an inher-
ent early and increased risk of life-threatening thrombotic 
events109,110 and an increased risk of second cancers,59–63 under-
scoring the urgent need for their earlier detection. Fortunately, 
at last, our early intervention concept with rIFNα,9,11,13–16,23,24,27 
now routinely used at several MPN centers, has recently been 
substantiated, irrespective of conventional risk-stratification 
schema.47 The randomized trial of ropeg-interferon-α2b in 
early-stage ELN high-risk PV patients also supports this con-
cept,35 as does the treatment of ELN low-risk patients.111,112 
Pegylated rIFNα is also an effective therapy for patients with 
PV (or ET) previously refractory and/or intolerant of HU.15,113 
Importantly, as previously discussed a recent study of 470 PV 
patients has shown that rIFNα yields improved myelofibro-
sis-free and overall survival,16 as does a recent meta-analy-
sis.114 These data, together with those generated from a large 
number of single-arm studies which enrolled more than 1,000 
patients over the past 30 years,15,16,35,114–116 will result in more 
MPN patients who will be fortunately treated with rIFNα in 
the future.
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