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Abstract: This article presents the design of a novel decentralized nonlinear multivariate control
scheme for an underactuated, nonlinear and multivariate laboratory helicopter denominated the
twin rotor MIMO system (TRMS). The TRMS is characterized by a coupling effect between rotor
dynamics and the body of the model, which is due to the action-reaction principle originated in the
acceleration and deceleration of the motor-propeller groups. The proposed controller is composed
of two nested loops that are utilized to achieve stabilization and precise trajectory tracking tasks
for the controlled position of the generalized coordinates of the TRMS. The nonlinear internal loop
is used to control the electrical dynamics of the platform, and the nonlinear external loop allows
the platform to be perfectly stabilized and positioned in space. Finally, we illustrate the theoretical
control developments with a set of experiments in order to verify the effectiveness of the proposed
nonlinear decentralized feedback controller, in which a comparative study with other controllers
is performed, illustrating the excellent performance of the proposed robust decentralized control
scheme in both stabilization and trajectory tracking tasks.
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1. Introduction

In the last few years, there has been an increased interest from researchers in developing control
algorithms for unmanned aerial vehicles (UAVs) [1–6], due to the multiple applications and uses of
this type of vehicle. This has motivated the use of new laboratory platforms capable of simulating the
operation of the UAVs. This way, it is possible to perform experimental tests for evaluating the different
designs developed. We can highlight the three-DOF hover system [7], the three-DOF helicopter
system [8] and the twin rotor MIMO system (TRMS) [9], which is the platform used in this research.

The TRMS is a nonlinear and multivariate laboratory helicopter specifically designed to test and
evaluate control algorithms by means of the MATLAB/Simulink R© software environment. The dynamic
behavior of the system is similar to a real helicopter, but with some differences due to the construction
of the model that greatly hinder the modeling and design of control algorithms for this platform.
As can be seen in Figure 1, the TRMS is formed by a base attached to a tower, at which end is a
two-dimensional pivot that allows the mobile structure to rotate freely. The mobile part is composed of
two metal beams: the horizontal beam in which ends the main and tail rotors with the corresponding
propellers are positioned in perpendicular planes and the counterbalance beam affixed to the horizontal
beam at the pivot to move the equilibrium point of the system.
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Figure 1. Twin rotor MIMO system (TRMS).

The electrical part of the TRMS is mainly composed of two DC motors that drive the propellers of
both rotors and the interface circuit, an internal electrical circuit that adapts the input control voltages,
applied in MATLAB/Simulink R©, to the actual voltage value applied to each DC motor. Thus, a change
in the control voltages produces a variation in the supply voltages of the motors, which results in a
variation of the rotational speed of each propeller, measured by a tachometer. This way, a change in
propulsive forces finally results in the movement of the platform. The movement, in the vertical and
horizontal planes, is measured by two encoders that determine the pitch and yaw angles, respectively.

The movement of the TRMS presents not only a high cross-coupling between the two rotors as
in a real helicopter, but also a coupling effect between rotor dynamics and the body of the model.
This is due to the action-reaction principle originated in the acceleration and deceleration of the
motor-propeller groups. Therefore, the control system of the TRMS generates a significant difference
with regard to a real helicopter by varying the voltages applied to the rotors, which greatly complicates
the system dynamics. On the other hand, the TRMS is also an underactuated system as a result of
fewer control actions, which are the voltages applied to the respective rotors, compared to the four
degrees of freedom of the system, which are: the pitch and yaw angles and the angular velocities of the
propellers. Moreover, there are many physical parameters that cannot be measured exactly, and some
of the parameters supplied by the manufacturer are changed by time, such as the friction coefficients.
All of this makes the modeling and control of the system a difficult task to achieve.

There are many research works that have addressed this challenging experimental platform.
In fact, the dynamic modeling of the TRMS has been studied from different approaches. Rahideh et al.
define the dynamic model of the TRMS using Newtonian and Lagrangian methods and also by means
of two models based on neuronal networks using Levenberg–Marquardt (LM) and gradient descent
(GD) algorithms [10]. Toha et al. develop a parametric model for the TRMS based on dynamic spread
factor particle swarm optimization [11]. A linear parameter varying (LPV) method of identification,
by taking a local approach, is considered in order to derive an LPV model for TRMS by means of
interpolation and approximation in the work of Tanaka et al. [12]. The Euler–Lagrange method is
employed in the research of Tastermirov [13] to obtain a complete dynamic model of the TRMS, which
is tuned and validated experimentally. More recently, a model based on first-principle modeling and
later improved by gray box modeling, has been presented in [14]. The design of control algorithms for
the TRMS platform has been also investigated via several approaches and control methods. Among the
different contributions in this area, we can cite the following works. Juang and colleagues present a
comparative study [15], by means of numerical simulations, between classical control schemes, based
on the Ziegler–Nichols proportional-integral-derivative (PID) rule, the gain margin and phase margin
rule, the pole placement method and novel controllers based on fuzzy logic and genetic algorithms.
In the research of Wen et al. [16], the dynamic model for the TMRS is decoupled into two single
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input single output (SISO) systems in order to apply a PID-based robust deadbeat control scheme for
each of them, thus achieving the control of the platform. The design and experimental validation of
a multi-step Newton-type model predictive control (MPC) to control the TRMS is presented in [17]
where a nonlinear dynamic model of the platform is also developed. An adaptive fuzzy controller to
stabilize the TRMS in a desired position or to track a specified trajectory is discussed in [18]. The work
of Pandey et al. [19] in which two conventional PID controllers, improved by the use of derivative
filter coefficients, are employed to the control of the pitch and yaw angles, the work of Belmonte et al.
based on active disturbance rejection control (ADRC) [20] and the research of Alagoz et al. [21] about a
reference model-based optimization approach for the online auto-tuning of PIDs using the stochastic
multi-parameters divergence optimization (SMDO) method are other interesting investigations that
are focused in the design of control schemes for the TRMS.

In the particular case of this research, we present the design of a novel decentralized nonlinear
controller for the TRMS, composed of two control loops in a cascade scheme. The development of the
proposed control scheme has been separated into two independent stages: the design of the inner loop
or electrical controller, which is used to control the angular velocity of each propeller, and the design
of the outer loop or mechanical controller, which is employed to determine the necessary velocities
to control the space position of the TRMS. The effectiveness of the proposed scheme is validated by
means of the experiments performed in the laboratory platform in which the proposed nonlinear
controller shows an excellent performance for both stabilization and tracking tasks.

The rest of the article is organized as follows: Section 2 introduces the dynamic model of the
TRMS, showing the modeling of the electrical part formed by the interface circuit and the DC motors,
and the modeling of the mechanical part composed by the equations of motion of the system. Next, the
design of the proposed decentralized control scheme is detailed in Section 3. The experiments carried
out in order to verify the efficiency of the proposed control algorithm are presented in Section 4, where
we detail the experimental setup and the obtained results, which include a comparative study with
other classical controllers. Finally, some conclusions are provided in Section 5.

2. Dynamic Model

This section describes the dynamic modeling of the TRMS, and according to [10], it has been
divided into the following two stages. In the first place, the electrical part of the platform is modeled,
including the interface circuit, the DC motors and the propulsive forces produced by these motors.
Then, a Lagrangian-based model is employed for the remaining mechanical structure. Next, each part
of the dynamic model is dealt with in the next subsections.

2.1. Dynamics of the Electrical Part

The main and tail rotors (denominated as m and t, respectively) are assumed to be identical with
different mechanical loads. The mathematical expressions governing the main and tail rotors are
the following:

• Main rotor:

Lm
dim

dt
= vm − kvm ωm − Rmim (1)

Im1 ω̇m = ktm im − fvm ωm − CQm ωm|ωm| (2)

• Tail rotor:

Lt
dit

dt
= vt − kvt ωt − Rtit (3)

It1 ω̇t = ktt it − fvt ωt − CQt ωt|ωt| (4)
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where im and it are the main and tail motor currents, respectively, Lm and Lt represent the motor
inductances, Rm and Rt denote the motor resistances, kvm and kvt express the motor back electromotive
force (EMF) constants, ωm and ωt are the angular velocities of the propellers and vm and vt represent
the input voltage of the DC motors. Im1 and It1 define the moment of inertia of the rotors; the terms
ktm im and ktt it express the main and tail electromechanical torques generated by the DC motors;
CQm ωm|ωm| and CQt ωt|ωt| illustrate the aerodynamic torques; and fvm ωm and fvt ωt denote the friction
torques. Following a similar argument as [13], the dynamics of the current of the motors defined in
Expressions (1) and (3) is ignored due to the higher value of the DC motor mechanical time constants
against the electrical ones. In fact, the DC motor mechanical constants (cmm and cmt ) are in the order of
103-times higher than the DC motor electrical constants (cem and cet ), as you may observe in Table 1,
which shows the parameters of both rotors. Thereby, for the DC motor circuits, the following algebraic
equations are obtained:

vm − kvm ωm − Rmim = 0 (5)

vt − kvt ωt − Rtit = 0 (6)

Table 1. Dynamic model of the TRMS: electrical parameters.

Symbol Parameter Value Units

Parameters of the Main Rotor

kvm Motor velocity constant 0.0202 V · rad−1 · s
Rm Motor armature resistance 8 Ω
Lm Motor armature inductance 0.86× 10−3 H
ktm Electromagnetic constant torque motor 0.0202 N ·m · A−1

kum Coefficient linear relationship interface circuit 8.5 −
C+

Qm
Load factor (ωm ≥ 0) 2.695× 10−7 N ·m · s2 · rad−2

C−Qm
Load factor (ωm < 0) 2.46× 10−7 N ·m · s2 · rad−2

fvm Viscous friction coefficient 3.89× 10−6 N ·m · rad−1 · s
Im1 Moment of inertia about the axis of rotation 1.05× 10−4 kg ·m2

cem Electrical time constant (Lm/Rm) 1.075× 10−4 s
cmm Mechanical time constant (Im1Rm/ktm kvm ) 2.058 s

Parameters of the Tail Rotor

kvt Motor velocity constant 0.0202 V · rad−1 s
Rt Motor armature resistance 8 Ω
Lt Motor armature inductance 0.86× 10−3 H
ktt Electromagnetic constant torque motor 0.0202 N ·m · A−1

kut Coefficient linear relationship interface circuit 6.5 −
CQt Load factor 1.164× 10−8 N ·m · s2 · rad−2

fvt Viscous friction coefficient 1.715× 10−6 N ·m · rad−1 · s
It1 Moment of inertia about the axis of rotation 2.1× 10−5 kg ·m2

cet Electrical time constant (Lt/Rt) 1.075× 10−4 s
cmt Mechanical time constant (It1Rt/ktt kvt ) 0.4117 s

It should be noted that the magnitude input voltages of the main and tail rotors in the
MATLAB/Simulink R© environment, defined as um and ut, respectively, and the motor terminal
voltages, defined as vm and vt, respectively, are nonlinear (the signals pass through a circuit interface),
as was demonstrated in [10]. In our developments, it is assumed that the relationship between
the control signals and the motor voltages is linear and that the differences will be canceled at the
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controller stage. Therefore, the relationships between the control signals and the MATLAB/Simulink R©

environment are the following:

vm = kum um (7)

vt = kut ut (8)

in which kum and kut are defined as constant gains. Upon operating with Equations (1)–(8) and
rearranging terms, the following two equations are yielded for the main and rail rotors of the TRMS:

ω̇m =
ktm kum

Im1 Rm
um −

(
ktm kvm

Rm
+ fvm

)
ωm

Im1

− CQm

Im1

ωm|ωm| (9)

ω̇t =
ktt kut

It1 Rt
ut −

(
ktt kvt

Rt
+ fvt

)
ωt

It1

− CQt

It1

ωt|ωt| (10)

in which the value and units of each parameter of the main and tail rotors are detailed in Table 1.
Finally, if we use matrix notation, the dynamic model of the electrical part of the TRMS can be expressed
by means of the following expression:

ω̇(t) = Nu(t) + Γ(ω(t)) (11)

where ω(t) = [ωm(t), ωt(t)]T is the angular velocity vector, u(t) = [um(t), ut(t)]T is the input
control voltage vector and, finally, the diagonal positive matrix N = diag(nm, nt) and the vector
Γ(ω(t)) = [Γm(t), Γt(t)]T are given by:

N =

[
nm 0
0 nt

]
=




ktm kum
Im1 Rm

0

0
ktt kut
It1 Rt


 (12)

Γ(ω(t)) =

[
Γm(t)
Γt(t)

]
=


−

(
ktm kvm

Rm
+ fvm

)
ωm
Im1
− CQm

Im1
ωm|ωm|

−
(

ktt kvt
Rt

+ fvt

)
ωt
It1
− CQt

It1
ωt|ωt|


 (13)

2.2. Dynamics of the Mechanical Part

If the developments reported in [10] are used as a basis, the dynamics of the TRMS can be derived
using Lagrange’s formulation:

d
dt

(
∂L
∂q̇

)
− ∂L

∂q
= Q (14)

where L = K − V is the Lagrangian function, K and V are the kinetic and potential energies of the
TRMS, q(t) = [ψ(t), φ(t)]T is a vector of generalized coordinates and Q(t) = [Qψ(t), Qφ(t)]T denotes
the vector of generalized forces in the TRMS. All of the necessary terms of (14) are obtained in the
following subsections.

2.2.1. Evaluation of the Kinetic Energy

In order to calculate the energy of the TRMS, we consider the platform as divided into the
following three subsystems: (1) the subsystem composed of the free-free beam (tail and main beam),
tail rotor, main rotor, tail shield and main shield; (2) the counterbalance beam with the counterweight;
and (3) the pivoted beam (see Figures 2–4). The positions of the subsystems can be expressed as the
position of a point for each one, P1, P2, P3, parametrized by the distance between it and the point
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where the subsystem can rotate, as can be observed in the following expressions (where Sψ ≡ sin ψ,
Cψ ≡ cos ψ, Sφ ≡ sin φ and Cφ ≡ cos φ):

P1 (R1) =
[

P1x P1y P1z

]T
=
[
−R1SφCψ + hCφ R1CφCψ + hSφ R1Sψ

]T
(15)

P2 (R2) =
[

P2x P2y P2z

]T
=
[
−R2SφSψ + hCφ R2CφSψ + hSφ −R2Cψ

]T
(16)

P3 (R3) =
[

P3x P3y P3z

]T
=
[

R3Cφ R3Sφ 0
]T

(17)

where R1 and R2 are the distances from point O1 to P1 and P2, respectively, and R3 is the distance from
P3 to the center of the reference system, that is the point O.

In this way, the total amount of kinetic energy consists of the sum of the following three terms:

K =
3

∑
i=1

Ki =
1
2

3

∑
i=1

∫
v2

i (Ri)dm(Ri) (18)

where Ki denotes the kinetic energy of each subsystem and vi(Ri) is the velocity of each subsystem
parameterized by Ri, which represents the distances R1, R2 and R3 that have been defined above.
The calculations of these energies are the following:

K1 =
1
2

J1

(
C2

ψφ̇2 + ψ̇2
)
+

1
2

h2mT1 φ̇2 − hSψlT1 mT1 φ̇ψ̇ (19)

K2 =
1
2

J2

(
S2

ψφ̇2 + ψ̇2
)
+

1
2

h2mT2 φ̇2 + hCψlT2 mT2 φ̇ψ̇ (20)

K3 =
1
2

J3φ̇2 (21)

where:

J1 = mtsr2
ts +

1
2

mmsr2
ms +

(
1
3

mt + mtr + mts

)
l2
t +

(
1
3

mm + mmr + mms

)
l2
m

mT1 = mm + mmr + mms + mt + mtr + mts

lT1 =

(mt
2 + mtr + mts

)
lt −

(mm
2 + mmr + mms

)
lm

mT1

J2 =
1
3

mbl2
b + mcbl2

cb

mT2 = mb + mcb

lT2 =
mb

lb
2 + mcblcb

mT2

J3 =
1
3

mhl2
h
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Figure 2. Twin rotor MIMO system (TRMS) prototype platform.

Figure 3. View of the TRMS on the vertical plane.
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Figure 4. View of the TRMS on the horizontal plane.

2.2.2. Evaluation of the Potential Energy

The total potential energy consists of the sum of the following three terms:

V =
3

∑
i=1

Vi = g
3

∑
i=1

∫
rzi(Ri)dm(Ri) (22)

where g denotes the gravity constant, Vi represents the potential energy of each one of the three
subsystems in which we have divided the platform and rzi(Ri) is the coordinate on the z-axis of the
position of each subsystem (Piz ). The calculation of these energies is as follows:

V1 = gSψlT1 mT1 (23)

V2 = −gCψlT2 mT2 (24)

V3 = 0 (25)

2.2.3. Lagrangian

After substituting Expressions (18)–(25) in the Lagrangian expression, we obtain:

L = K−V =
1
2

(
J1C2

ψ + J2S2
ψ + J3 + h2 (mT1 + mT2

))
φ̇2 +

1
2
(J1 + J2) ψ̇2

+h
(
lT2 mT2 Cψ − lT1 mT1 Sψ

)
φ̇ψ̇− g

(
lT1 mT1 Sψ − lT2 mT2 Cψ

)
(26)

2.2.4. Generalized Forces

The external forces in the mechanical system are owing to the following four physical effects:
(a) aerodynamic forces created by the propellers; (b) the electromechanical forces generated by the
propellers; (c) the viscous forces that model the dissipative effects that are present in the system and;
(d) the elastic force created by the cable. After grouping the effect of these forces for each generalized
coordinate, the following result is achieved for Q(t) = [Qψ(t), Qφ(t)]T :

Qψ(t) = CTm ωm |ωm| lm − CRt ωt |ωt| −
(

fvψ ψ̇ + fcψ sign (ψ̇)
)
+ ktω̇t (27)

Qφ(t) = CTt ωt |ωt| ltCψ − CRm ωm |ωm|Cψ −
(

fvφ φ̇ + fcφ sign (φ̇)
)
− Cc (φ− φ0)

+ kmω̇mCψ (28)
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where CTm ωm |ωm| lm and CTt ωt |ωt| ltCψ represent the aerodynamic thrust torques acting along the
ψ and φ angles, respectively; CRt ωt |ωt| and CRm ωm |ωm|Cψ denote the aerodynamic cross-couplings

effects generated by the propeller; the terms
(

fvψ ψ̇ + fcψ sign (ψ̇)
)

and
(

fvφ φ̇ + fcφ sign (φ̇)
)

define the
magnitudes of friction torques for each generalized coordinate; ktω̇t and kmω̇mCψ express the inertial
counter torques that are owing to the reaction produced by a change in the rotational speed of the
rotor propellers; and the term Cc (φ− φ0) is the magnitude of the torque exerted by the cable (it has a
certain stiffness that allows us to model it as a spring) on the φ angle.

Finally, it should be noted that the works of Tastermirov et al. [13] and Mullhaupt et al. [22]
provide more details about the external forces in the TRMS and other laboratory platforms with
similar dynamics.

2.2.5. Equations of Motion

Upon substituting Expressions (26)–(28) in Equation (14) and after some straightforward
manipulations, we obtain the following equations of motion:

(J1 + J2) ψ̈ + h
(
lT2 mT2 Cψ − lT1 mT1 Sψ

)
φ̈ +

(
(J1 − J2)

2
S2ψ

)
φ̇2 + g

(
lT1 mT1 Cψ + lT2 mT2 Sψ

)
=

= CTm ωm |ωm| lm − CRt ωt |ωt| −
(

fvψ ψ̇ + fcψ sign (ψ̇)
)
+ ktω̇t (29)

h
(
lT2 mT2 Cψ − lT1 mT1 Sψ

)
ψ̈ +

(
J1C2

ψ + J2S2
ψ + J3 + h2 (mT1 + mT2

))
φ̈

−h
(
lT1 mT1 Cψ + lT2 mT2 Sψ

)
ψ̇2 +

(
(J2 − J1) S2ψ

)
φ̇ψ̇ =

= CTt ωt |ωt| ltCψ − CRm ωm |ωm|Cψ −
(

fvφ φ̇ + fcφ sign (φ̇)
)
− Cc (φ− φ0) + kmω̇mCψ (30)

in which the value and units of all of the mechanical parameters are illustrated in Tables 2 and 3,
respectively. Finally, we can express the motion equations of the system in a compact form by means
of matrix notation, thus obtaining the complete dynamic model of the mechanical part of the TRMS in
the following expression:

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + G(q(t)) + F(q̇(t)) + T(q(t), ω̇(t)) = E(q(t))Ω(t) (31)

where:

M(q(t)) =

[
J1 + J2 h

(
lT2 mT2 Cψ − lT1 mT1 Sψ

)

h
(
lT2 mT2 Cψ − lT1 mT1 Sψ

)
J1C2

ψ + J2S2
ψ + J3 + h2 (mT1 + mT2

)
]

(32)

C(q(t), q̇(t)) =

[
0 1

2 (J1 − J2) S2ψφ̇

−h
(
lT1 mT1 Cψ + lT2 mT2 Sψ

)
ψ̇ (J2 − J1) S2ψψ̇

]
(33)

G(q(t)) =

[
g
(
lT1 mT1 Cψ + lT2 mT2 Sψ

)

0

]
(34)

F(q̇(t)) =

[
fvψ 0
0 fvφ

]

︸ ︷︷ ︸
Fv

q̇(t) +

[
fcψ sgn (ψ̇)

fcφ sgn (φ̇)

]

︸ ︷︷ ︸
Fc(q̇(t))

=

[
fvψ ψ̇ + fcψ sgn (ψ̇)

fvφ φ̇ + fcφ sgn (φ̇)

]
(35)

T(q(t), ω̇(t)) =

[
0

Cc (φ− φ0)

]

︸ ︷︷ ︸
Mc(q(t))

−
[

0 kt

kmCψ 0

]

︸ ︷︷ ︸
Mi(q(t))

ω̇(t) =

[
−ktω̇t

Cc (φ− φ0)− kmω̇mCψ

]
(36)
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E(q(t)) =

[
CTm lm −CRt

−CRm Cψ CTt ltCψ

]
(37)

Ω(t) =

[
ωm |ωm|
ωt |ωt|

]
(38)

Table 2. Dynamic model of the TRMS: mechanical parameters.

Symbol Parameter Value Units

lt Length of the tail part of the free-free beam 0.282 m
lm Length of the main part of the free-free beam 0.246 m
lb Length of the counterbalance beam 0.290 m
lcb Distance between the counterweight and the joint 0.276 m
rms Radius of the main shield 0.155 m
rts Radius of the tail shield 0.1 m
h Length of the pivoted beam 0.06 m

mtr Mass of the tail DC motor and tail rotor 0.221 kg
mmr Mass of the main DC motor and main rotor 0.236 kg
mcb Mass of the counterweight 0.068 kg
mt Mass of the tail part of the free-free beam 0.015 kg
mm Mass of the main part of the free-free beam 0.014 kg
mb Mass of the counterbalance beam 0.022 kg
mts Mass of the tail shield 0.119 kg
mms Mass of the main shield 0.219 kg
mh Mass of the pivoted beam 0.01 kg

Table 3. Dynamic model of the TRMS: parameters of the pitch and yaw movements.

Symbol Parameter Value Units

Parameters of the Pitch movement

C+
Tm

Thrust torque coefficient of the main rotor (ωm ≥ 0) 1.53× 10−5 N · s2 · rad−2

C−Tm
Thrust torque coefficient of the main rotor (ωm < 0) 8.8× 10−6 N · s2 · rad−2

CRt Load torque coefficient of the tail rotor 9.7× 10−8 N ·m · s2 · rad−2

fvψ Viscous friction coefficient 0.0024 N ·m · s · rad−1

fcψ Coulomb friction coefficient 5.69× 10−4 N ·m
kt Coefficient of the inertial counter torque due to change in ωt 2.6× 10−5 N ·m · s2 · rad−1

Parameters of the Yaw movement

C+
Tt

Thrust torque coefficient of the tail rotor (ωt ≥ 0) 3.25× 10−6 N · s2 · rad−2

C−Tt
Thrust torque coefficient of the tail rotor (ωt < 0) 1.72× 10−6 N · s2 · rad−2

C+
Rm

Load torque coefficient of the main rotor (ωm ≥ 0) 4.9× 10−7 N ·m · s2 · rad−2

C−Rm
Load torque coefficient of the main rotor (ωm < 0) 4.1× 10−7 N ·m · s2 · rad−2

fvφ Viscous friction coefficient 0.03 N ·m · s · rad−1

fcφ Coulomb friction coefficient 3× 10−4 N ·m
cc Coefficient of the elastic force torque created by the cable 0.016 N ·m · rad−1

φ0 Constant for the calculation of the torque of the cable 0 rad
km Coefficient of the inertial counter torque due to change in ωm 2× 10−4 N ·m · s2 · rad−1

To conclude, the dynamic model of the mechanical part of the TRMS (31) can be summarized in a
simplified form if we consider that the movement of the platform is sufficiently smooth. In this way,
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the terms of the inertial counter torques, ktω̇t and kmω̇mCψ, can be considered negligible in comparison
with the other terms. Thereby, the dynamic model of the TRMS can be rewritten as:

M(q(t))q̈(t) + D(q(t), q̇(t)) = E(q(t))Ω(t) (39)

where the matrices M(q(t)), E(q(t)) and Ω(t) have been defined in Equations (32), (37) and (38),
respectively, and the new matrix D(q(t), q̇(t)) = [Dψ(t), Dφ(t)]T is given by:

Dψ(t) =
1
2
(J1 − J2) S2ψφ̇2 + g

(
lT1 mT1 Cψ + lT2 mT2 Sψ

)
+
(

fvψ ψ̇ + fcψ sgn (ψ̇)
)

(40)

Dφ(t) = −h
(
lT1 mT1 Cψ + lT2 mT2 Sψ

)
ψ̇2 +

(
(J2 − J1) S2ψ

)
φ̇ψ̇ +

(
fvφ φ̇ + fcφ sgn (φ̇)

)
+ Cc (φ− φ0) (41)

3. Design of the Control System

The proposed decentralized nonlinear control scheme is based on decoupling the electrical
dynamics from the mechanical dynamics. Once these dynamics have been decoupled, a nonlinear
multivariate inner loop is closed in order to control the vector of the angular velocities of the propellers,
ω(t) = [ωm(t), ωt(t)]T , and then, a nonlinear multivariate outer loop is closed to control the vector of
the generalized coordinates of the system, q(t) = [ψ(t), φ(t)]T , in order to achieve stabilization and
precise trajectory tracking tasks for the controlled position of the generalized coordinates of the TRMS.
If we make the dynamics of the inner loop control much faster than the mechanical dynamics of the
TRMS in Equation (39), the dynamics of the inner loop can be therefore made approximately equal to
I2×2, (i.e., ω∗(t) ≈ ω(t)), and the outer loop can be designed independently [23].

Among the advantages of this control scheme are: (a) the robust nonlinear controller design
procedure is simplified to a great extent, since it allows one to design the multivariate inner loop in an
independent manner from the multivariate outer loop, thus dividing the control design process into
two much simpler design processes; (b) this scheme can be more easily and safely implemented than
the standard controllers used in the control of the TRMS platform, which involve closing a single loop,
because the nested control loops proposed in this work are sequentially implemented, first closing the
inner loop, which exhibits a very high relative stability in the presence of system uncertainties, external
disturbances and noisy corruptions, and later closing the outer loop, which is more prone to becoming
unstable, but for which the risk of exhibiting unstable motions has been significantly reduced by
previously having closed the inner loop; (c) the disturbances affecting the secondary or inner loop are
effectively compensated before they affect the main process output, thereby improving the stability
of the system; (d) the closing of the control loop around the secondary part of the process reduces
the phase lag seen by the primary or outer controller, resulting in increased speed of response; (e) the
cascade control scheme is not strongly sensitive to modeling errors, although large errors could lead to
oscillations or instability in one of the feedback controllers; (f) any variation in the static gain of the
secondary part of the process is compensated by its own tie; (g) the use of this scheme can dramatically
improve the performance of control strategies, reducing both the maximum deviation and the integral
error for disturbance responses. In the scheme shown in Figure 5, the outer loop controller generates
an auxiliary command reference vector ω∗(t) = [ω∗m(t), ω∗t (t)]

T for the velocities of the propellers
on the basis of the tracking objective for the vector of generalized coordinates: q(t) = [ψ(t), φ(t)]T .
The inner loop controller takes the command vector signal generated by the outer loop ω∗(t) as its
reference for the inner loop propeller velocity control system. The different parts of the proposed
control scheme are explained next.
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Figure 5. Robust decentralized nonlinear control scheme for the TRMS.

3.1. Inner Loop Control

The inner loop control is designed to calculate the required values for the input control voltages
of the motors in the MATLAB/Simulink R© environment, u(t) = [um(t), ut(t)]T , in order to reduce
and eliminate the difference between the vector of angular velocities of the propellers of the TRMS,
ω(t) = [ωm(t), ωt(t)]T , and the reference vector of these angular velocities, ω∗(t) = [ω∗m(t), ω∗t (t)]

T ,
which is the output of the outer loop. In this sense, the feedback multivariate control input,
u(t) = [um(t), ut(t)]T , is synthesized as a nonlinear input transformation and classical proportional
controller with a nonlinear cancellation vector:

u(t) = N−1[ϑe(t)− Γ(ω(t))] (42)

in which N and Γ(ω(t)) are defined in Equations (12) and (13), respectively, and ϑe(t) = [ϑm(t), ϑt(t)]T

represents a vector of auxiliary control inputs, given by:

ϑe(t) = ω̇(t) = −Ke
P[ω(t)−ω∗(t)] (43)

where Ke
P ∈ R2×2 is a constant diagonal positive definitive matrix that represents the design elements

of a vector-valued classical proportional controller.
The closed loop tracking error vector, eω(t) = ω(t)−ω∗(t), for the electrical part is obtained

after substituting Expression (42) in the dynamic model of the electrical part of the system in
Equation (11), yielding the following expression:

ω̇(t) + Ke
Peω(t) = 0 (44)

The controller design matrix Ke
P is designed so as to render the following 2× 2 complex-valued

diagonal matrix, pe
c(s), defined as:

pe
c(s) = I2×2s + Ke

P (45)
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as first degree Hurwitz polynomials with the desired roots located in the left half of the complex plane
in order to achieve the convergence of the tracking error dynamics to a small vicinity around the
origin of the error phase space. In particular, the constant controller gain matrix Ke

P of the closed loop
characteristic polynomial is determined by means of a term by term comparison with the following
desired Hurtwitz 2× 2 diagonal matrix:

pe
cd
(s) = I2×2s + pe

c (46)

where pe
c ∈ R2×2 is a diagonal positive definite matrix, which represents the desired position of the

poles in closed loop. Therefore, the design controller gain is given by:

Ke
P = pe

c (47)

Finally, to conclude the description of the inner loop control, we highlight again that the design
parameters are selected for the sake of making the dynamics of the inner loop control much faster than
the outer loop dynamics, this way ensuring the functioning of the cascade controller [24]. The secondary
controller must be relatively quick so that it attenuates a disturbance before the disturbance affects the
primary controlled variable. A general guideline is that the secondary one should be three-times faster
than the primary [25]. It should be noted that the cascade strategy has to be tuned in a sequential
manner. In this procedure, the inner loop control should be tuned first, because the secondary controller
or inner loop affects the open-loop dynamics of the primary or outer loop. Thereby, and in order to
tune the parameters in the inner loop control, which are the gains of the proportional controller defined
in matrix Ke

P, the primary controller will be disconnected, i.e., the cascade should be open, and then,
the electrical controller will be tuned in a conventional manner, which involves a plant experiment,
initial tuning calculation and fine-tuning based on a closed-loop dynamic response.

3.2. Outer Loop Control

The objective of the outer loop control is to determine the required values for the angular
velocities of the main and tail rotors, i.e., the reference vector for the angular velocities, which is
the reference input of the inner loop, ω∗(t) = [ω∗m(t), ω∗t (t)]

T , in order to eliminate the difference
between the generalized coordinates of the TRMS, q(t) = [ψ(t), φ(t)]T , and the reference trajectories
for these coordinates, q∗(t) = [ψ∗(t), φ∗(t)]T . To achieve this goal, the following multivariate
nonlinear feedback control input vector, Ω(t), is synthesized as a nonlinear input transformation
and a proportional-integral-derivative (PID) controller with a nonlinear cancellation vector:

Ω(t) = E−1(q(t))[M(q(t))ϑm(t) + D(q(t), q̇(t))] (48)

where ϑm(t) = [ϑψ(t), ϑφ(t)]T represents a vector of auxiliary control variables, given by:

ϑm(t) = q̈(t) = q̈∗(t)−Km
D(q̇(t)− q̇∗(t))−Km

P (q(t)− q∗(t))−Km
I

∫
(q(t)− q∗(t)) (49)

where Km
D , Km

P and Km
I ∈ R2×2 are diagonal positive definitive matrices that represent the design

elements of a vector-valued classical proportional-integral-derivative multivariate controller.
The closed loop tracking error vector, eq(t) = q(t)− q∗(t), for the mechanical part is obtained

after substituting Expression (48) in the simplified model of the mechanical part in Equation (39),
yielding the following expression:

e(3)q (t) + Km
D ëq(t) + Km

P ėq(t) + Km
I eq(t) = 0 (50)

In order to achieve the convergence of the tracking error dynamics to a small vicinity around the
origin of the tracking error phase space, the controller design matrices Km

D , Km
P and Km

I are chosen
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in such a manner that all non-zero components of the 2× 2 complex valued diagonal matrix, pm
c (s),

defined as,
pm

c (s) = I2×2s3 + Km
D s2 + Km

P s + Km
I (51)

are all third degree Hurwitz polynomials whose roots are located sufficiently far into the left half
on the complex plane. The stability of Expression (51) can be studied by using the Routh–Hurwitz
criterion. Bearing in mind that the set of design matrices Km

P , Km
D and Km

I are diagonal, the stability
of each error variable eq(t) = [eψ(t); eφ(t)]T = [ψ(t) − ψ∗(t); φ(t) − φ∗(t)]T can be studied in an
independent manner. After applying the Routh–Hurwitz criterion, one obtains the following stability
conditions: (i) Km

Di
, Km

Pi
> 0; and (ii) 0 < Km

Ii
< Km

Di
· Km

Pi
for i = ψ, φ. After considering the previous

stability restrictions, the constant controller gains Km
D , Km

P and Km
I of the closed loop characteristic

polynomial are determined by using a term by term comparison with the following desired Hurtwitz
2× 2 complex-valued diagonal matrix:

pm
cd
(s) =

(
I2×2s + pm

c

) (
I2×2s2 + 2ζm

c ωm
c s + (ωm

c )2
)

(52)

where pm
c , ζm

c and ωm
c ∈ R2×2 are diagonal positive definite matrices. Therefore, the design controller

gains are given by:

Km
D = 2ζm

c ωm
c + pm

c (53)

Km
P = (ωm

c )2 + 2ζm
c ωm

c pm
c (54)

Km
I = pm

c (ωm
c )2 (55)

Finally, the necessary angular velocity vector values, ω∗(t) = [ω∗m(t), ω∗t (t)]
T , are obtained from

the input control vector, Ω(t) = [ωm |ωm| , ωt |ωt|]T , by performing the following operation:

ω∗(t) =

[
ω∗m(t)
ω∗t (t)

]
=

[
sign (ωm |ωm|)

√
|ωm |ωm||

sign (ωt |ωt|)
√
|ωt |ωt||

]
(56)

4. Experimental Section

This section describes the experiments carried out to verify the effectiveness of the proposed
control algorithm. In the following subsections, we briefly explain the experimental platform and the
software tools, and after that, we illustrate the experimental results on the real platform, including
a comparison with other control algorithms in terms of both stabilization and trajectory tracking
task performance.

4.1. Experimental Setup

The implementation of the designed robust decentralized controller is carried out by using the
following equipment:

• A twin rotor MIMO system provided by Feedback Instruments R© (see Figure 1 and [9]).
• A PC operating in a Windows R© environment using software tools from MathWorks R© Inc

(MATLAB R©, Simulink, Control Toolbox, Real Time Workshop R© (RTW), Real Time Windows
Target R© (RTWT)) and Visual C++ Professional R©.

• The real TRMS is connected to the computer by means of an Advantech R© PCI1711 card, which is
accessible in the MATLAB/Simulink R© environment through the Real-Time Toolbox R©.

• The control signals in the MATLAB/Simulink R© environment consist of two input voltages (in the
range [−2.5, 2.5] V) for the two DC motors A-max 26 provided by Maxon Motor R©.

• The vector of generalized coordinates, q(t) = [ψ(t), φ(t)]T , are measured by using two HCTL
2016 digital encoders provided by Agilent Technologies R©, and the angular velocity vector
ω(t) = [ωm(t), ωt(t)]T is measured by using two DC-Tacho DCT 22 provided by Maxon Motor R©.
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• The sampling rate for the controlled system is 0.002 s.

On the other hand, the executable file for the proposed control scheme is achieved by performing
the following steps (see Figure 6): MATLAB R© acts as the application host environment, in which the
other MathWorks R© products run, and Simulink R© provides a well-structured graphical interface for
the implementation of the proposed nonlinear control scheme. Real Time Workshop R© automatically
builds a C++ source program from the Simulink Model. The C++ Compiler R© compiles and links
the code created by Real Time Workshop R© to produce an executable program. Real Time Windows
Target R© communicates with the executable program acting as the control program and interfaces
with the TRMS through the PCI1711 card. Real Time Windows Target R© controls the two-way data,
or signal flow, to and from the model (which is now an executable program), and to and from the
PCI1711 card. The advantage of this approach is that the designer only needs to model the process,
using the graphical tools available in Simulink R©, without having to worry about the mechanics of
communication to and from the TRMS.

Simulink Model

C

code

Executable

Program

Real Time 

Parameters Changes

Real Time

Workshop

Real Time

Windows Target PCI 1711

TRMS 

Figure 6. Control system development flow diagram.

4.2. Experimental Results

This subsection discusses the experiments carried out to verify the efficiency of the control strategy
proposed in Section 3 in the following aspects: (a) robustness with regard to large initial errors; (b) quick
convergence of the tracking errors to a small neighborhood of zero; (c) smooth transient responses;
(d) low control effort; (e) robustness with regard to modeling errors. In the trials, the desired reference
trajectories for the pitch (ψ) and the yaw (φ) angles have been selected in order to obtain a complex and
challenging trajectory for the TRMS, which allows one to show the main characteristics and excellent
performance of the proposed control scheme, but avoiding at the same time the saturation of the
actuators of the laboratory platform. This reference trajectory is defined by the following expression:

q∗(t) =

[
ψ∗(t)
φ∗(t)

]
=


 A0ψ + A1ψ

(
2sin(ω1ψ

t) + sin(ω2ψ t)
)

A1φ
sin(ω1φ

t) + A2φ

(
sin(ω2φ t) + sin(ω3φ t)

)

 (57)

where q∗(t) = [ψ∗(t), φ∗(t)]T is the reference trajectory vector of the generalized coordinates, and the
values of the above constants are given by:

A0ψ = 0.4 rad; ω1ψ
= 0.0785 rad/s;

A1ψ
= 0.1 rad; ω2ψ = 0.0157 rad/s;

A1φ
= 0.8 rad; ω1φ

= 0.157 rad/s;

A2φ = 0.3 rad; ω2φ = 0.0785 rad/s;

ω3φ = 0.0157 rad/s; (58)
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In order to demonstrate the exponential convergence of the desired trajectories, and the robustness
with respect to large initial errors, the initial position of the TRMS is defined as q0(t) = [0, 0]T , which
represents a different value than the initial position of the reference trajectory vector q∗(t). With regard
to the parameters of the plant used in the experimentation, the values of which are presented in
Tables 1–3, we have to highlight that the discrepancies in the model due to modeling errors are around
5%, as a consequence of the difficulty involved in adequately modeling all of the dynamics terms.
The small errors observed in the dynamics identification trials, which have been performed in our
research, are compensated by the action of the proposed control scheme. With the use of an integral
action on the outer loop, eliminating the possible steady state errors is achieved.

On the other hand, the design of the proposed nonlinear control scheme and the choice of the
values of the gain vectors, which are tuned according to the procedure explained in Section 3, have
been done in order to achieve a control as fast as possible, but avoiding possible saturations of the input
voltages of the motors in the MATLAB/Simulink R© environment, which occur at ±2.5 V. The summary
of the procedure carried out to tune the designer parameters is explained next. Firstly, the inner loop
control has been tuned using the model of the electrical part of the TRMS by means of numerical
simulations. In this first stage, the parameters of the proportional controller have been tuned in
order to achieve the fast dynamics of the inner loop. In other words, the aim is to achieve a quick
convergence of the closed loop tracking error vector, eω(t), to a small vicinity around the origin of
the tracking error phase space. Secondly, we have assumed the dynamics of the inner loop to be
equal to I2×2, and then, we have tuned, again by means of numerical simulations, the parameters
of the PID controller in the outer loop. Finally, the values obtained in the simulations have been
slightly adjusted in the experimental trials with the laboratory platform. Thereby, for the inner loop
controller, the values of the desired Hurtwitz 2× 2 complex diagonal matrix for the controller are
pe

c(s) = diag(12.0, 9.0), and for the outer loop controller, the values of the matrices of the desired
Hurtwitz polynomial vector for the feedback controller are pm

c = diag(1.0, 1.0), ζm
c = diag(1.5, 1.5)

and ωm
c = diag(2.0, 1.8). More details about how to tune controllers based on a cascade scheme can be

consulted in some reference works [25–28].
In the following lines, we discuss the performance of the proposed decentralized control scheme,

which is shown in the next graphs (Figures 7–11), where, in order to show the improvements of
this design, we shall also compare the experimental results obtained using the proposed control
(denoted in the graphs as decentralized nonlinear control (DEC NON)), a standard PID control [29]
(denoted in the graphs as PID CLASSIC) and a PID control with a derivative filter coefficient [19]
(denoted in the graphs as PID DFC). Figure 7 illustrates a comparison between the desired trajectory,
q∗(t) = [ψ∗(t), φ∗(t)]T , and the real trajectory of the TRMS, q(t) = [ψ(t), φ(t)]T . This graph shows that
the three algorithms are robust with regard to large initial errors. However, the proposed decentralized
control scheme has the smoothest transient response and the best performance in trajectory tracking,
as can also be observed in Figure 8, which shows, for each control, the closed loop tracking error vector,
eq(t) = q(t) − q∗(t) = [ψ(t) − ψ∗(t), φ(t) − φ∗(t)]T . The proposed decentralized controller has a
closed loop tracking error vector that remains bounded within a vicinity of radius [0.04, 0.10]T rad,
while the standard PID and the PID with derivative filter have error vectors bounded in [0.02, 0.35]T rad
and [0.02, 0.33]T rad, respectively. Therefore, although the three control algorithms achieve a quick
convergence of the tracking error to a small neighborhood of zero, the proposed control scheme
presents the smallest error.
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Figure 7. Real and desired evolution trajectories of the vector of the generalized coordinates of the
TRMS, q(t) = [ψ(t), φ(t)]T .
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Figure 11. Evolution of the input voltage vector, u(t) = [um(t), ut(t)]T , in the
MATLAB/Simulink R© environment.

On the other hand, the performance of the inner control loop is shown in Figure 9, which illustrates
a comparison between the angular velocity vector, ω∗(t) = [ω∗m(t), ω∗t (t)]

T , obtained from the output
of the outer loop, and the real magnitudes of the angular velocity vector, ω(t) = [ωm(t), ωt(t)]T .
Again, the proposed control has a smooth transient response and a fast convergence of the tracking
error to a neighborhood near to zero as evidenced in Figure 10, which shows, for each control,
that the angular velocity error vector, eω(t) = ω(t) − ω∗(t) = [ωm(t) − ω∗m(t), ωt(t) − ω∗t (t)]

T ,
remains bounded in [20, 120]T rad/s. Finally, the input voltage vectors in the MATLAB/Simulink R©

environment, u(t) = [um(t), ut(t)]T , are shown in Figure 11. This graph illustrates that the smallest
control input effort is provided by the proposed control scheme, which furthermore presents a smooth
evolution of the input voltage vector without saturations unlike both PID controls, the standard PID
and the PID with derivative filter coefficient. As you may observe at the top of this figure, both PID
controls cause the saturation of the control signal of the main rotor, which occurs at ±2.5 V, for long
periods of time during the trials. These saturations cause a worse performance of each one of these
controllers in comparison with the proposed control scheme.

Additionally, the performances of the control methods have been measured in terms of the
integral squared tracking error, ISE =

∫ tB
tA

eq(t)Teq(t)dt =
∫ tB

tA
(eψ(t)2 + eφ(t)2)dt, the integral

absolute tracking error, IAE =
∫ tB

tA
(|eψ(t)|+ |eφ(t)|)dt, and the integral time absolute tracking error,

ITAE =
∫ tB

tA
t(|eψ(t)|+ |eφ(t)|)dt, where tA = 0 s and tB = 150 s denote the initial and final time of

the simulation, and eq(t) = [eψ(t), eφ(t)]T = [ψ(t)− ψ∗(t), φ(t)− φ∗(t)]T is the closed loop tracking
error vector. The ISE and the IAE criteria will treat all of the tracking errors in a uniform manner.
However, the ITAE criterion, as time appears as a factor, will heavily penalize errors that occur late in
time, but ignore errors that occur early in time. The results achieved are illustrated in Table 4, showing
the best performance of the proposed decentralized control scheme (DEC NON) in comparison to the
other conventional controls (PID CLASSIC and PID DFC). Both PID controls show a similar behavior
and have a worse performance when they are compared to the proposed control method.
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Table 4. Performance of the control methods.

Control Method ISE IAE ITAE

Robust Decentralized Nonlinear Control (DEC NON) 0.3956 6.6579 435.7
Standard PID control (PID CLASSIC) 5.8275 26.7591 2002.4
PID control with the derivative filter coefficient (PID DFC) 5.0814 24.8175 1834.4

To sum up, the experimental results show a better performance of the proposed decentralized
control scheme against the other control laws. The proposed control law illustrates a better performance
in the following aspects: (1) robustness in relation to large initial errors with a smooth transient
response; (2) better tracking of the reference trajectories; (3) quick convergence of the tracking errors to
the smallest neighborhood of zero; (4) less control effort; and (5) the absence of saturations in the input
control voltages.

5. Conclusions

In this study, we have successfully designed a novel robust nonlinear multivariate decentralized
control scheme for the underactuated and nonlinear twin rotor MIMO system (TRMS) laboratory
platform. This control system is based on decoupling the electrical from the mechanical dynamics
and the use of two nested nonlinear multivariate loops. The inner loop is designed as a nonlinear
input transformation and classical proportional controller with a nonlinear cancellation vector
and is responsible for the stabilization and tracking of the vector of angular velocities of the
propellers of the TRMS. The outer loop control is designed as a nonlinear input transformation,
a proportional-integral-derivative (PID) linear action and nonlinear compensation vector, which
determines the required values for the reference velocities in order to achieve the elimination of the
difference between the generalized coordinates of the TRMS and the reference trajectories for these.
This independence in the design of the control loops is possible thanks to having made the dynamics of
the inner loop much faster than the dynamics of the mechanical part. This control system is very simple
and allows the platform to be perfectly stabilized and positioned in space. Additional advantages
of this control approach are: (a) simplification of the control design procedure due to the design of
two much simpler dynamics, which are controlled separately; (b) this scheme can be more easily and
safely implemented than the standard controllers used in the control of the TRMS platform, which
involve closing a single loop, because the nested control loops proposed in this work are sequentially
implemented, first by closing the inner loop, which exhibits a very high relative stability in the presence
of system uncertainties, external disturbances and noisy corruptions, and later through closing the
outer loop, which is more prone to becoming unstable, but whose risk of exhibiting unstable motions
has been significantly reduced by having previously closed the inner loop. The experimental tests
carried out, in order to verify the performance of the proposed decentralized controller, show not only
the accurate tracking of the reference trajectories, but also the better performance of the proposed
control compared to the other two conventional controllers. The robustness in regards to large initial
errors and possible modeling errors, the quick convergence to a small neighborhood of zero and the
smooth transient response with a low control effort are the main features of the proposed design.
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