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Head and neck squamous cell carcinoma (HNSCC) is a highly lethal disease with

high-level of epidemic both in the world and Taiwan. Previous studies support that

head and neck cancer-initiating cells (HN-CICs), a subpopulation of cancer cells

with enhanced stemness properties, contribute to therapy resistance and tumor

recurrence. Arsenic trioxide (As2O3; ATO) has shown to be an effective anti-cancer drug

targeting acute promyelocytic leukemia (APL). Combinatorial treatment with high dose

of ATO and cisplatin (CDDP) exert synergistic apoptotic effects in cancer cell lines of

various solid tumors, however, it may cause of significant side effect to the patients.

Nevertheless, none has reported the anti-cancerous effect of ATO/CDDP targeting

HN-CICs. In this study, we aim to evaluate the low dose combination of ATO with

conventional chemo-drugs CDDP treatment on targeting HN-CICs. We first analyzed

the inhibitory tumorigenicity of co-treatment with ATO and chemo-drugs on HN-CICs

which are enriched fromHNSCC cells. We observed that ATO/CDDP therapeutic regimen

successfully synergized the cell death on HN-CICs with a Combination Index (CI) <1

by Chou-Talalay’s analysis in vitro. Interestingly, the ATO/CDDP regimen also induced

exaggerated autophagy on HN-CICs. Additionally, this drug combination strategy also

empowered both preventive and therapeutic effect by in vivo xenograft assays. Finally,

we provide the underlying molecular mechanisms of ATO-based therapeutic regimen on

HN-CICs. Together, low dose of combinatorial ATO/CDDP regimen induced cell death

as well as exacerbated autophagy via AMPK-STAT3 mediated pathway in HN-CICs.
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BACKGROUND

Head and neck cancer (HNC), a disease with a major worldwide
burden. About 95% of HNC is squamous cell carcinoma
(HNSCC) which make up the sixth most common cause of
cancer death. It is responsible for 300,000 deaths annually (1).
HNSCC is considered one of the most common cancers leading
to significant mortality and morbidity in Taiwan. Treatment
for HNSCC usually involves therapies with surgery, radiation,
or chemotherapy alone or concurrent chemotherapy/radiation.
However, the overwhelming majority of HNSCC patients’
survival outcomes still remain poor. The 5-year overall survival
rate of HNSCC’s patients is about 40–50% (2), thus, illustrating
the urgent need to develop novel therapeutic options to prolong
the patients survival.

In the past decade, the hierarchical model of cancer stem cells
(CSCs) or cancer initiating cells (CICs) has raised an intense topic
in cancer biology or treatment. The CICs are a subpopulation of
cancer cells with differentiation ability to maintain the bulk cells
population of the tumor with heterogeneous phenotypes and to
trigger tumor-initiating activity. Besides, the self-renewal ability
of CICs also attributes to the cancer relapse, drug resistance
and radio-resistance (3). Most of the therapeutic agents are
capable of eliminating the more rapidly proliferating bulk cells,
however, the CICs may lay dormant after the therapies (4).
After the interruption of treatment, CICs may remerge as they
are intrinsically resistant to the therapy agents or they have
required mutations that confer resistance to the therapy agents
(5). Previously, we have successfully enriched HN-CICs by
spheroid cultivation (6), and have identified a subset of HN-CICs
with low intracellular reactive oxygen species levels (ROSLow)
which sustain the stemness properties and tumorigenicity (7).
The HN-CICs have demonstrated chemo-resistant phenotype.
Interestingly, this subpopulation cells also can be enriched in
cisplatin-resistance cell line (7). Thus, development of novel
therapeutic agents to target HN-CICs is required, and it would
benefit for future HNSCC therapy.

Arsenic Trioxide As2O3 (ATO) has been used in traditional
Chinese medicine as pharmaceutical agents for over 2400
years (8). It has shown promising results in the treatment
of hematopoietic malignancies (9, 10). In year 2000, Food
and Drug Administration (11) have approved arsenic trioxide
(TrisenoxTM) for treatment of acute promyelocytic leukemia
(APL) (12). Studies have shown that ATO was an effective
therapeutic agent in APL with 63.8 to 93% high remission rate
and could prolong patients’ survival rate (13). A number of
studies also have revealed a pro-apoptotic activity of ATO in solid
tumors, including breast cancer, gastric cancer, hepatocellular
carcinomas and sarcoma (14–17). Although ATO is able to
improve the disease outcome, of note, ATO also introduces to
common side effects such as gastrointestinal disorders, cough,
fatigue, skin rash, myelosuppression and the most burden are the
liver function failure and cardiac toxicity (18). Previous studies
have revealed that ATO has been correlated to many anticancer
mechanisms, such as promoting tumor cell differentiation,
inhibition of tumor cell growth and induce cells apoptosis.
ATO also shows to reduce chemo-resistance in tumor cells

via inducing the apoptosis mechanism (19). ATO has been
reported to induce partial differentiation and apoptosis in APL
cells (20, 21). Although ATO anti-cancer activity has utterly
studied in various solid tumors such as hepatocellular carcinoma
(HCC), colorectal cancer (CRC), breast cancer and gliomas,
it’s only effective in APL treatment and less successful in
other malignancies. Clinically, high dose of ATO is required to
accomplish the anti-cancer activity in solid tumors in comparison
with hematological malignancies (22). Instead of attempting
on ATO single treatment, researchers are looking toward the
combinatorial therapeutic regimen. It has been reported that
ATO enhances the therapeutic efficacy of cisplatin treatment on
both oral and ovarian cancers (23, 24). ATO treatment has been
carried out in HNSCC (25, 26), however the results indicating
that high doses of single ATO is required to eliminate the cancer
cells. Impractical high doses usage of ATO will cause strong
side effects in heart and vascular toxicity. Concerning these side
effects, the combination regimens of ATO treatments are applied
to various cancers (27).

ATO can induce autophagy cell death in various solid tumors
(28). Autophagy is referred to an intracellular degradation system
in cytoplasmic components and act as cytoprotective to overcome
various stress condition. The interplay of autophagy and cancer
is complicate and remain controversy. There are evidences
implicating that autophagy may play a role as a tumor suppressor
(29), while some suggest that it may promote tumorigenesis
(30). Interestingly, our previous finding shows that YMGK-1
from Antrodia cinnamomea successfully eliminates HN-CICs via
autophagy mediated cell death (31).

In this study, we performed a combinatorial low dose
ATO/cisplatin (CDDP) treatment targeting the HN-CICs as
well as HNSCC cisplatin-resistant cells (HNSCC-CisPtR). We
examined the cytotoxicity effects of low dose ATO/CDDP
treatment both in vitro and in vivo assays. The experimental
results revealed that the combinatorial of low dose ATO/CDDP
treatment has a great potential to promote cell death in
HN-CICs. In addition, we further investigated the cellular
mechanism underlying ATO-base therapeutic regimen induced
cell death. We found that ATO/CDDP not only induced cell
differentiation but also exaggerated autophagy mediated cell
death. The combinatorial low dose of ATO/CDDP treatment
provided a potential therapeutic application, which can efficiently
eradicate the HN-CICs.

MATERIALS AND METHODS

Cell Lines Cultivation and Enrichment of
HN-CICs From HNSCCs
The oral cavity HNSCC cell lines, SAS obtained from Japanese
Collection Research Bioresources (Tokyo, Japan), OECM1
provided by Prof. Ching-Liang Meng of National Defense
Medical College, (Taipei, Taiwan) and SAS-CisPtR cells were used
in this study. SAS, SAS-CisPtR and OECM1 cells were cultured
in DMEM and RPMI supplemented with 10% FBS (GIBCO,
Mexico), respectively (6, 7). The enrichment of HN-CICs
were performed by cultivating both cell lines in tumor sphere
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conditionmedium consisting of serum-free DMEM/F12medium
(GIBCO, UK), N2 supplement (GIBCO, USA), 10 ng/mL
human recombinant basic fibroblast growth factor (bFGF),
and 10 ng/mL Epidermal Growth Factor (EGF) (PEPROTECH,
USA). The cells were plated at a density of 7.5× 104 live cells per
100mm dishes as per experimental requirement. The cells were
monitored and the medium was changed every other day until
the tumor sphere cells were formed in about 4 weeks. All cells
were cultured under the condition of 37oC with 5% CO2 (6).

Western Blot
Protein extracts were prepared from cells by using RIPA
buffer, and the protein concentration was measured by protein
assay kit (Bio-Rad, USA). Protein extracts were denatured in
sample buffer and subjected to SDS-PAGE gel electrophoresis.
The electrophoretic proteins were then transferred to the
nitrocellulose (NC) membrane. Nitrocellulose membranes were
blocked in 5% skimmed milk and probed with primary
antibodies. NC membrane were then washed and incubated
with HRP-conjugated secondary anti-rabbit IgG or anti-mouse
IgG at room temperature in TBST containing 5% milk for 1 h.
After extensive washes in TBST, the signals were visualized
by the enhanced chemiluminescence system as described by
the manufacturer (Millipore, Germany) in conjunction with
in LAS-4000 image analyzer (GE Healthcare, Japan). The
immunoblotting signals from anti-Beta-actin (BA3R, Thermo
Fisher Scientific, USA) or anti-GAPDH (GA1R, Thermo Fisher
Scientific, USA) antibodies were used as a loading control.

Annexin V Apoptotic Assay
Apoptotic cells were detected with an Annexin V-FITC kit
(Calbiochem, Darmstadt, Germany). 1 × 106 cells were stained
with Annexin V–FITC and analyzed by FACS Calibur apparatus
(Becton Dickinson, USA).

Anchorage Independent Growth Assay
Each well (35mm) of a six-well culture dish was coated with
2ml bottom agar (Sigma-Aldrich, USA) mixture [DMEM, 10%
(v/v) FCS, 0.6% (w/v) agar]. After the bottom layer was solidified,
1ml top agar-medium mixture [DMEM, 10% (v/v) FCS, 0.3%
(w/v) agar] containing 1 × 104 cells with ATO or CDDP
single treatment and ATO/CDDP combined treatment was
added, and the dishes were incubated at 37◦C for 15 days. The
colonies were counted over five fields per well for 15 fields in
triplicate experiments.

Subcutaneous Xenografts in Nude Mice
All the animal practices in this study were approved and
treated in accordance with the Institutional Animal Care and
Use Committee (IACUC No. 1020504) of National Yang-Ming
University, Taipei, Taiwan. HN-CICs cells were subcutaneously
injected into BALB/c nude mice (6–8 weeks). Tumor volume
(TV) was calculated using the following formula: TV (cm3) =
(Length×Width 2)/2.

Inmmunohistochemistry
After deparaffinization and rehydration, the tissue sections
were processed with antigen retrieval by boiling the slides
in sodium citrate buffer (10mM, pH 6.0). The slides were

immersed in 3% H2O2 for 10min and washed thrice with PBST.
The tissue sections were then blocked with serum (Vestastain
Elite ABC kit, Vector Laboratories, USA) for 30min, followed
by incubating with the primary antibody, in PBS solution at
room temperature for 2 h in a container. Tissue slides were
washed with PBS and incubated with biotin-labeled secondary
antibody for 30min, followed by 30min streptavidin-horse
radish peroxidase conjugates incubation. The slides were washed
thrice with PBS. Subsequently, the tissue sections were immersed
with AEC substrate kit as described by the manufacturer (Dako
Corporation, USA) for 10min. Hematoxylin was applied for
counter-staining. Finally, the tumor sections were mounted with
Gurr R© (BDH Laboratory Supplies, U.K.) and examined under
a microscope.

RESULTS

Combinatorial Low Dose ATO/CDDP
Treatment Synergistically Promotes Cell
Death in HN-CICs and Diminishes the
Stemness Properties
In order to evaluate the anti-cancerous efficacy of low dose
combinatorial treatment with ATO/CDDP, we performed the
co-treatment on HN-CICs by combining different doses of
ATO with different doses of conventional chemo-drug, CDDP.
Annexin V/PI double staining was used to examine the apoptotic
effects by ATO/CDDP co-treatment. The flow cytometry analyses
indicated that the cell number of Annexin V/PI positive staining
under the co-treatment of ATO/CDDP was substantially higher
than that of HN-CICs with single treatment (Figure 1A). Cells
treated with low dose of ATO (3µM) in combination with
8µM CDDP revealed strong cell death. These results indicate
that low dose of combinatorial ATO/CDDP can promote cell
death of HN-CICs. However, we found that co-treatment
of ATO/CDDP did not cause cell death in normal human
keratinocyte cells (NHOK) (Supplementary 1). In additional,
either SAS-CICs or OECM1-CICs showedmore resistant to ATO
single treatment when compared with parental cell lines (data not
shown). To determine the synergistic effects of the combinatorial
ATO/CDDP treatment, we performed the Chou-Talalay’smethod
analyses, and the combination index value (CI value) was
calculated by using CompuSyn software. As shown in Figure 1B

and Table S1, most of combinational regimens were reside on
synergism sections (CI < 1). For the following experiments
conducted we used the combinatorial ATO/CDDP dosages with
synergism. Additionally, the protein level of stemness markers
such as Nanog and Oct4 was downregulated in ATO/CDDP
co-treated SAS derived HN-CICs (SAS-CICs) in comparison
to that of the untreated cells or cisplatin/ATO single treated
cells (Figure 1C). The above mentioned findings indicate that
the stemness properties of SAS-CICs were abrogated after the
ATO/CDDP combinatorial treatment.

ATO/CDDP Treatment Re-sensitizes the
Cisplatin-Resistance Cell Line
Aswe have demonstrated that HN-CICs aremore chemoresistant
(7). Here, we would like to investigate whether combinatorial
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FIGURE 1 | Synergistic effect of combinatorial low dose ATO/CDDP treatment on promoting cell death and diminishing the stemness properties of HN-CICs.

(A) HN-CICs treated with ATO/CDDP, ATO, and CDDP alone for 24 h, respectively. The cell death was examined by Annexin V/PI staining. Statistical analysis was

performed by student’s t-tests. *p < 0.05 and **p < 0.01. (B) Synergistic effect of combination ATO/CDDP on HN-CICs was calculated by using Chou–Talalay

analysis. Different doses of combination ATO/CDDP treatment induced cell death of HN-CICs (percentage) and combination index (CI value), Y axis. Each point

represents different doses of combination ATO/CDDP CI value. CI values were generated by using Compusyn Software, X axis indicates the effects (Fa, fractioned

effected, % inhibition), and symbols represent CI values derived from actual data points (CI = 1, activity; CI > 1, antagonism; CI < 1, synergy). (C) Immunoblot assay

to examine the expression of the stemness markers, Nanog and Oct-4, of HN-CICs after single or combined treatment of ATO (3µM) or CDDP (4µM) on HN-CICs for

48 h, respectively. β-actin signal was used as loading control.

low dose ATO/CDDP treatment can re-sensitize the chemo-

resistant cells by co-treating the Cisplatin resistant SAS-

CisPtR cells (7) which possessing the HN-CICs characters with

ATO/CDDP regimen. The combinatorial low dose ATO/CDDP

treatment not only re-sensitized to CDDP but also induced cell

death on the treated SAS-CisPtR cells (Figure 2A). Consistent

to SAS-CICs results, the stemness properties of SAS-CisPtR

cells were also diminished after the combined treatment with
ATO/CDDP (Figure 2B).

ATO/CDDP Treatment Induces Autophagic
Cell Death and Promotes Cell
Differentiation in HN-CICs
According to our previous research, autophagy mediated cell
death can be a major molecular mechanism to induce cell
death in HN-CICs (31). In fact, the role of ATO in promoting
cellular autophagy are reported in other cancer cell line (27).
Initially, we found that the cell death numbers were increased
when HN-CICs were treated with low dose ATO/CDDP through
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FIGURE 2 | Low dose ATO/CDDP co-treatment re-sensitizing the SAS-CisPtR

cells. (A) Cell death of the SAS-CisPtR cells treated with single or combined

ATO and CDDP for 24 h was examined by Annexin V/PI staining. Statistical

analyses were performed by student’s t-tests. *p < 0.05. (B) Immunoblot

analyses were used to detected the expression profile of stemness markers,

Nanog and Oct-4, of SAS-CisPtR cells after single or combined treatment of

ATO (3µM) or CDDP (4µM), respectively. β-actin signal was used as loading

control.

Annexin V/PI double staining analyses. However, this induced
cell death caused by ATO/CDDP co-treatment was reversed
when the autophagic cell death inhibitor, 3-Methyladenine
(3-MA), was simultaneously co-treated (Figure 3A). Further,
we determined the protein LC-3B I/II ratio, a autophagic

marker, by immunoblotting assay (Figure 3B). ATO single
treatment induced expression of autophagy marker, LC-3B-II.
The expression of LC-3B-II was further elevated in cells under
ATO/CDDP treatment, interestingly, addition of 3-MA also
reversed the expression of LC-3B-II. Moreover, the expression
of both apoptotic markers [poly (ADP ribose) polymerase
(PARP1) and cleaved-caspase3] was also significantly increased,
and this induction of apoptotic markers can be reversed by 3-
MA co-treatment. We also observed the elevated protein level
of the differentiation markers (cytokeratin 18 and involucrin) in
ATO/CDDP combinatorial treated cells compared to the protein
level of single treated or untreated cells (Figure 3C). Taken
together, these results suggest that low dose of combinatorial
ATO/CDDP promotes cell death by exaggerating autophagy to
promote both cell apoptosis and differentiation.

Combinatorial Low Dose ATO/CDDP
Suppresses the Malignancy of HN-CICs in
vitro and in vivo
To further characterize the anti-cancerous effects of ATO/CDDP
combined treatment in HN-CICs, we first performed anchorage
independent growth assay. The colony number of the untreated
cells was similar to that of the ATO or CDDP singly treated
HN-CICs (Figure 4A). However, combined treatment with 2
or 4µM ATO and CDDP significantly reduced the colony
number (Figure 4A). These results indicate that low dose of
ATO combined treatment with CDDP impairs malignancy
and self-renewal ability of HN-CICs. To further elucidate the
anti-cancerous growth effects of the combined treatment of
ATO/CDDP in vivo, we used xenograft mouse models to analyze
the attenuated tumorigeneity of HN-CICs by ATO/CDDP
regimen treatment. Here, we carried out two animal models,
the first one was administrated as the cancer preventive model
(Figure 4B). To do so, the 8-week old nude mice were first
subcutaneously injected with HN-CICs which were pre-treated
with single or combined regimen of ATO/CDDP. The size of
tumor generated from the pre-treated HN-CICs was measured
continuously after cell inoculation (Figure 4C).We observed that
HN-CICs under single treatment with ATO or CDDP did not
significantly affect their tumor growth ability but delay the tumor
initiating timing of HN-CICs during tumor formation. However,
HN-CICs pretreated with ATO/CDDP regimen showed dramatic
loss of tumor initiating ability. Secondly, we performed the
cancer therapeutic model (Figure 4D). Nude mice were first
injected with enriched HN-CICs. When mice bearing HN-
CICs derived tumor, with primary tumor growing to around
0.1 cm3, they were administrated with single ATO, CDDP or
combinatorial regimen. In the therapeutic model, we found that
the effect of cisplatin single treatment was similar to the placebo
group on day 36 (Figure 4E). Additionally, ATO single treatment
compared to CDDP single and placebo treatment showed an
anti-cancerous effect but without the statistical significance.
Unsurprisingly, we observed that the combined ATO/CDDP
treatment had significant effect on inhibiting tumor growth.
The above mentioned results implicate that combinatorial of
low dose ATO/CDDP has a therapeutic potential on targeting
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FIGURE 3 | Low dose ATO/CDDP co-treatment inducing autophagy and differentiation in HN-CICs. (A) SAS-CICs cells were treated with different doses of ATO,

CDDP and/or 3-Methylamphetamine (3-MA) for 24 h and analyzed by annexin V/PI staining. The bar chart revealed the amount of Annexin V+/PI+ cells.

(B) Immunoblot analyses indicated expression of autophagy related markers such as PARP, cleaved caspase3 and LC3B. (C) SAS-CICs cells were treated with single

or combined treatment of ATO (3µM), CDDP (4µM), and/or 3-MA (5mM) for 48 h. Immunoblot analyses were used to detected the expression profile of epithelial

differentiation marker such as Cytokeratin 18 and Involucrin. β-actin signal was used as loading control. Statistical analyses were performed by student’s

t-tests. *p < 0.05.

HN-CICs. To further verify the cell death response to drug
treatment, we performed TUNEL assay to detect the dying
cells of tumor mass with drug treatment (Figure 4F). The
TUNEL signal was highly displayed in the combined ATO/CDDP
administrated tumor sections. We also observed a strong
cytokeratin 18 staining, and a mild decrease of NANOG signal
on IHC staining of ATO/ CDDP combined treated tumor
sections (Figure 4G). Taken together, the results suggest that
low dose of ATO/CDDP therapy is able to suppress tumor
growth by inducing cell death and abolishing cancer stemness in
xenografted mouse model.

The Molecular Mechanisms of ATO-Based
Therapeutic Regimen Promote Cell Death
in HN-CICs
According to our previous studies, dysregulation of autophagy
could be the main molecular mechanism to induce the

cell death in HN-CICs (31, 32). Further, we showed that
ATO/CDDP treatment induced autophagic cell death and
promotes cell differentiation in HN-CICs. Hence, we first
examined the autophagy signaling pathway to uncover
this molecular mechanism whether it is dysregulated in
inducing cell death by ATO/CDDP regimen treatment.
When the combination treatment applied, we observed a
decrease of phospho-PI3K and phospho-mTOR in both
SAS-HNCICs (Figure 5A) and SAS-CisPtR (Figure 5C) but
not in OECM1-CICs by immunoblot analyses (Figure 5B).
Additionally, the ATO/CDDP combined treatment suppressed
the expression of phospho-STAT3 in SAS-CICs, OECM1-
CICs, and SAS-CisPtR. Interestingly, a significant elevation
of p-AMPK was observed in these SAS-CICs, OECM1-
CICs and SAS-CisPtR cells under ATO/CDDP treatment.
Together, the dysregulation of autophagy of HN-CICs are
regulated through AMPK, STAT3 signaling pathways under
ATO/CDDP treatment.
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FIGURE 4 | Continued
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FIGURE 4 | Low dose ATO/CDDP treatment suppressing the malignancy of HN-CICs both in vitro and in vivo. (A) SAS-CICs cells were treated with single or

combined treatment of ATO and CDDP for 12 h. The treated cells were then plated on soft agar for 15 days. The colony formation ability of the SAS-CICs cell under

distinct condition was collected as shown in the representative images. The bar graphs showed the amounts of colonies with a diameter ≥ 100µm over 5 fields per

assay. The data are the mean ± SD from three independent experiments and analyzed by Student’s t-test (*p < 0.05). (B) The schematic of preventive model;

(Continued)

Frontiers in Oncology | www.frontiersin.org 8 April 2020 | Volume 10 | Article 463

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Hu et al. ATO Based Therapeutics Targeting HN-CICs

FIGURE 4 | SAS-CICs cells were singly or combinatorically pretreated with ATO (3µM) and of CDDP (2µM) for 12 h. These cells were subcutaneously injected into

the back of nude mice. (C) The tumor growth generated from the treated SAS-CICs cells was recorded and analyzed. (D) The schematic of therapeutic model was

used to demonstrate the anti-tumorous ability of low doses ATO/CDDP regimen. SAS-CICs cells were first subcutaneously inoculated onto the back of nude mice.

When the tumor size reached around 0.1 cm3, ATO (2.5 mg/kg) and CDDP (5 mg/kg) were either singly or combinatorically intraperitoneal injected into the nude mice.

PBS was used as placebo. (E) The mice were sacrificed on day 36, and the images of the generated tumors were collected. Tumor growth curves were also recorded

and analyzed. (F) TUNEL assay was performed to analyze the cell death among the collected xenograft tumors. DAPI dye was used as counter staining. (G) Xenograft

tumors generated from SAS-CICs cells treated with ATO/CDDP regimen were collected. Subsequently, immunohistochemistry staining was performed to detect the

expression of stemness marker (Nanog) and differentiation marker (CK18). H&E; hematoxylin and eosin stain.

FIGURE 5 | The molecular targets of ATO/CDDP regimen. (A) SAS-CICs, (B) OECM1-CICs, and (C) SAS-CisPtR administrated with single or combined treatment of

ATO and CDDP treated were harvested and analyzed by immunoblot assay by targeting the cancerous related molecules, p-AMPK and p-STAT3. GAPDH was used

as loading control.

DISCUSSION

Arsenic trioxide is well-known of its anti-cancer activity to treat
acute promyelocytic leukemia (APL) patients (33). In previous
studies, 0.16 mg/kg/day ATO is administered to APL patient; the
treatment course takes about 6 weeks and the dosage of ATO
is nearly 6–8µM in the plasma (34). In the conventional ATO
therapy, it requires a high dose to induce the apoptotic effect.
In this study, we have successfully demonstrated a low dose of
combinatorial ATO/CDDP treatment synergistically induced the
exaggerated autophagy mediated cell death in HN-CICs. The CI
analysis indicates that the combinatorial effect of ATO/CDDP
exhibits a wide range of synergism (CI < 1) in HN-CICs,
ranging from 0.15 to 0.98. Further, we found that the low
dose ATO (3µM) combined with 4µM cisplatin effectively
induced apoptotic cell death in HN-CICs (Figure 1A). This
combinational regimen also inhibited the HN-CICs self-renewal
ability. Importantly, we observed the inhibitory tumorigenicity

of HN-CICs in the therapeutic nude mice model in vivo which
was administrated with low dose ATO/CDDP. Moreover, the
combinatorial low doses of both ATO and CDDP in our study
were effective even in the cisplatin-resistant cells.

HNSCC patients are still facing the relapse after therapy (35).
This may due to the conventional treatments cannot efficiently
eliminate CICs, which are involved in the tumor progression,
metastasis, and chemo/radio resistance (36). Recent clinical
studies showed that conventional chemotherapeutics generally
affect proliferative cells, potentially eliminate proliferating cancer
cells but not targeting the slow dividing cells CICs (37).
CICs have exhibited quiescent slow-cycling phenotype and
have been shown to be involved in tumor progression, cancer
recurrence and metastasis because of their therapeutic resistance
(31, 38). Thus, in this study we focused on ATO/CDDP
combinatorial therapy targeting the HN-CICs. This ATO-
based therapeutic regimen seems to promote the HN-CICs
differentiation (Figures 3C, 4G) as we observed the enhanced
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expression of differentiation markers Cytokeratin 18 and
Involucrin. It has been reported, ATO can diminish stemness
properties in leukemia or hepatocellular carcinoma derived
cancer initiating cells (39, 40). In addition, Tomuleasa et al. have
reported that low concentration of ATO lead to differentiation
in glioblastoma multiforme (GBM) stem-like cells (41). Cisplatin
is a standard therapeutic agent of HNSCC through specifically
targeting highly proliferation cells (2, 11, 42). Indeed, cumulative
evidence suggested CDDP could not suppress the high stemness
properties of cancer cells. Together, the combinatorial low dose
ATO/CDDP regimen seems to facilitate HN-CICs differentiation
into highly proliferated cells and subsequently underwent
cell apoptosis.

We observed the induced autophagy when the ATO/CDDP
was applied to HN-CICs. The expression of LC3 II (Figure 3B),
a well-known marker for autophagy, was enhanced in this
combinatorial treated HN-CICs. Similar results are seen in
our early discovery that exaggerated induction of autophagy
abolishes the stemness properties of HN-CICs, in themean times,
loss of stemness properties of HN-CICs can promote the cell
differentiation ability (31). During the cancer progression and
metastasis stage, autophagy emerges as a pro-tumoral role in
order to eliminate the ROS-induced metabolic stress (43, 44).
Intriguingly, we observed a consistency of up-regulation of p-
AMPK in combinatorial treated cells. AMPK is a conserve
energy-sensing kinase. AMPK is activated in response to
metabolic stress and shortage of energy. Once activated, AMPK
globally promotes catabolic processes. In accordance, AMPK
has be linked to the regulation of autophagy (45, 46). Here,
we showed that the activation of AMPK seems to increase
the autophagic flux in ATO/CDDP treated cells (Figure 5). In
this case, the excessive autophagy in these treated cells reverse
the protective role of pro-tumoral but promoting the CICs to
undergo autophagic cell death.

Another crucial issue of current HNSCC therapeutic
is an emerging of drug resistance. This is most likely due
to the existence of CICs which are resistant to chemo-
drugs. Our previous publications (7, 32) have demonstrated
that CDDP-resistance cells (SAS-CisPtR) consist of highly
stemness properties. The combination of ATO/CDDP
regimen synergistically induced cell death in SAS-CisPtR

cells (Figure 2A). Although the dose used to diminish the
SAS-CisPtR cell lines was higher than the dose used in HN-
CICs, the dosage is relatively lower than clinical administrated
dosage. The anti-tumorous effect of the combined ATO/CDDP
treatment to ovarian cancer (24) or oral squamous cell
carcinoma (OSCC) (23) has been studied by others. However,
the used dose of ATO/CDDP is higher than that in our
current study. Furthermore, we had successfully eradicated
both the HN-CICs and SAS-CisPtR cells by using low dose of
ATO/CDDP regimen.

Cisplatin induced drug resistance effects are connected
with mTOR signaling up-regulated (47). Our results also
revealed that the treatment of ATO/CDDP in HN-CICs could
reverse the cisplatin induced mTOR upregulation in SAS-CICs
and OECM1-CICs (Figure 5). Phosphatidylinositol 3-kinase
(PI3K)/mammalian target of rapamycin (mTOR) pathway is

a well-known signaling for controlling cell survival through
autophagy regelation. This crucial survival pathway can affect
cells proliferation, angiogenesis, metabolism, and differentiation.
Interesting, our result revealed that the phosphorylated PI3K
expression only suppressed in SAS derived HN-CICs and
SAS-CisPR but not in OECM1-CICs under ATO/CDDP
regimen treatment. This may refer to the conversed sensitivity
of PI3K between SAS-CICs and OECM1-CICs. In other
autophagy inhibitor study also perform different PI3K effects
during their drug treatment (48). Together, the upstream
of mTOR signal may not derive from PI3K in OECM1
cells. Finally, SAS-CisPtR cells did not decrease mTOR under
ATO/CDDP treatment. However, PI3K signaling is becoming
more sensitive in CDDP single and ATO/CDDP combined
treatment in this resistance line. This phenotype may refer
to drug-resistance of SAS-CisPtR cells. To overcome cisplatin
cytotoxicity, this cell line obtained other mTOR upstream
signaling to maintain cell survive but not derived fromPI3K.
However, we still can successfully promote cell death in these
cells via ATO/CDDP treatment (Figure 2). The PI3K/mTOR

FIGURE 6 | Schematic of molecular signaling targeted by low dose

ATO/CDDP regimen. Overall, the low dose ATO/CDDP regimen diminishes the

stemness properties, and promotes cell differentiation in HN-CICs.

Exaggerated autophagy mediated cell death is induced by the low dose

ATO/CDDP regimen to inhibit the tumorigenicity of HN-CICs. Tumor

suppressor AMPK expression increased may participate in this molecular

mechanism regulation. However, this therapeutic regimen direct or indirect

targets are still unknown; (----) refers to unknown relationship or factors.
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is shown in dysregulation pathway in various cancer cells
(49). Recently in glioblastoma stem-like cells research, mTOR
pathway is link to the self-renewal ability and tumorigenicity
of CICs. In addition, cellular key energy sensor kinase
AMP activated protein (AMPK) was reported that it could
promote autophagy by mTOR inactivation. In our data
also suggested ATO-based therapeutic regimen can induced
AMPK activity.

High concentrations of ATO can activate Jun N-terminal
kinase (JNK) (50). In addition, in adipocyte study that
JNK/STAT3 signaling can be suppressed by AMPK (51). In
breast CICs study, STAT3 has been suggested as a specific
marker, which canmediate the Nanog regulation. In our previous
publication, YMGKI-2 showed to restore the chemosensitivity
and promoting differentiation in CICs through targeting the
Src/STAT3/c-Myc pathway (31, 32). Taken together, these
evidences support that STAT3 play a critical role in HN-
CICs. STAT3 signaling is constitutively activated in various
cancer types (32, 52, 53). Its diverse pro-tumoral role has
been widely reported. Thus, STAT3 signaling has been chosen
as cancer therapeutic target. STAT3 has been proposed as
CDDP sensitivity converse key factor (54). There are reports
showing some potential molecules could affect the JAK-STAT3
cancerous pathway (55) to promote cell apoptosis effects.
Fascinatingly, our data revealed the ATO single treatment, or
ATO combined with CDDP could significantly block STAT3
activity in HN-CICs.

CONCLUSION

Overall, the low dose combinatorial treatment of ATO/CDDP
provokes a synergistic cell death effect in both HN-CICs and
SAS-CisPtR cells. Although the proposed dosage is lower than
the clinical dosage, it could effectively diminish the HN-CICs.
Strikingly, with this low dose combinatorial ATO/CDDP, we
showed either both in vitro and in vivo study, the tumorigenesis
was inhibited. Finally, the ATO/CDDP treated HN-CICs and/or
SAS-CisPtR cells underwent cell differentiation, autophagy,

and cell death might through the activation of p-AMPK and
inhibition of STAT3 signaling pathway (Figure 6).
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