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Cytosolic sulphotransferase SULT1A1 plays a dual role in the activation of some carcinogens and inactivation of others. A functional
polymorphism leading to Arg213His substitution (SULT1A1*2) affects its catalytic activity and thermostability. To study the association
of SULT1A1*2 polymorphism with tobacco-related cancers (TRCs), a case–control study comprising 132 patients with multiple
primary neoplasm (MPN) involving TRC and 198 cancer-free controls was carried out. One hundred and thirteen MPN patients had
at least one cancer in upper aerodigestive tract including lung (UADT-MPN). SULT1A1*2 showed significant risk association with
UADT-MPN (odds ratio (OR)¼ 5.50, 95% confidence interval (CI): 1.09, 27.7). Meta-analysis was conducted combining the data
with 34 published studies that included 11 962 cancer cases and 14 673 controls in diverse cancers. The SULT1A1*2 revealed
contrasting risk association for UADT cancers (OR¼ 1.62, 95% CI: 1.12, 2.34) and genitourinary cancers (OR¼ 0.73, 95% CI: 0.58,
0.92). Furthermore, although SULT1A1*2 conferred significant increased risk of breast cancer to Asian women (OR¼ 1.91, 95%
CI: 1.08, 3.40), it did not confer increased risk to Caucasian women (OR¼ 0.92, 95% CI: 0.71, 1.18). Thus risk for different cancers
in distinct ethnic groups could be modulated by interaction between genetic variants and different endogenous and exogenous
carcinogens.
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Tobacco-related cancer (TRC) accounts for almost half the global
burden of cancer and arises from a complex gene–environment
interaction. Traditionally, only lung, oesophageal, and head and
neck cancers were described as TRCs. However, based on several
studies, the International Association of Research in Cancer
(IARC) has broadened the definition of TRC to include carcinoma
of the cervix, bladder, stomach, kidney, pancreas, liver and
myeloid leukaemia (Doll, 1999; IARC Working Group on the
Evaluation of Carcinogenic Risks to Humans, 2004; Hung et al,
2005). Although prolonged exposure to tobacco with or without
other carcinogens plays a central role in the genesis of these
cancers, various host genetic factors could significantly modulate
the risk of developing TRC.

Several genetic alterations in the genes coding for xenobiotic-
metabolising enzymes (XMEs), DNA repair, cell cycle regulation
and apoptotic pathway confer a low-penetrance genetic suscepti-

bility to tobacco carcinogens (Kotnis et al, 2005). There is a large
body of evidence, including meta-analyses to support the
association of various isoforms of glutathione-S transferases
(GSTs), cytochrome P450 and N-acetyl transferase with tobacco
carcinogenesis. Although sulphotransferase (SULT) enzymes could
play an equally important role in detoxifying tobacco carcinogens,
there are very few, mostly inconclusive, studies examining the
association of genetic alteration in the genes coding for this super
family of multifunctional enzymes with TRC (Seth et al, 2000;
Hung et al, 2004; Sellers et al, 2005; Dandara et al, 2006).

Sulphotransferase enzymes catalyse sulphation by transferring
sulphonate (sulphuryl) group from cofactor 30-phosphoadenosine
50-phosphosulphate to a nucleophilic acceptor substrate to form
either a sulphate ester or a sulphamate. These sulphate conjugates
are more polar and less reactive than the parent compound and
facilitate their excretion (Glatt et al, 2001). However, some sulpho
conjugates are strong electrophiles and may covalently bind to
DNA and proteins (Glatt et al, 2001).

SULT1A1 gene is one of the most important and well-studied
members of the SULT family and is abundant in a wide variety of
tissues. SULT1A1 plays a major role in biotransformation of
numerous substrates including several carcinogens, neurotrans-
mitters, steroid hormones and drugs (Raftogianis et al, 1999;
Hildebrandt et al, 2007). Although sulphation is an important
property of SULT1A1 in the inactivation of carcinogens, it also
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plays an important role in toxification of dietary and environ-
mental mutagens (Glatt et al, 2001; Al-Buheissi et al, 2006). Of the
various polymorphisms in SULT1A1, the Arg-His polymorphism
at position 213, in exon 7 (SULT1A1*2), has a twofold lower
catalytic activity and thermo stability than its high-activity Arg213

counterpart as demonstrated in platelet cytosol (Raftogianis et al,
1997; Nowell et al, 2000; Nagar et al, 2006). Although several
reports show risk association of the SULT1A1 variant with
different cancers (Sun et al, 2005; Dandara et al, 2006; Pachouri
et al, 2006; Fan et al, 2007; Lilla et al, 2007; Bardakci et al, 2008),
others show either no effect (Sellers et al, 2005) or a protective
effect (Cheng et al, 2005).

In this case–control study, we have examined the association
of SULT1A1 Arg213His polymorphism with tobacco carcino-
genesis using a unique group of individuals with multiple
tobacco-related primary cancers and have used a meta-analysis
approach to confirm our findings. Considering that His213 variant
of SULT1A1 has a lower activity than Arg213 variant (Raftogianis
et al, 1997; Nagar et al, 2006), we hypothesise that if tobacco
carcinogenesis is significantly modulated by the Arg213His
polymorphism, it would demonstrate a significant association
with TRC and this association may be stronger in individuals
with multiple primary TRC.

MATERIALS AND METHODS

Study subjects

A registry of patients with multiple primary cancers or familial
cancers was established at the Tata Memorial Hospital, Mumbai,
in 1996 by one of the authors (RS). From this registry,
132 consecutive multiple primary neoplasm (MPN) patients
where one or both the primaries were tobacco related, and their
genomic DNA and consent were available, were taken up for this
study. Histological or cytological confirmation of each primary
cancer was available and each of the cancers was classified as
TRC or non-TRC as per the IARC criteria (IARC Working
Group on the Evaluation of Carcinogenic Risks to Humans,
2004). There was no restriction for age at diagnosis, gender or
carcinogen exposure. For defining two cancers as distinct multiple
primaries, modified Hong’s criteria (Hong et al, 1990) was used,
which states that – (a) there is 42 cm of normal intervening
mucosa between two primaries in head and neck region; (b) lung
as second primary if present, should be of different histology, or
be solitary and with characteristic radiology of lung cancer; and
(c) there is no evidence of haematogenous spread. Bilateral cancers
in paired organs such as breast, ovaries or kidneys were not
classified as MPN.

Majority of the MPN cases in the registry hailed from the
western and northern parts of India. The cancer-free controls
(n¼ 198) were volunteers who consented to donate blood or
buccal washes for the study. The controls were also from the same
region and were free of any cancer or pre-cancerous condition.
They were either visiting our hospital in the Preventive Oncology
Department for cancer screening (n¼ 124) or visiting government
dental college for various non-malignant, dental ailments (n¼ 68).
A few were healthy, ethnically matched workers from Mumbai
(n¼ 6). Detailed questionnaire including ethnicity and lifetime
history of tobacco and alcohol use was obtained from all cases and
controls. A majority of them were tobacco users. Family history of
cancer was obtained for all MPN cases and from majority of the
cancer-free controls. After obtaining informed consent, 3 –6 ml of
peripheral blood was collected from each subject. Exfoliated buccal
cells (mouthwash samples) were collected in sterile phosphate-
buffered saline from control individuals who were reluctant to give
blood (n¼ 68). The study was approved by our Hospital Ethics
Committee.

DNA extraction and genotyping

Genomic DNA was extracted from peripheral blood/mouthwash
samples using phenol chloroform method standardised in our
laboratory (Koppikar and Mulherkar, 2006). PCR for SULT1A1
genotyping followed by RFLP using HaeII restriction enzyme was
carried out as described by Wang et al (2002). The authenticity of
the PCR products was confirmed by sequencing at least five
PCR products at random on an automated DNA sequencer
(ABI Prism 3100 Avant) using the Big Dye terminator kit
(ABI Prism, Foster City, CA, USA) as per the manufacturer’s
instructions.

Identification and analysis of studies for meta-analysis

PUBMED searches were conducted to identify studies on SULT
using the search words ‘SULT1A1, SULT AND polymorphism’ and
‘SULT AND cancer’. The inclusion criteria were case–control
studies examining associations of SULT1A1 Arg213His polymor-
phism either alone or in combination with other genes, published
until July 2007. For every study, publication date, country of origin,
demographics, genotyping methodology, ethnicity, source and
genotype frequency of study subjects were reviewed. In case
of missing information, the authors were contacted and requested
to provide the data. One study was excluded as all the required
information could not be obtained (Peng et al, 2003). Genotyping
studies on only cancer cases or exclusively on healthy subjects were
excluded as comparison of cancer patients with matched controls
was a prerequisite for studying association of a particular genotype
with cancer risk (Nowell et al, 2002b, 2005; Magagnotti et al, 2003;
Sparks et al, 2004; Shatalova et al, 2005; Grabinski et al, 2006).

Statistical analysis

The risk (odds ratio, OR) was estimated by comparison of
the variant 213His genotype vs the wild-type 213Arg allele using
dominant model ((Arg/HisþHis/His) vs Arg/Arg), recessive model
(His/His vs (Arg/HisþArg/Arg)) as well as the extreme model
(His/His vs Arg/Arg). The risk was adjusted for age and habit
using unconditional logistic regression analysis using SPSS v14.0.
Hardy–Weinberg equilibrium in the controls was evaluated for each
study using w2 test. For each genetic contrast, the between-study
heterogeneity was estimated across all eligible comparisons using
Q statistics. Funnel plots and Egger’s test were used to assess
potential publication bias, which results from non-publication of
small studies with negative results (Egger et al, 1997). This test
detects funnel plot asymmetry by determining whether the intercept
deviates significantly from zero in a regression of the standardised
effect estimates against their precision. Influence analysis was
also carried to assess whether summary OR was driven by any one
study in the recessive model of meta-analysis (Sterne et al, 2002).
Stratification by ethnicity (Asian, Caucasian and Others), total study
size of cases and controls (up to 500 or more), Hardy–Weinberg
equilibrium (yes/no), primary site (upper aerodigestive tract
(UADT) and lung, breast, colorectal, genitourinary and other sites),
source of control (population/hospital) and carcinogen exposure
studied (yes/no) were pre-specified as characteristics for the
assessment of heterogeneity. Meta-analysis was carried out using
Review Manager Version 4.2 (Cochrane Collaboration) and STATA
software for meta-regression analysis. P-values were two sided.

RESULTS

In this case– control study, we have examined the association of
SULT1A1 Arg213His (SULT1A1*2) polymorphism in 132 patients
with tobacco-related multiple primary cancers and 198 cancer-free
controls. For selection of MPN patients, stringent modified Hong’s
criteria were used to minimise the possibility of misclassifying
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metastasis, recurrences, skip lesions and radiation-induced
cancers, as second primaries. Radiation therapy was used in the
management of first primary in 60% of patients but none of the
second primaries were classified as radiation-associated sarcomas
(Huber et al, 2007) or meningiomas (King et al, 2007).

Using the IARC definition of TRC (IARC Working Group on the
Evaluation of Carcinogenic Risks to Humans, 2004), these 132
MPN patients with at least one TRC primary were further
subclassified as those with at least one primary in the UADT

(UADT-MPN, n¼ 113, Table 1) and those having none of the
primaries in UADT (n¼ 19). Majority of the patients (n¼ 74) had
both the primaries within the UADT region. The characteristics of
these 113 patients with at least one primary in UADT and the
healthy controls are shown in Table 1. Of the 113 patients with
UADT-MPN, 96 (85%) reported tobacco use and majority (68%)
had tobacco-chewing habit (Supplementary Table s1). The most
common form of tobacco was chewing of tobacco quid with lime
or with betel leaf or application of roasted tobacco (masheri) over
gums. Quanta and duration of tobacco chewing were not available
for all the participants and hence were not included in the analysis.

The genotype distribution of SULT1A1*2 as His/His (homo-
zygous variant), Arg/His (heterozygous) and Arg/Arg (homo-
zygous wild type) was compared in cases and controls using
dominant, recessive and extreme models. These models were based
on the biological plausibility that His213 variant allele is risk
conferring compared with Arg213 allele. Thus His/His213 genotype
was considered risk conferring whereas Arg/Arg213 would confer
protection. However, activity of the SULT1A1 allozymes in
platelets from heterozygous (Arg/His) individuals has been
reported to be only slightly lower than that from the Arg/Arg
individuals but much higher than that from His/His individuals
(Raftogianis et al, 1997; Nowell et al, 2000). Hence recessive model
(Arg/ArgþArg/His vs His/His) was considered in the study.

The risk association of SULT1A1*2 was evaluated in 113 MPN
patients with at least one UADT TRC. The remaining 19 patients
with both TRCs outside UADT were analysed as a separate group
as well as a combined TRC group (n¼ 132) (Table 2). The results
of the TRC outside UADT group (n¼ 19) and the combined group
(n¼ 132) are not included in the meta-analysis due to small
sample size (n¼ 19) with very diverse TRCs (cervix, bladder and
stomach and so on). After adjusting for age and tobacco use, a
significant risk association of SULT1A1*2 with UADT TRC was
seen in dominant, recessive as well as extreme models. In all three
models, there was a significant increased risk associated with
His213 genotype (Table 2).

To compare these observations with the published studies, a
meta-analysis of studies evaluating association of SULT1A1
Arg213His with different cancers was performed. From the Medline
search using the search terms described earlier, we identified 34
case–control studies for SULT1A1 Arg213His polymorphism (Seth
et al, 2000; Steiner et al, 2000; Bamber et al, 2001; Zheng et al,
2001, 2003; Ozawa et al, 2002; Wang et al, 2002; Nowell et al, 2002a,
2004; Tang et al, 2003; Wu et al, 2003; Chacko et al, 2004; Hung
et al, 2004; Langsenlehner et al, 2004; Liang et al, 2004; Tiemersma
et al, 2004; Tsukino et al, 2004; Boccia et al, 2005, 2006; Cheng
et al, 2005; Choi et al, 2005; Han et al, 2005; Jerevall et al, 2005; Le
Marchand et al, 2005; Lilla et al, 2005; Moreno et al, 2005; Pereira
et al, 2005; Sellers et al, 2005; Sun et al, 2005; Yang et al, 2005;
Dandara et al, 2006; Kellen et al, 2006; Mikhailova et al, 2006;
Pachouri et al, 2006). Including the 113 patients with UADT-MPN
from this study, there were 11 962 cancer cases and 14 673 cancer-

Table 1 Demographics of study subjects

Category
UADT TRCa

(n¼ 113) (%)
Cancer-free controlsb

(n¼ 198) (%)

Gender
Males 74 (65) 129 (65)
Females 39 (35) 69 (35)

Agec

Median 50 46
Range (26–75) (20–84)

Type of MPN
Synchronousd 32 (28) —
Metachronous 79 (70) —

Oral – 90 —
Oesophagus – 28 —

Larynx/hypopharynx – 24 —
Primary cancer sites
(226 cancers in 113 cases)

Oropharynx – 24 —

Lung – 15 —
Cervix – 15 —
Others – 30 —

Tobacco habit
No habit 14 (12) 14 (7)
Only T 70 (62) 156 (79)
T+A 26 (23) 27 (14)
No information 3 (3) 1 (o1)

SULT1A1 genotypes
Arg/Arg 60 (53) 135 (68)
Arg/His 47 (42) 61 (31)
His/His 6 (5) 2 (1)

A¼ alcohol; MPN¼multiple primary neoplasm; T¼ tobacco; TRC¼ tobacco-
related cancer; UADT¼ upper aerodigestive tract. Tobacco-related cancers were
as defined by IARC (2004) and included UADT (including nasopharynx), cervix,
bladder, stomach, kidney, liver, pancreas and myeloid leukaemia. aAt least one
primary in the UADT. bControls were enrolled mainly from the Preventive Oncology
Department, Tata Memorial Hospital and Government Dental College, Mumbai.
cAge (years) at the diagnosis of the index cancer of the patients or age at accrual for
the controls. dSynchronous – cancers occurring within 6 months of diagnosis of first
primary site.

Table 2 Analysis of risk association in tobacco-related MPN patients using genetic models

Cancer-free controls
(n¼ 198)

TRC outside UADT
(n¼19)

At least one in UADT
(n¼113) All TRCs (n¼ 132)

Category Genotype N n (ORa (95% CI)) n (ORa (95% CI)) n (ORa (95% CI))

Dominant Arg/Arg 135 6 (ref) 60 (ref) 66 (ref)
His/His,His/Arg 2, 61 0, 13 (7.91 (2.06, 30.39)) 6, 47 (1.94 (1.20, 3.14)) 6, 60 (2.12 (1.3, 3.44))

Recessive His/Arg,Arg/
Arg

61, 135 13, 6 (ref) 47, 60 (ref) 60, 66 (ref)

His/His 2 0 6 (6.07 (1.20, 30.66)) 6 (7.43 (1.42, 38.820)
Extreme Arg/Arg 135 6 (ref) 60 (ref) 66 (ref)

His/His 2 0 6 (7.84 (1.53, 40.15)) 6 (8.92 (1.71, 46.66))

MPN¼multiple primary neoplasm; TRC¼ tobacco-related cancer; UADT¼ upper aerodigestive tract. aOdds ratio (OR) adjusted for age and tobacco habit; 95% CI – 95%
confidence interval.
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free controls. To specifically examine the risk association of His213

with different types of cancers including UADT TRC, which is
biologically more plausible, the studies included in meta-analysis
were categorised according to the site of primary cancer as UADT
TRC, genitourinary, breast, colorectal and other cancer sites. All
the studies were further analysed with respect to genotypes, source
of controls, ethnicity and carcinogen exposure. The study
characteristics (Supplementary Table s2) showed that 13 studies
had accrued controls from general population whereas 20 studies
had hospital-based controls and one had mixed source of controls.
In 23 studies, the distribution of genotypes in controls was
consistent with Hardy–Weinberg equilibrium (Supplementary
Table s3). It was noteworthy that the His213 allele occurred at a
significantly lower frequency amongst Asians (13%; 95% con-
fidence interval (CI): 7–19) as compared with Caucasians
(33%; 95% CI: 30–37) and other ethnic groups (31%; 95% CI:
23–31) (Figure 1). However, it is possible that the variation is even
larger between different Asian populations.

All the studies were analysed using the three models, namely
recessive (Figure 2), which was biologically more plausible
(Raftogianis et al, 1997), as well as dominant and extreme models
(Supplementary Figure s1, s2 and Supplementary Table s3). All the
three models showed a high degree of statistical heterogeneity
among the 35 studies, including this study. Meta-regression analysis
was performed to investigate the source for statistical heterogeneity
(Supplementary Table s3). No obvious source of heterogeneity was
identified except for ethnicity in the dominant model.

Symmetrical Funnel plot suggested the absence of publication
bias for all the three models (Egger’s test P-value 40.05;
Supplementary Figure s3). Influence analysis was carried out to
study the effect of individual studies in the meta-analysis on the
overall outcome (Supplementary Figure s4). None of the studies
affected the outcome of the meta-analysis significantly. When
different ethnic groups were analysed separately irrespective of
cancer site, the Asians showed a significant increased risk
(OR¼ 1.84, 95% CI: 1.20, 2.83) as compared with Caucasians
(OR¼ 1.03, 95% CI: 0.82, 1.29) (Supplementary Table s3) in the
recessive model.

The effect of ethnicity for specific cancer sites could be
examined separately only for breast cancer where ethnicity was
reported in sufficient number of studies (n¼ 11) (Supplementary
Figure s5). Effect of ethnicity could not be evaluated in other

cancer sites due to the small number of studies. Although
SULT1A1*2 conferred significant increased risk of breast cancer
to Asian women (OR¼ 1.91, 95% CI: 1.08, 3.40), it did not confer
increased risk to Caucasian women (OR¼ 0.92, 95% CI: 0.71, 1.18).

Stratified meta-analysis according to cancer site, irrespective of
ethnicity or any other factor, showed a 1.46- to 1.62-fold risk for
UADT cancer in all the three models, whereas the cancers in the
genitourinary site showed a significant protection with an OR of
0.67– 0.81 in the three models (Figure 2, Supplementary Figure s1
and s2). Other tumour sites, however, did not show any significant
association.

DISCUSSION

Despite decades of public health programmes, TRCs remain the
leading cause of cancer morbidity and mortality worldwide.
Epidemiological studies over the past 50 years have clearly
established how tobacco contributes to cancer risk not only in
the directly exposed and anatomically related regions of the upper
aerodigestive tract and lung but also in distant organs such as
cervix, bladder, kidney, pancreas and so on (IARC Working Group
on the Evaluation of Carcinogenic Risks to Humans, 2004).
Tobacco is implicated as the single most important environmental
factor for several TRCs (lung, head and neck, oesophagus, bladder,
kidney and pancreas). It also confers significant risk for cancers
even where viral or bacterial oncogenesis plays a predominant role
(e.g., cervix, stomach, liver and nasopharynx). Weak genetic
susceptibility in tobacco-exposed population is conferred by a
large number of low-penetrance genes. However, there is paucity
of systematic studies of all the important genes that may
predispose to tobacco carcinogenesis.

The focus of research to elucidate genetic susceptibility to
tobacco carcinogenesis has been on phase I and phase II
detoxifying enzymes and to a lesser extent on the genes that
regulate DNA repair, apoptosis and other relevant pathways. In
contrast to the GST super family of enzymes that have been studied
extensively for tobacco carcinogenesis (Nakajima et al, 1995;
Cheng et al, 1999; Buch et al, 2002; Jhavar et al, 2004, 2005), other
phase II metabolising enzymes such as the SULT have been less
extensively studied (Hung et al, 2004; Dandara et al, 2006;
Pachouri et al, 2006). There also has not been any collation of
published data or a meta-analysis of case–control studies
evaluating SULT enzyme in cancers.

Yasuda et al (2007) have reported that of the 11 known human
cytosolic sulphotransferases, SULT1A1 is one of the four major
SULT enzymes responsible for sulphation of tobacco carcinogens.
The role of SULT1A1 in the biotransformation of tobacco
carcinogens and its association with lung cancer has been
previously reported (Liang et al, 2004). There are reports of
SULT1A1*2 association with increased risk for oesophageal
cancers (Dandara et al, 2006) as well as gastric cancer (Boccia
et al, 2005) in individuals who consume alcohol and smoke
tobacco.

To elucidate the effect of Arg213His polymorphism of SULT1A1
in tobacco users, we have studied a group of patients with multiple
primary cancers, where at least one of the primary cancers was
a TRC. We have postulated that as opposed to patients with a
single primary TRC, those who develop multiple primary cancers
are likely to show more pronounced gene–environment interac-
tions (Kotnis et al, 2005). Hence, this may be a better clinical
model to detect significant association of low-penetrance genes,
even in smaller number of patients. In this case–control study, we
show a strong association of the Arg213His polymorphism of
SULT1A1 with the development of tobacco-related UADT cancers.
These findings are further supported by the results of the meta-
analysis examining the association of this polymorphism with
cancer risk.

Total number
of studies 11 19 5
Mean 13 33 31
95 % CI (7, 19) (30, 37) (23, 31)
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Figure 1 Allele frequencies from the meta-analysis studies in control
groups of different ethnicities.
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105210.50.20.1
Protection Risk

100.00 1.08 (0.91, 1.29)

1.07 (0.58, 1.97)
1.10 (0.77, 1.59)
1.27 (0.57, 2.86)
0.49 (0.29, 0.82)
2.55 (1.05, 6.23)

13.31
4.60
2.59
3.81
2.32

2005
2005
2005
2005

18.94
4.26
4.19
3.38
3.43
3.68

1.07 (0.56, 2.05)
0.71 (0.46, 1.09)
3.27 (2.09, 5.11)
0.58 (0.32, 1.08)
0.92 (0.50, 1.69)
1.06 (0.61, 1.84)

2004
2005
2002
2005
2001

31.51
3.85

2.05
3.71
4.66
5.03
4.43
3.79
2.16

0.32
1.52 2.06 (0.61, 7.01)

7.94 (0.38, 165.68)
Not estimable

1.66 (0.64, 4.26)
0.71 (0.41, 1.18)
0.72 (0.48, 1.08)
1.13 (0.86, 1.49)
1.03 (0.72, 1.47)
0.85 (0.50, 1.47)
2.15 (0.80, 5.76)

Not estimable
1.48 (0.88, 2.47)
1.06 (0.85, 1.32)

2001
2005
2003
2000
2005
2005
2004
2005
2004
2005
2005
2004

2004
2002
2000
2004
2003
2006
2004

0.73 (0.58, 0.92)
1.51 (0.42, 5.40)
1.11 (0.37, 3.36)
0.69 (0.37, 1.30)
0.70 (0.47, 1.05)
0.66 (0.41, 1.06)
0.73 (0.41, 1.29)
0.85 (0.33, 2.19)

20.68
1.43
1.74
3.28
4.44
4.08
3.57
2.14

15.55
0.98

4.35
4.58
2.27
1.30
2.08 1.12 (0.42, 2.96)

2.36 (0.61, 9.15)
1.66 (0.67, 4.10)
1.13 (0.78, 1.64)
2.07 (1.37, 3.15)

Not estimable
5.50 (1.09, 27.70)
1.62 (1.12, 2.34)

2007
2003
2006
2002
2006
2004
2006

Year
OR (random)

95% CI
Weight

%
OR (random)

95% CI
Controls

n/N
Cases
n/N

Study
or subcategory

Review:
Comparison:
Outcome:

SULT1A1 Meta Analysis
Cancer risk and SULT1A1Arg213 polymorphism- Recessive model (His/His vs His/Arg+Arg/Arg)
Cancer risk

UADT & Lung
Boccia S (H&N)
Liang G (lung)
Pachouri (lung)
Wang Y (lung)
Dandara C (oesoph)
Wu MT (oesoph)
Present study
Subtotal (95% CI)

8/197
7/805

12/103
67/463
74/236
0/187
6/113

9/247
3/809
9/122

63/485
48/266
0/308
2/198

2104 2435
Total events: 174 (cases), 134 (controls)
Test for heterogeneity: �2 = 7.80, df = 5 (P = 0.17), I 2 = 35.9%
Test for overall effect: Z = 2.56 (P = 0.01)

Total events: 139 (cases), 210 (controls)
Test for heterogeneity: �2 = 2.11, df = 6 (P = 0.91), I 2 = 0%
Test for overall effect: Z = 2.63 (P = 0.008)

Total events: 338 (cases), 400 (controls)
Test for heterogeneity: �2 = 14.04, df = 9 (P = 0.12), I 2 = 35.9%
Test for overall effect: Z = 0.50 (P = 0.62)

Total events: 143 (cases), 265 (controls)
Test for heterogeneity: �2 = 31.40, df = 4 (P < 0.00001), I 2 = 87.3%
Test for overall effect: Z = 0.20 (P = 0.84)

Total events: 117 (cases), 143 (controls)

Test for heterogeneity: �2 = 86.47, df = 31 (P < 0.00001), I2 = 64.1%
Test for overall effect: Z = 0.90 (P = 0.37)

Test for heterogeneity: �2 = 12.11, df = 3 (P = 0.007), I2 = 75.2%
Test for overall effect: Z = 0.23 (P = 0.82)

Genitourinary
Hung R (bladder)
Kellen E (bladder)
Zheng L (bladder)
Nowell (prostate)
Steiner M (prostate)
Ozawa (urothelia)
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Subtotal (95% CI)
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33/384
51/450
17/134
6/166
6/306

1839 2096
4/306
7/214
32/184
62/403
48/386
47/389
10/214

Breast
Chacko
Cheng TC
Choi J
Han
Jerevall P
Langsenlehner U
Le Marchand L
Lilla C
Seth P
Tang D
Yang
Zheng

Subtotal (95% CI)

8/140
2/468
0/986
8/209
28/229
47/498

114/1339
52/419
39/444
11/103
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29/155
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4/140
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0/1045

10/426
38/228
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107/884
23/227
7/133
0/1147
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Bamber DE
Moreno V
Nowell S
Sun XF
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Subtotal (95% CI)

26/226
23/293
15/130
39/109
40/348

32/293
23/272
55/301
97/666
58/373

1106 1905

Others
Boccia (stomach)
Mikhailova (Endo+Ov)
Pereira W (mixed)
Sellers T (ovary)
Subtotal (95% CI)

9/76
28/166
17/125
63/454

821

13/260
50/170
11/100
69/542

1072

Total (95% CI)
Total events: 911 (cases), 1152 (controls)

1467311962

Figure 2 Meta-analysis recessive model.
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The meta-analysis also brings out the markedly lower mean
frequency of SULT1A1 His213 in the Asian population as compared
with the Caucasian population. However, it is possible that the
variation is even larger if different Asian populations are taken in
the study separately. We (Jhavar et al, 2004, 2005) and others from
India (Buch et al, 2002; Anantharaman et al, 2007) have reported a
markedly lower frequency of GSTT1 null genotype in the Indian
population as compared with that in the Japanese, Chinese and
Korean population (Raimondi et al, 2006). Although marked
geoethnic variation in the incidence of different cancers is
attributed largely to the differences in carcinogenic exposure and
diet, marked differences in the population frequency of the risk-
conferring genotype of some XMEs could also influence cancer risk.

The results of this meta-analysis are intriguing as they
demonstrate opposite effects of SULT1A1 polymorphism on two
distinct anatomical sites of TRCs. Thus in the meta-analysis, in
contrast to the seven studies where UADT and lung cancers
showed an increased risk association with SULT1A1*2, seven
studies on genitourinary cancers showed a protective effect. This
could perhaps be explained by the dual role of SULT1A1 in the
bioactivation as well as detoxification of carcinogens (Glatt, 2000).
Thus, detoxification of exogenous and endogenous carcinogens
confers a protective effect for cancer (Glatt et al, 2001), whereas
bioactivation of promutagens could increase the risk of certain
cancers (Zheng et al, 2003; Tiemersma et al, 2004). The risk
association of SULT1A1*2 with cancers of the UADT and lung
is expected from its known role in tobacco detoxification
(Al-Buheissi et al, 2006). Nowell et al (2004) has reported that
SULT1A1 could contribute to prostate cancer risk, and the
magnitude of the association may depend on ethnicity and meat
consumption. It has been reported that the carcinogens are
transferred to the kidney and ureter (Meinl et al, 2006) although
their levels are substantially lower in the kidney than in the liver.
However, it is difficult to explain the protective role of SULT1A1*2
His213 variants with cancer in the genitourinary cancers. Detailed
biochemical studies in different human tissues, especially in the
genitourinary vs UADT region, might explain the opposing tissue-
specific effects of SULT1A1.

Another important aspect that has emerged from the meta-
analysis is the difference in the risk of breast cancer conferred by
SULT1A1*2 variant to Asian women compared with Caucasian

women. A similar phenomenon has been reported for GSTM1
polymorphism. Carlsten et al (2008) have reported that although
GSTM1 null status conferred a significantly increased risk of lung
cancer to East Asians it did not confer increased risk to
Caucasians. Thus, in distinct ethnic groups, risk for different
cancers could be modulated by interaction between genetic
variants and different endogenous and exogenous carcinogens.

There are several limitations in the present meta-analysis as is
often the case. Contribution of possible sources of heterogeneity
such as site of cancer, ethnicity, Hardy –Weinberg equilibrium,
source of controls, sample size/power and carcinogen exposure
were considered. However, meta-regression analysis demonstrated
a significant heterogeneity due to ethnicity alone. This was also
reflected in the allele frequency where Asians and Caucasians
showed a striking difference. Hence, the actual source of
heterogeneity could not be investigated due to the complexities
of the confounding variables. In addition, meta-analysis in general
looks at the crude OR instead of adjusted OR as the adjustment
and matching factors differ across the studies. The residual
confounders might have influenced our analysis.

This study encourages detailed biochemical investigation on
the-tissue specific influence of SULT1A1 Arg213His enzyme in
metabolism of tobacco carcinogens. This is the first meta-analysis
that provides significant and contrasting association of
SULT1A1 Arg213His polymorphism on cancer risk in distinct sites
of TRCs namely UADT and genitourinary and an increased risk
for breast cancer in Asians.
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