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ABSTRACT
We evaluate two-phase designs to follow-up findings from genome-wide association

study (GWAS) when the cost of regional sequencing in the entire cohort is prohibitive.

We develop novel expectation-maximization-based inference under a semiparametric

maximum likelihood formulation tailored for post-GWAS inference. A GWAS-SNP

(where SNP is single nucleotide polymorphism) serves as a surrogate covariate in

inferring association between a sequence variant and a normally distributed quanti-

tative trait (QT). We assess test validity and quantify efficiency and power of joint

QT-SNP-dependent sampling and analysis under alternative sample allocations by

simulations. Joint allocation balanced on SNP genotype and extreme-QT strata yields

significant power improvements compared to marginal QT- or SNP-based allocations.

We illustrate the proposed method and evaluate the sensitivity of sample allocation to

sampling variation using data from a sequencing study of systolic blood pressure.

K E Y W O R D S
fine-mapping, Genetic Analysis Workshop 19, genetic association studies, joint outcome covariate depen-

dent sampling, outcome-/covariate-dependent sampling

1 INTRODUCTION

Regional sequencing to follow-up findings from a genome-

wide association study (GWAS), in which a large number

of single nucleotide polymorphisms (SNPs) are tested one

by one, can be cost-effective for fine mapping. In the “post-

GWAS” era, identifying causal variants and susceptibility

genes in GWAS-identified regions of association has become

an important goal for researchers. Despite decreasing costs

of next-generation sequencing (NGS) technologies, sequenc-

ing all subjects in large-scale studies is still prohibitive. Thus,

careful planning and innovative designs become essential to

optimize the available resources.
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Sequence variants at high density in the fine-mapping

region of interest are typically in linkage disequilibrium (LD)

with previously, strongly associated, variants from GWAS.

However, the GWAS SNPs may or may not have biologi-

cal function themselves. Consequently, fine-mapping variants

in the selected region are tested for association to identify

biologically relevant loci. A thorough review and description

of the strategies utilized for fine mapping can be found in

Spain and Barrett (2015).

Two-phase sampling design and analysis has proven to be

an efficient technique to select and analyze a cost-effective

subsample, for example, individuals to be sequenced. In

their original formulation, two-phase sampling designs were
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developed to estimate population parameters of an expensive

variable, that is, a random variable that is costly to measure

(in time, materials, or personnel) (Pickles, Dunn, & Vázquez-

Barquero, 1995; White, 1982). At phase 1, data for an

inexpensive or surrogate variable (correlated to the expensive

variable) are collected for a large random sample of the popu-

lation. At phase 2, the expensive variable is measured only in

a subset of the phase 1 sample; the subsample is drawn based

on the information provided by the sample distribution of the

inexpensive variable. In this case, the expensive variable is

missing by design in individuals not selected in phase 2. Var-

ious methods have been proposed to analyze data collected

under a two-phase design, including estimating functions

(Breslow & Wellner, 2007; Chatterjee, Chen, & Breslow,

2003; Chen, Craiu, & Bull, 2012; Scott & Wild, 2011) and

(conditional or full) maximum likelihood methods (Breslow

& Cain, 1988; Breslow & Holubkov, 1997; Derkach, Lawless,

& Sun, 2015; Lawless, Kalbfleisch, & Wild, 1999; Lin, Zeng,

& Tang, 2013; Song, Zhou, & Kosorok, 2009; Zeng & Lin,

2014; Zhao, Lawless, & McLeish, 2009).

Under a case-control design, sampling within strata defined

by both disease status and covariates is more powerful

than sampling from cases and controls only (Breslow &

Chatterjee, 1999; Schaid, Jenkins, Ingle, & Weinshilboum,

2013). For a quantitative trait (QT), sampling strategies that

select informative individuals according to extreme-trait or

genotype values are known to have good properties (Chen et

al., 2012; Lin et al., 2013; Thomas, Yang, & Yang, 2013), but

designs based on joint sampling are not well developed. In this

effort, we evaluate phase 2 sampling according to values of a

SNP genotype and a QT. Statistical analysis is based on semi-

parametric maximum likelihood (SPML) estimation where a

GWAS-identified SNP or a candidate GWAS-SNP (𝑍) is a

surrogate covariate used to infer the association between a

sequence variant (𝐺) and a QT (𝑌 ). We estimate parameters

via an EM algorithm; our approach is novel in that it is tai-

lored for the post-GWAS scenario by incorporating GWAS

SNP data available for all individuals. As a result, efficiency

is improved compared to methods that use phase 2 data alone.

Specifically, we assume that the linear relationship between a

causal variant, 𝐺, and a QT, 𝑌 , is of the form:

𝑌 = 𝛽0 + 𝛽1𝐺 + 𝜖, (1)

where 𝛽0, 𝛽1 are regression parameters, 𝜖 ∼ 𝑁(0, 𝜎2); thus

𝑌 ∼ 𝑁(𝜇𝐺, 𝜎2), 𝜇𝐺 = 𝛽0 + 𝛽1𝐺. Additionally, we hypothe-

size that a causal sequence variant (𝐺 = 𝐺1) and the GWAS-

SNP (𝑍) tend to occur on the same haplotype with a specified

LD structure. 𝐺 and𝑍 have minor allele frequencies (MAFs)

of 𝑞𝐺 and 𝑞𝑍 , respectively.

The remainder of the paper is structured as follows.

Section 2 describes the designs for two-phase sampling in

the post-GWAS setting. Section 3 explains the model for-

mulation and details of the statistical inference via SPML.

Section 4 elaborates on the alternative phase 2 sample allo-

cations we study. In Section 5, we report simulation stud-

ies performed to evaluate estimation efficiency, association

test validity, and power. Further, we quantify improvements

associated with QT-SNP joint sampling compared to QT or

SNP marginal samplings under alternative sample allocations.

Fine-mapping analysis of systolic blood pressure is presented

in Section 6 to illustrate application of the methods and com-

pare sampling variation of alternative allocations. A discus-

sion focusses on limitations and extensions of the proposed

method.

2 TWO-PHASE DESIGNS IN
POST-GWAS REGIONAL
SEQUENCING

The main objective in the post-GWAS setting is to conduct

statistical inference on the association of a sequence variant,

𝐺, that is, a potentially causal variant, with a QT of inter-

est 𝑌 . This variant is located in a genomic region of interest,

narrowed down following GWAS results. This so-called fine

mapping generally begins with multiple single-variant anal-

ysis across a region; although, for analysis of low-count rare

variants, the application of multivariant burden and variance

component tests may be necessary.

To reduce sequencing costs, however, variants in the region

are ascertained in only a fraction of individuals, making 𝐺

missing by design for a potentially large subset of the first

sample. Consequently, two-phase studies consist of GWAS in

phase 1 and fine-mapping analysis of sequence data in phase

2, the latter obtained in a subsample of individuals from the

initial GWAS. In this post-GWAS scenario, the trait data (𝑌 )

and the GWAS-SNP (𝑍), a surrogate for the causal variant,

are observed for every subject in the study.

The design objective is to select a subset of informative

subjects based on available data in phase 1, namely (𝑍, 𝑌 ).
Inference on the missing-by-design sequence variants is con-

ducted using all available data from phases 1 and 2. We define

the missing indicator 𝑟𝑖 = 𝟙{𝑖 ∈ 𝑆2}, 𝑖 = 1,… , 𝑁 , where 𝑁

is the number in individuals measured in phase 1. 𝑆2 repre-

sents the phase 2 sample of 𝑛 subjects. We let 𝑆̄2 denote the

set of (𝑁 − 𝑛) subjects that are not in the phase 2 sample but

are present in the GWAS study.

Regression analysis at the GWAS phase uses the surrogate

variable, 𝑍, which does not usually have biological function,

say by fitting 𝑌 = 𝛾0 + 𝛾1𝑍. Nonetheless, GWAS analyses

serve as an efficient screening strategy to identify candidate

regions in the genome. On the other hand, in fine-mapping,

both causal and null variants are colocated in the region, and

these null variants do not correspond to the usual model-based

null hypothesis, that is, 𝛽1 = 0 in (1). Rather, a null SNP in the
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region of interest (denoted by 𝐺0) has no direct association

with the QT (𝑌 ), but because it may be in LD with 𝐺1 or 𝑍,

an indirect association with 𝑌 may be detected. This makes

it difficult to distinguish among the individual contributions,

even in the complete data case (see Faye, Machiela, Kraft,

Bull, and Sun (2013) for reranking strategies in this scenario).

In addition, we note that including an identified GWAS-SNP,

𝑍, in strong LD in the causal variant regression model (1)

would introduce collinearity and decrease precision, reducing

the ability to detect genetic association of a causal variant 𝐺

with the QT.

2.1 Sampling designs
Under the sampling design, 𝑷 (𝑟𝑖 = 1|𝑍𝑖, 𝑌𝑖, 𝐺𝑖) = 𝑷 (𝑟𝑖 =
1|𝑍𝑖, 𝑌𝑖) = 𝜋𝑖, with 𝜋𝑖 the inclusion probability for the 𝑖th

subject. Therefore, 𝐺𝑖 is missing at random. Observe that

this definition allows for inclusion probabilities of the form

𝑷 (𝑟𝑖 = 1|𝑍𝑖, 𝑌𝑖) = 𝜋(𝑍𝑖) or 𝜋(𝑌𝑖), which we call a marginal
sampling design as opposed to 𝑷 (𝑟𝑖 = 1|𝑍𝑖, 𝑌𝑖) = 𝜋(𝑍𝑖, 𝑌𝑖),
which we refer to as a joint sampling design.

Among marginal sampling designs, covariate-dependent

sampling, that is, 𝑷 (𝑟𝑖 = 1|𝑍𝑖, 𝑌𝑖) = 𝜋(𝑍𝑖), occurs when

covariates of interest are used as surrogates of the expen-

sive covariate to select individuals for the phase 2 subset.

Analogously, when the trait of interest is used to select indi-

viduals this is called outcome-dependent sampling, response-

dependent sampling, or trait-dependent sampling (TDS), that

is, 𝑷 (𝑟𝑖 = 1|𝑍𝑖, 𝑌𝑖) = 𝜋(𝑌𝑖). Among TDS designs, extreme-

trait sampling has arguably become the most widely used

marginal sampling design. In particular it has been used in

rare variant analysis (Derkach et al., 2015; Li, Lewinger, Gau-

derman, Murcray, & Conti, 2011; Lin et al., 2013; Yilmaz

& Bull, 2011), because this approach effectively enriches

for rare exposure, for example, White (1982). These meth-

ods are also applicable in the context of nonrare variants,

for example, Satagopan and Elston (2003), Wang, Thomas,

Pe'er, and Stram (2006), and Thomas et al. (2009) propose

trait-dependent phase 2 sample allocations and discuss related

issues in the context of GWAS. In the following paragraphs,

we describe the classes of marginal sampling designs we

examine in this work.

For marginal GWAS-SNP sampling, strata are naturally

defined by the number of copies of the minor allele carried

by individuals in the study. The expected counts assuming

Hardy-Weinberg equilibrium (HWE) for a GWAS-SNP with

MAF 𝑞𝑍 are given by 𝑁 × ((1 − 𝑞𝑍 )2, 2(1 − 𝑞𝑍 )𝑞𝑍, 𝑞2𝑍 ) =
(𝑁0⋅, 𝑁1⋅, 𝑁2⋅). The fact that 𝑍 is a discrete covariate is

important in our formulation to ensure existence of the max-

imum likelihood estimate (MLE) (van der Vaart & Wellner,

2001). Further extensions could also include more than one

SNP genotype as stratification factors, for example, Schaid

et al. (2013).

T A B L E 1 Joint distribution of the GWAS-SNP, 𝑍, and the dis-

cretized version of the QT, 𝑌𝑠𝑡

𝒁∖𝒀𝒔𝒕 T1 T2 T3 M𝒁

𝟎 𝑁01 𝑁02 𝑁03 𝑁0⋅

𝟏 𝑁11 𝑁12 𝑁13 𝑁1⋅

𝟐 𝑁21 𝑁22 𝑁23 𝑁2⋅

M𝑌 𝑁⋅1 𝑁⋅2 𝑁⋅3 𝑁

To operationalize the QT sampling, we discretize the QT

(𝑌 ) into a three strata variable 𝑌𝑠𝑡 with labels (T1, T2, T3).

Let (𝐶1, 𝐶2) be fixed cut-off values of 𝑌 that partition the QT

as follows:

𝑌𝑠𝑡 ∈
⎧⎪⎨⎪⎩

T1 if 𝑌 < 𝐶1
T2 if 𝐶1 ≤ 𝑌 < 𝐶2
T3 if 𝑌 ≥ 𝐶2.

(2)

In applications, (𝐶1, 𝐶2) are prespecified quantities, for exam-

ple, relevant in clinical practice, such as systolic and diastolic

blood pressure level categorization into hypertensive, prehy-

pertensive, and normotensive. An important consideration for

the cut points (𝐶1, 𝐶2) is that these values are not determined

from the data at hand; otherwise dependency among observa-

tions is introduced through the inclusion probabilities.

Joint sampling designs, on the other hand, use both

response and covariate simultaneously to select individuals

for the phase 2 subset. Table 1 illustrates the joint distribu-

tion of the discretized QT and the GWAS-SNP along with the

marginal distributions. The goal of joint allocation in this case

is to select individuals for the phase 2 subset based on the nine

strata determined by the QT categories and the SNP genotype.

In discretizing 𝑌 , the choice of three strata is the simplest, but

is straightforward to extend. In general, for marginal and joint

sampling designs, strata are determined by partitioning (𝑍, 𝑌 )
into 𝐾 groups.

3 A SEMIPARAMETRIC MAXIMUM
LIKELIHOOD APPROACH

We extend the SPML formulations described in Zhao et al.

(2009) and Lin et al. (2013). Let 𝑓𝜃(𝑦|𝑔) be the functional

(parametric) relationship between 𝐺 and 𝑌 indexed by 𝜃 =
(𝛽0, 𝛽1, 𝜎2)𝑇 ; in our case, 𝑓𝜃(𝑦|𝑔) corresponds to the proba-

bility density function of a normal distribution with param-

eters (𝜇𝑔, 𝜎2), 𝜇𝑔 = 𝛽0 + 𝛽1𝑔. On the other hand, we denote

G , Z as the sets of unique observed values of 𝐺 (in 𝑆2) and

𝑍 (in 𝑆2 ∪ 𝑆̄2). Let 𝑝(𝐺,𝑍) be the joint probability func-

tion of 𝐺 and 𝑍 given by the discrete probabilities 𝑝𝑔,𝑧, 𝑔 ∈
G , 𝑧 ∈ Z , which we estimate nonparametrically. The pro-

posed method differs from the formulations of Zhao et al.

(2009) and Lin et al. (2013) in three aspects: conditional
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independence assumption between 𝑌 and 𝑍 given 𝐺, which

leads to exclusion of 𝑍 in the linear predictor of the paramet-

ric trait model 𝑓𝜃(𝑦|𝑔); use of Z in nonparametric estimation

of the joint distribution of 𝐺 and 𝑍, with support for (𝑔, 𝑧)
defined by the Cartesian product; and the individual weights

calculation in the E-step of the EM algorithm. We detail sim-

ilarities and differences among these methods in Appendix A

(supplementary material).

3.1 Likelihood formulation
Considering the above, we define the observed data likelihood

following Robins, Hsieh, and Newey (1995) and Lawless et al.

(1999) by:

𝐿(𝜃,𝒑) =
𝑁∏
𝑖=1

[
𝜋𝑖𝑓𝜃(𝑦𝑖|𝑔𝑖)𝑝(𝑔𝑖, 𝑧𝑖)]𝑟𝑖

×

[
{1 − 𝜋𝑖}

∑
𝑔

𝑓𝜃(𝑦𝑖|𝑔)𝑝(𝑔, 𝑧𝑖)]1−𝑟𝑖

. (3)

Because SPML estimation of 𝜃 and observed information

matrix calculation does not involve 𝜋𝑖s, we can disregard such

terms, leading to:

𝐿(𝜃,𝒑) ∝
𝑁∏
𝑖=1

[
𝑓𝜃(𝑦𝑖|𝑔𝑖)𝑝(𝑔𝑖, 𝑧𝑖)]𝑟𝑖

×

[∑
𝑔

𝑓𝜃(𝑦𝑖|𝑔)𝑝(𝑔, 𝑧𝑖)]1−𝑟𝑖

=
∏
𝑖∈𝑆2

𝑓𝜃(𝑦𝑖|𝑔𝑖)𝑝(𝑔𝑖, 𝑧𝑖) ∏
𝑖∈𝑆̄2

∑
𝑔

𝑓𝜃(𝑦𝑖|𝑔)𝑝(𝑔, 𝑧𝑖).
(4)

The loglikelihood takes the form 𝓁(𝜃,𝒑) =∑
𝑖∈𝑆2 [log 𝑓𝜃(𝑦𝑖|𝑔𝑖)𝑝𝑔𝑖,𝑧𝑖] +∑

𝑖∈𝑆̄2 log
{∑

𝑔∈G 𝑓𝜃(𝑦𝑖|𝑔)𝑝𝑔,𝑧𝑖},

where we let 𝑝𝑔,𝑧 = 𝑝(𝐺 = 𝑔,𝑍 = 𝑧). Note that subjects in

𝑆̄2 have incomplete data (𝑦𝑖, 𝑧𝑖), whereas phase 2 (𝑆2)

subjects have completely observed data (𝑦𝑖, 𝑧𝑖, 𝑔𝑖). Our

formulation uses the auxiliary covariate, 𝑍, only in the non-

parametric part as 𝑌 and 𝑍 are assumed to be conditionally

independent given 𝐺. When 𝑍 is a non-causal surrogate

for 𝐺 = 𝐺1, its inclusion in the regression may adversely

affect model performance due to collinearity between 𝑍

and 𝐺. Direct maximization of (4) is difficult so in the next

section we describe the EM algorithm used to maximize the

observed-data loglikelihood.

3.2 EM algorithm
We apply the EM algorithm to estimate 𝜃 and 𝑝𝑔,𝑧, 𝑔 ∈
G , 𝑧 ∈ Z . We specify initial values in a similar fash-

ion as Lin et al. (2013), that is, 𝛽
(0)
0 = 𝛽(0)1 = 0, 𝜎2(0) =

𝑁−1∑𝑁

𝑖=1(𝑌𝑖 − 𝑌 )
2, except for 𝑝

(0)
𝑔,𝑧 which we specify

by 𝑝
(0)
𝑔,𝑧 =

{
1∕𝑚 if (𝑔, 𝑧) ∈ G × Z (𝑆2)
0 otherwise

for 𝑔 ∈ G , 𝑧 ∈ Z ;

G × Z (𝑆2) denotes the set of cardinality 𝑚 containing the

different pairs (𝑔, 𝑧) observed in 𝑆2. Further, we define Z2
as the set of different 𝑧's in 𝑆2. Due to some of the allocation

designs, it is possible that Z2 will not contain all the values

of 𝑍 observed in phase 1.

E-step. Let 𝓁𝑐(𝜃,𝒑) be the complete data loglikelihood,

then

𝑄
[
(𝜃,𝒑)|(𝜃(𝑡),𝒑(𝑡))]

= E
{
𝓁𝑐(𝜃,𝒑)|Obs; 𝜃(𝑡),𝒑(𝑡)

}
= E

{
𝑁∑
𝑖=1

log
[
𝑓𝜃(𝑌𝑖|𝐺𝑖)𝑝(𝐺𝑖,𝑍𝑖)] |Obs; 𝜃(𝑡),𝒑(𝑡)

}

=
𝑁∑
𝑖=1

∑
𝑔∈G

log
[
𝑓𝜃(𝑌𝑖|𝐺𝑖 = 𝑔)𝑝(𝐺𝑖 = 𝑔,𝑍𝑖)]

× 𝑃 𝑟(𝐺𝑖= 𝑔|Obs; 𝜃(𝑡),𝒑(𝑡)),

where

𝑃 𝑟(𝐺𝑖 = 𝑔|Obs; 𝜃(𝑡),𝒑(𝑡)) = 𝜔(𝑡)
𝑖,𝑔

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if 𝑖 ∈ 𝑆2, 𝑔𝑖 = 𝑔
𝑓𝜃(𝑡) (𝑦𝑖|𝑔)𝑝(𝑡)𝑔,𝑧𝑖∑

𝑔′∈G 𝑓𝜃(𝑡) (𝑦𝑖|𝑔′)𝑝(𝑡)𝑔′,𝑧𝑖 if 𝑖 ∈ 𝑆̄2, 𝑧𝑖 ∈ Z2

𝑓𝜃(𝑡) (𝑦𝑖|𝑔)∑𝑧∈Z 𝑝
(𝑡)
𝑔,𝑧∑

𝑔′∈G 𝑓𝜃(𝑡) (𝑦𝑖|𝑔′)∑𝑧∈Z 𝑝
(𝑡)
𝑔′,𝑧

if 𝑖 ∈ 𝑆̄2, 𝑧𝑖 ∉ Z2

0 otherwise.

M-step. We update the estimates' values as follows:

𝜷(𝑡+1) =

(
𝑁∑
𝑖=1

∑
𝑔∈G

𝜔
(𝑡)
𝑖,𝑔
𝑋𝑔 ⊗ 𝑋𝑔

)−1( 𝑁∑
𝑖=1
𝑦𝑖

∑
𝑔∈G

𝜔
(𝑡)
𝑖,𝑔
𝑋𝑔

)

𝜎2(𝑡+1) = 𝑁−1
𝑁∑
𝑖=1

∑
𝑔∈G

𝜔
(𝑡)
𝑖,𝑔
{𝑦𝑖 − 𝜷(𝑡+1)𝑇𝑋𝑔}2

𝑝(𝑡+1)
𝑔,𝑧

= 𝑁−1
𝑁∑
𝑖=1
𝜔
(𝑡)
𝑖,𝑔
𝟙{𝑧𝑖 = 𝑧}, 𝑔 ∈ G , 𝑧 ∈ Z ,

where 𝑋𝑔 = (1, 𝑔)𝑇 and ⊗ is the outer product. The algo-

rithm iterates between the E and M steps until conver-

gence is achieved, that is, max(|𝜃(𝑡+1) − 𝜃(𝑡)|) < 1 × 10−5 and
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max(|𝒑(𝑡+1) − 𝒑(𝑡)|) < 1 × 10−5), yielding the maximum like-

lihood estimates, MLEs, (𝜃̂, 𝒑̂) = (𝜷𝑇 , 𝜎̂2, 𝒑̂).
For hypothesis testing, Wald score and likelihood ratio

(LR) tests can be constructed following standard procedures

(Louis, 1982). We elaborate on the construction details

of these tests in Appendix B (supplementary material).

Furthermore, concerning the LR, Murphy and van der Vaart

(2000) point out that the usual full LR statistic fails in

semiparametric models. To overcome this, they argue in

favor of using the profile LR in a semiparametric framework,

which is defined as Λ𝑝 =
𝐿𝑝(𝜃̂)
𝐿𝑝(𝜃)

=
sup𝜃,𝒑𝐺 𝐿(𝜃,𝒑𝐺)
sup𝒑𝐺 𝐿(𝜃,𝒑𝐺)

, where

𝒑𝐺 =
{∑

𝑧∈Z 𝑝𝑔,𝑧 ∶ 𝑔 ∈ G
}

. Hence, Λ𝑝 has corresponding

test statistic 𝐷𝑝 = 2 lnΛ𝑝 asymptotically distributed as 𝜒2
1 .

For the profile LR statistics, we observed in our simulations

that the following simplification rendered adequate results for

testing 𝐻0 ∶ 𝛽1 = 0, 𝐷′
𝑝
= 2

{
𝓁(𝜃̂, 𝒑̂𝐺) − 𝓁(𝜃, 𝒑̂𝐺)

}
, which

is effectively substituting the nonparametric estimates of the

restricted MLEs, 𝒑̃𝐺, by the unrestricted MLEs. Justification

for this substitution under SPML estimation, in the simplest

case without 𝑍 in the trait model, is that estimates for 𝒑𝐺
were the same under the genetic association alternative and

null leading to acceptable profile LR tests. A precedent

on related substitutions using profile likelihoods has been

discussed in Murphy and van der Vaart (2000); Pace, Salvan,

and Ventura (2011).

4 PHASE 2 SAMPLE ALLOCATION

Despite the extensive literature on two-phase designs and esti-

mation approaches, relatively less attention has been paid to

allocation of the phase 2 sample across defined strata. We first

review some of the approaches that have been applied to draw

phase 2 data, and then specify alternative approaches that we

investigate in simulations and application.

4.1 Background
Several authors have investigated two-phase designs that ana-

lyze QTs (continuous outcomes) in general settings with

covariates. Lawless et al. (1999) explore allocations with

equal phase 2 sample sizes within strata in 𝑌 -dependent sam-

pling, that is, balanced on a discretized version of 𝑌 . Chat-

terjee et al. (2003) present a pseudoscore estimator and study

three phase 2 allocations using a joint (discretized) outcome-

covariate strata definition for dichotomous 𝑌 and 𝑋 with

selection probabilities 𝝅 = {𝜋(𝑌 ,𝑋)}, namely (a) simple ran-

dom sampling with 𝜋(𝑌 ,𝑋) constant, (b) stratified sampling

with 𝜋(𝑌 ,𝑋) > 0 for each (𝑌 ,𝑋), or (c) restricted sampling

with 𝜋(1, 𝑋) = 0 but 𝜋(0, 𝑋) > 0. Song et al. (2009) propose

semiparametric efficient inference with selection of phase 2

data via outcome-dependent sampling with the following allo-

cations: (a) a sample taken from the trait distribution tails,

or (b) all subjects from the two trait distribution tails, both

augmented with a simple random sample drawn prior to the

extreme-trait selection. Zhao et al. (2009) consider similar

outcome-dependent sampling with an allocation based on

defining three strata for 𝑌 as 𝑌 < 𝐶1, 𝐶1 ≤ 𝑌 < 𝐶2, and 𝑌 ≥

𝐶2 such that 𝑃 𝑟(𝑌 < 𝐶1) = 𝑃 𝑟(𝑌 ≥ 𝐶2) = 0.05. Then, phase

2 sampling probabilities are assigned values 1, 0.056, and 1

for the corresponding three strata, that is, all subjects from the

tails of the distribution plus a random sample from the mid-

dle. Zhou, Wu, Liu, and Cai (2011) study “outcome-auxiliary-

dependent sampling” for the case when there is a continuous

auxiliary covariate; phase 2 data are selected from a mixture

of a simple random sample of size 𝑛0 and a sample taken from

the four extreme strata derived from discretizing the outcome

and auxiliary covariates in tertiles.

In the genetic analysis literature, two-phase designs have

specified QT and GWAS-SNP allocations in various ways.

Yilmaz and Bull (2011) consider a distance-based sampling

function for extreme-trait values, that is, allocating only obser-

vations in the tails of the QT distribution, and compare it to

simple random sampling; Li et al. (2011) study allocations

based on extreme-phenotype sampling of the tails, that is,

𝑌 < 𝐶2 or 𝑌 > 𝐶1 and almost-extreme sampling, which is

similar, but removes the very extremes beyond 𝐶3 and 𝐶4,

that is,𝐶4 < 𝑌 < 𝐶2 or 𝐶3 > 𝑌 > 𝐶1; Lin et al. (2013) exam-

ine another version of extreme sampling in which they select

a predefined number of the highest and lowest values of 𝑌

while taking a random sample among the remaining values;

lastly, Derkach et al. (2015) select phase 2 data under 𝑌 -

dependent sampling by drawing observations from 𝑆1 ∪ 𝑆2,

where 𝑆1 = {𝑖 ∶ 𝑌𝑖 < 𝐶𝑙} and 𝑆2 = {𝑖 ∶ 𝑌𝑖 > 𝐶𝑢}, with 𝐶𝑙
and 𝐶𝑢 determined so that 𝑃 𝑟(𝑌 < 𝐶𝑙) = 𝑃 𝑟(𝑌 > 𝐶𝑢) = 0.3.

Notably, these approaches are mostly motivated by rare vari-

ant analysis. On the other hand, Chen et al. (2012) exam-

ine marginal GWAS-SNP sampling designs and phase 2 sam-

ple allocations, whereas Chen, Craiu, and Bull (2014) focus

on a fine-mapping scenario using GWAS-SNP as a stratifica-

tion factor under equal strata size and rare-homozygote stra-

tum enriched allocations. Although there is some literature

on joint trait-SNP sampling designs for case-control studies

(Schaid et al., 2013; Thomas et al., 2013), to our best knowl-

edge no previous study has focused on joint QT-genotype

sampling specifically for genetic fine mapping.

4.2 Alternative allocations
In this section, we specify marginal and joint sampling

designs for various phase 2 sample allocations and focus

on allocations for joint QT-SNP-dependent sampling. To

make comparisons between the joint and marginal sampling

designs, we define the marginal allocations as sums over the

joint strata margins. Let 𝑛𝐼𝑧,𝐼𝑦 = #
{
𝑖 ∶ 𝑍𝑖 ∈ 𝐼𝑧, 𝑌𝑖 ∈ 𝐼𝑦

}
be

the number of subjects to be allocated in each stratum for
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T A B L E 2 Example sample allocations for phase two sample size 𝑛 = 2, 500,𝑁 = 5, 000, r2 = 0.75, 𝑞𝐺 = 0.2, 𝑞𝑍 = 0.3 under joint QT-GWAS-

SNP-dependent sampling for allocations (A) proportional to size, (B) extreme on 𝑍 and 𝑌𝑠𝑡, (C) balanced on 𝑍 and 𝑌𝑠𝑡, and (D) balanced on 𝑍 and

extreme on 𝑌𝑠𝑡

(A) pps (B) extreme (C) balanced (D) combined
𝒁∖𝒀𝒔𝒕 T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3
0 491 236 477 625 0 625 278 277 278 416 0 416

1 384 204 463 0 0 0 278 278 278 417 0 417

2 93 42 111 625 0 625 278 277 278 417 0 417

Adding up by row or column leads to allocations under marginal QT- and GWAS-SNP- dependent sampling, respectively.

the joint sampling design. Consequently, the marginal alloca-

tions are determined by 𝑛𝐼𝑧 =
∑
𝐼𝑦
𝑛𝐼𝑧,𝐼𝑦

and 𝑛𝐼𝑦 =
∑
𝐼𝑧
𝑛𝐼𝑧,𝐼𝑦

,

where 𝐼𝑧, 𝐼𝑦 are intervals defining the strata. Let 𝜚 be the over-

all sampling fraction, where we want to draw a subsample of

size 𝑛 = 𝜚 ∗ 𝑁 , such that
∑
𝐼𝑧,𝐼𝑦

𝑛𝐼𝑧,𝐼𝑦 = 𝑛. As described in

Lawless et al. (1999), variable probability sampling (VPS) and

basic stratified sampling (BSS) are popular choices to select

subjects in the phase 2 sample. In VPS, 𝑛𝐼𝑧,𝐼𝑦 is considered

a random variable, as units are selected with specified proba-

bility 𝑝𝐼𝑧,𝐼𝑦 . BSS, on the other hand, considers 𝑛𝐼𝑧,𝐼𝑦 as fixed

quantities given𝑁𝐼𝑧,𝐼𝑦 . Thus, for each defined stratum, 𝑛𝐼𝑧,𝐼𝑦
subjects are selected with equal probability. VPS often makes

more sense in the context where subjects are assigned to phase

2 dynamically as a consequence of data collection over time.

In this report, we use BSS because strata can be defined a

priori from the GWAS. However, full likelihood methods as

well as the proposed semiparametric method are capable of

handling various sampling schemes (Derkach et al., 2015).

In the following, we define four possible allocations for the

regional sequencing. Table 2 illustrates possible sample allo-

cations under the joint QT-SNP-dependent sampling. In the

simulation studies, we compare statistical efficiencies for each

allocation, and associated hypothesis testing properties.

4.2.1 Proportional to stratum size
This allocation aims to preserve the strata distribution struc-

ture in the complete data. In this allocation scenario, we sim-

ply draw subsamples within strata of size 𝑛𝑗𝑙 = 𝜚 ∗ 𝑁𝑗𝑙, 𝑙 =
0, 1, 2; 𝑗 = 1, 2, 3. This is the only case in which the phase 2

sample has the same distribution (over 𝑌 and 𝑍) as the com-

plete data, but it may be inefficient.

4.2.2 Extreme
As hinted by its name, extreme allocation aims to distribute

the sample to the extreme values of 𝑍 and/or 𝑌𝑠𝑡. In the joint

sampling case, the samples are taken from extreme valued

strata in Table 1, (𝑍, 𝑌𝑠𝑡) = {(0,T1), (0,T3), (2,T1), (2,T3)}.

Strata T1 and T3 are defined in Equation (2). The simplest

case is to allocate the same sample size across the four extreme

strata, thus 𝑛𝑗𝑙 =

{
min{ 𝜚∗𝑁4 , 𝑁𝑗𝑙}, 𝑗 = 0, 2; 𝑙 = 1, 3
0 otherwise.

Observe that the min function is necessary because the

number of subjects 𝑁𝑗𝑙 can be smaller than 𝑛𝑗𝑙 = 𝜚 ∗ 𝑁∕4
especially when 𝑞𝑍 is low. This allocation oversamples those

strata believed to be most informative for the QT and the

extreme genotype categories for the GWAS-SNP.

4.2.3 Balanced
Here, allocation on 𝑍 and 𝑌𝑠𝑡 specifies the same number

of subjects per strata, therefore 𝑛𝑗𝑙 = min
{
𝜚∗𝑁
9 , 𝑁𝑗𝑙

}
, 𝑗 =

0, 1, 2; 𝑙 = 1, 2, 3. Once again, the min function is necessary

to avoid empty cells but this occurs less frequently than in the

extreme case. This allocation may be preferred when one still

wants to oversample the most informative strata without los-

ing all information from other strata.

4.2.4 Combined
This allocation combines balanced selection in 𝑍 and

extreme selection in 𝑌𝑠𝑡. It reflects what has been previously

reported in the literature as useful strategies to select subjects

marginally (Chen et al., 2012; Derkach et al., 2015; Lin et al.,

2013; Schaid et al., 2013; Thomas et al., 2013). In this case

𝑛𝑗𝑙 =

{
min{ 𝜚∗𝑁6 , 𝑁𝑗𝑙}, 𝑗 = 0, 1, 2; 𝑙 = 1, 3
0 otherwise.

5 SIMULATION STUDIES

5.1 Design
We conduct simulation studies in which the GWAS-SNP, 𝑍,

is indirectly associated with the QT of interest, 𝑌 , through

LD with a causal SNP, 𝐺1 (Fig. 1). The correlated SNPs 𝐺1
and𝑍 are randomly drawn from a haplotype with fixed MAFs

and LD (r2) values assuming HWE. The generating model

for the QT is given by: 𝑌 = 𝛽0 + 𝛽1𝐺1 + 𝜖, 𝜖 ∼ 𝑁(0, 𝜎2). To

mimic the post-GWAS scenario, we keep only those repli-

cates that achieve suggestive genome-wide significance, that

is, 𝑃 -value < 1 × 10−5 for the parameter 𝛾1 in the regression

𝑌 = 𝛾0 + 𝛾1𝑍; we proceed until 𝑅 such replicates are drawn,

discarding those that do not achieve significance. Table 3 dis-

plays the simulation design parameters, and corresponding

values. Genetic effects under the alternative 𝛽1 > 0 were cho-

sen to achieve roughly 100% power in the complete data.
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F I G U R E 1 Fine-mapping scenario specified in the simulation

setup

Note: A causal variant 𝐺1 has a linear effect 𝛽1 on the QT, Y. Z is indi-

rectly associated with the QT; this association may be detected through

a GWAS. The indirect assocation arises from the LD structure between

Z and G1. Type I error is studied through an unrelated (with any of Y, G,

or Z) SNP, G0.

T A B L E 3 Simulation design parameters and values. The number

of replicates yields precision of ±4.27 × 10−3 for empirical type I error

(at 5%) and ±2.48 × 10−3 for empirical power (at 80%)

Design parameter Value(s)
Replicates (𝑅) 10, 000 (studied null) and 1, 000 (𝐻𝑎)

Study sample size

(𝑁)

5, 000

MAFs (𝑞𝐺, 𝑞𝑍 ) 0.2, 0.3; 0.2, 0.2

LD (r2) 0.5; 0.75

𝛽0 2

𝛽1 0.25

𝜎2 2.25

Phase-two sample

size (𝑛)

540; 1,000; 2,500

Phase-two sample

allocation

(A) Proportional to stratum size (pps)

(B) Extreme on both 𝑍 and 𝑌𝑠𝑡
(extreme)

(C) Equal number in each stratum

(balanced)

(D) Balanced on 𝑍 and extreme on 𝑌𝑠𝑡
(combined)

For the case of no genetic effect, we note that trait val-

ues simulated under the null hypothesis 𝛽1 = 0 when 𝐺 = 𝐺1
would lead only to false positives under GWAS screening on

𝑍. Therefore, to evaluate type I error in the fine mapping set-

ting, we retain the trait values generated under the alternative

hypothesis, but instead generate a random null SNP, 𝐺0 with

the same MAF (𝑞𝐺) as the causal 𝐺1, but uncorrelated with

𝑍. We then analyze the null SNP, 𝐺0 in a similar fashion as

the causal SNPs 𝐺1.

We examine three sampling designs to select individuals

into 𝑆2, namely (1) marginal SNP-dependent sampling (M𝑍 ),

(2) marginal QT-dependent sampling (M𝑌 ), and (3) joint QT-

SNP-dependent sampling (J𝑍,𝑌 ). For (2) and (3), we discretize

the QT, 𝑌 , into three-strata 𝑌𝑠𝑡 (T1, T2, T3) according to

fixed cut points (𝐶1, 𝐶2) as the percentiles (2∕5, 3∕5) of a nor-

mal distribution with mean 𝜇𝑌 = 2 and variance 𝑠2
𝑌
= 2.25,

that is, under the null 𝑷 (𝑌 < 𝐶1) = 𝑷 (𝑌 > 𝐶2) = 0.4. These

values allow for a range of sampling variability in the sim-

ulations specially for the extreme allocations. This contrasts

with other extreme-trait allocations, e.g., Lin et al. (2013);

Zhao et al. (2009), in which the sampling probabilities for the

extreme strata are 1 (or close to 1). We explore a more extreme

definition of the strata in Appendix C of the supplementary

material.

We evaluate three phase 2 (𝑆2) sample sizes determined

by overall sampling fractions of 10.8%, 20%, and 50% of the

phase 1 sample. Under each design, we examine the sample

allocations described in Section 4: namely (A) proportional

to stratum size (pps), (B) extreme allocation on 𝑍 and 𝑌𝑠𝑡
(extreme), (C) equal numbers across 𝑍 and 𝑌𝑠𝑡 (balanced),

and (D) balanced on𝑍 and extreme on 𝑌𝑠𝑡 (combined). When

sampling selection of the desired number of subjects for a

particular stratum is infeasible due to an insufficient number

of observations in that particular stratum, we select up to the

maximum number of subjects in the small stratum, and then

reallocate to the remaining strata to achieve the specified 𝑆2
sample size.

We assess test validity and power for the Wald, score and

LR statistics as described in Section 3, specifying test sizes of

𝛼 = 0.05 under the null, and 𝛼 = 5 × 10−8 under the alterna-

tive. In addition, we evaluate bias, empirical/average (model-

based) standard errors and relative efficiency via root mean

square error (RMSE) of 𝛽1. We calculate relative efficiency

with the complete data RMSE as denominator.

The simulation studies are designed to address the fol-

lowing questions: identify allocations where J𝑍,𝑌 shows

improved power; identify design/allocation combinations

with good power (J𝑍,𝑌 vs. M𝑍 or M𝑌 ); compare power of

SPML versus alternative methods; and evaluate test statis-

tics for the proposed SPML estimation (score vs. Wald vs.

LR). In the next subsection, we highlight the main results on

power comparisons: among allocations, between joint versus

marginal designs, and between estimation methods including

(1) analysis of phase 2 data only (denoted as S2 alone) and (2)

TDS described in Lin et al. (2013) (with and without𝑍 in the

formulation). We further discuss related issues including test

validity under the studied𝑆2 sample sizes, estimation bias and

variance, relative efficiency, and effect of GWAS and phase 2

sample sizes versus sampling fractions.

5.2 Results
Under joint QT-SNP-dependent sampling, combined allo-

cations yield higher power than alternative allocations (pps,

extreme, balanced) (Table 4) while maintaining type 1 error

(T1E) control (Fig. 2). We observe no differences between
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T A B L E 4 Empirical power (in percentages) for 1,000 replicates under the score test for a phase two sample size of 𝑛 = 2, 500,𝑁 = 5, 000

(A) pps (B) extreme (C) balanced (D) combined
MAFs LD (r𝟐)

Comp.
Data Method M𝒁 M𝒀 J𝒁,𝒀 M𝒁 M𝒀 J𝒁,𝒀 M𝒁 M𝒀 J𝒁,𝒀 M𝒁 M𝒀 J𝒁,𝒀

0.2, 0.3 0.5 99.4 JTCsamp 84.4 84.8 85.7 84.6 92.9 90.3 90.3 78.1 85.1 87.8 92.0 94.3

𝑆2 alone 39.7 42.8 40.9 53.8 67.3 63.2 62.1 27.3 50.1 55.6 69.7 66.1

0.75 97.0 JTCsamp 84.2 85.6 85.7 85.0 90.7 88.1 90.2 83.0 87.7 88.7 89.1 91.8

𝑆2 alone 31.8 29.3 26.6 41.4 53.7 36.8 56.5 19.8 41.4 45.4 53.9 44.4

0.2, 0.2 0.5 98.4 JTCsamp 83.4 84.5 84.9 85.8 90.1 91.8 89.6 79.3 85.3 89.3 90.7 93.8

𝑆2 alone 42.8 43.3 41.0 52.3 66.0 47.3 59.7 29.8 31.6 57.8 68.1 60.9

0.75 97.7 JTCsamp 86.7 85.0 85.1 87.0 90.2 91.5 89.3 83.4 87.8 88.8 91.7 93.0

𝑆2 alone 29.9 29.8 25.9 42.3 54.6 16.5 52.0 19.9 12.1 45.1 52.5 32.4

Power is calculated at a nominal level of 𝛼 = 5 × 10−8. For sampling designs: marginal GWAS-SNP-dependent sampling (M𝑍 ), marginal QT-dependent sampling (M𝑌 ),

and joint QT-GWAS-SNP-dependent sampling (J𝑍,𝑌 ); and allocations (A) proportional to stratum size, (B) extreme on 𝑍 and 𝑌𝑠𝑡, (C) balanced on 𝑍 and 𝑌𝑠𝑡, and (D)

balanced on 𝑍 and extreme on 𝑌𝑠𝑡. Column for complete data (Comp. Data) for comparison purposes.

F I G U R E 2 Quantile-quantile plots of − log10 (P values) for test-

ing 𝛽1 under the type 1 error scenario (G0) across 10,000 replicates with

a phase 2 sample size of 2,500; we compare analyses of JTCsamp and S2
data alone

Notes: Each facet represents a sampling design and allocation combina-

tion. LD (r2) is fixed at 0.75 and MAFs fixed at qG=0.2, qZ=0.3.

marginal and joint sampling designs within the pps alloca-

tion. Marginal dependent samplings show better power under

the extreme (marginal QT) and combined (marginal SNP)

allocations. Joint QT-SNP-dependent sampling consistently

exhibits better power compared to marginal QT- or SNP-

dependent sampling under a combined allocation (Table 4).

The proposed SPML estimation under joint trait-covariate

dependent sampling method (hereafter JTCsamp) compares

favorably to two alternative methods: (1) 𝑆2 alone and (2)

our implementation of TDS. We observe substantial power

increases for JTCsamp compared to 𝑆2 data alone under

all allocations (Table 4). TDS (with and without 𝑍) and

analysis of phase 2 data alone yield generally similar results

for T1E and power with a phase 2 sample size of 𝑛 = 2, 500
(supplementary Table S1). On the other hand, as anticipated,

including 𝑍 in the trait model adversely affects the power

to detect association between the causal variant, 𝐺, and the

QT, 𝑌 (supplementary Table S1). This is not surprising

mainly due to collinearity derived from the underlying LD

between 𝑍 and 𝐺. Overall score, Wald and LR statistics

tests show similar T1E and power patterns (supplementary

Figs. S1 and S2).

Regarding test validity, quantile-quantile plots of− log10(𝑃
values) for testing 𝛽1 = 0 in JTCsamp and 𝑆2 alone when

phase 2 sample size is 𝑛 = 2, 500 (Fig. 2) do not exhibit

gross departures from the expected distribution (see also

Table S2). Likewise, there are no signs of more liberal T1E

rates in JTCsamp compared to the complete data case (sup-

plementary Fig. S3). In analysis of smaller phase 2 sample

sizes, we observe liberal T1E that decreases with sample size

increments (see supplementary Figs. S4 and S5); we believe

that small stratum-specific sample sizes are driving these

results.

For pps and balanced allocations, effect estimation biases

in JTCsamp and 𝑆2 data alone are similar (supplementary

Table S3), although these differences decrease with increas-

ing LD. However, for extreme and combined allocations, these

larger biases are only observed in the marginal SNP sam-

pling, whereas marginal QT and joint QT-SNP exhibit sim-

ilar biases to the complete data. This latter bias arises from

GWAS screening on𝑍, a well-known phenomenon in genetic

association studies called the “winner's curse.” In addition,
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in almost all cases, empirical and mean model-based stan-

dard errors for JTCsamp are smaller than those for 𝑆2 alone

(supplementary Table S3). JTCsamp has higher relative effi-

ciency than analysis of phase 2 data alone (supplemen-

tary Table S4). Extreme and combined allocations have the

largest relative efficiencies; further, under a combined alloca-

tion, joint QT-SNP-dependent sampling is more efficient than

marginal SNP or QT sampling. In addition, RMSE decreases

with stronger 𝑍-𝐺1 LD (supplementary Table S4).

To understand to what extent the overall sampling fraction

or stratum-specific sizes affect hypothesis testing, we repeated

the simulations with 𝑁 = 10, 000, 𝑛 = 2, 500, and MAFs

of 𝑞𝐺 = 0.2 and 𝑞𝑍 = 0.3 (supplementary Table S5). These

simulations show similar patterns as those in Table 4, sug-

gesting that it is the stratum-specific sample size rather than

the sampling fraction that is important in determining test

validity.

6 APPLICATION TO
FINE-MAPPING OF SYSTOLIC
BLOOD PRESSURE

The proposed method is intended to narrow down a candidate

region by hypothesis testing of multiple variants within the

region. To evaluate application under a more realistic multi-

variant causal model and assess sensitivity to sampling vari-

ation, we analyzed data from the Genetic Analysis Workshop

19 (GAW19). The study data included 1,943 unrelated indi-

viduals from the T2D-GENES Project 1, each with whole-

exome sequencing (WES) by Illumina HiSeq2000 technology.

Trait values for systolic and diastolic blood pressure (SBP and

DBP) were generated from the WES data under a known poly-

genic model with causal variants in multiple genes including

the MAP4 gene (Blangero et al., 2016) and replicated inde-

pendently 200 times. Since all four generating “causal” vari-

ants are located in chromosome 3, we focus on the 38,102

chromosome 3 sequence variants. Since GWAS data per se

are not available, we specify pseudo GWAS SNPs by extract-

ing nonrare noncausal WES variants (MAF>1%) overlapping

with a commercial genotype assay (Illumina Human Core

Exome-12v1.0). This yields a total of 3,192 chromosome 3

SNPs (48 in the MAP4 region) in the synthetic GWAS, which

serves as the phase 1 genotype data.

6.1 Methods
For each of the 200 phenotypic replicates we perform the fol-

lowing.

First, we perform chromosome-wide scans on the synthetic

GWAS data using complete data (𝑁 =1,943) to identify the

surrogate SNPs. Linear regression of SBP is carried out for

each of the genetic variants coded additively as independent

covariates. The most significant SNP among the 3,192 (top

SNP) is specified as the GWAS-SNP (𝑍) for phase 2 design

and analysis (see supplementary Figs. S6A and S7). The LD

structure in the MAP4 sequenced region reveals correlations

among the identified GWAS-SNPs and the causal variants

(supplementary Fig. S6B).

Second, to implement a two-phase design, we stratify SBP

into three groups according to commonly used thresholds:

normotensive (SBP<120), prehypertensive (120≤SBP<140),

and hypertensive (SBP≥140). We assess three overall sam-

pling fractions in the phase 2 data: 25%, 50%, and 75%, which

roughly correspond to 𝑛 =486, 971, and 1,457 respectively.

The observed sample sizes can vary across SNPs in the

analyzed region due to missing sequencing data. For each

sampling fraction, we draw subjects for the 𝑆2 sample using

a joint QT-SNP sampling design under extreme, balanced,

and combined allocations with BSS as described in Section

4 (see supplementary Fig. S8 for joint strata distributions in

the complete data and the studied allocations). We do not

consider pps allocation as it showed the poorest performance

in our simulations.

Lastly, we conduct regional association analysis in the

MAP4 gene fine-mapped through WES data. Thus, we

selected sequence variants flanking 500 kb around this gene.

There were 322 variants sequenced in the region (48 nonrare,

that is, MAF>1%). These 48 variants constitute the analysis

in the two-phase approach, which we carry out one variant at

a time. Besides the three studied sampling fractions examined

at four allocations, we compare SPML analysis of combined

phases 1 and 2 data (JTCsamp) to analysis of phase 2 data only

(𝑆2 alone) and to our TDS implementation (Lin et al., 2013)

without 𝑍.

6.2 Results
Four markers, all within the MAP4 region, meet the genome-

wide significant threshold, that is, 𝑃 -value< 5 × 10−8 in at

least one replicate (Table 5); these SNPs serve as the GWAS-

SNP in their respective replicate. Region (box)plots of the 200

replicates demonstrate that a joint QT-SNP sampling design

under a combined allocation achieves lower 𝑃 values com-

pared to balanced and extreme allocations for the studied sam-

pling fractions (Fig. 3). Nevertheless, empirical power within

allocations may vary across sampling designs, for example,

marginal 𝑌 design has highest power under an extreme allo-

cation, whereas marginal 𝑍 design achieves highest power

under a balanced allocation. Additional results considering

the best performing sampling design within the examined

allocation closely agree with the results displayed in Fig-

ure 3; this suggests that among the studied phase 2 alloca-

tions, a combined allocation under a joint QT-SNP sampling

design achieves lower 𝑃 values compared to other strate-

gies (supplementary Fig. S9). Summaries of the fine mapping
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T A B L E 5 Summaries for four SNPs identified as the top GWAS-SNP in at least one replicate

Mean (min, max) across 200 replicates Mean (min, max) in top replicates

GWAS-SNP MAF
Top
reps.a Estimate SE −log𝟏𝟎(𝑷 -value) Estimate SE −log𝟏𝟎(𝑷 -value)

chr3:47618953 0.45 136 3.45 (2.2, 4.4) 0.493 (0.47, 0.51) 11.5 (5.1, 17.0) 3.6 (2.8, 4.4) 0.492 (0.47, 0.51) 12.5 (7.5, 17.0)

chr3:47712202 0.34 18 3.06 (2.1, 4.0) 0.517 (0.50, 0.54) 8.53 (4.6, 14.0) 3.57 (3.1, 4.0) 0.515 (0.50, 0.53) 11.3 (8.5, 14.0)

chr3:48309828 0.19 45 −4.04 (−5.3, −2.9) 0.630 (0.61, 0.66) 9.84 (5.7, 16.0) −4.45 (−5.3, −3.7) 0.630 (0.61, 0.66) 11.8 (8.1, 16.0)

chr3:48360992 0.16 1 −3.80 (−5.1, −2.7) 0.673 (0.65, 0.70) 7.83 (4.1, 13.0) −4.12 (N/A) 0.685 (N/A) 8.68 (N/A)

aDenotes the number of times each SNP was detected as the most significant across 200 replicates.

F I G U R E 3 Region (box)plots of the distribution of the P values, in − log10(⋅) scale, across 200 replicates in the GAW19 simulated data under

a joint QT-SNP design and JTCsamp analysis calculated using the likelihood ratio statistic (LRS)

Notes: Column facets denote results under extreme, balanced, and combined allocations. Row facets correspond to different overall sampling fractions

(in percentages), leading to (approximate) phase 2 sample sizes of 486, 921, and 1,457, respectively. The dashed line represents the genome-wide

significance threshold.

analysis of the variants that achieve genome-wide significance

under the former strategy show that JTCsamp detected the

four causal variants consistently across replicates (Table 6).

However, an additional noncausal variant (chr3.47734700)

was also detected potentially due to LD structure in the region

(see supplementary Fig. S6B).

Comparisons across methods under the joint QT-SNP sam-

pling design and combined allocation in the regional associa-

tion demonstrate that JTCsamp is more powerful than 𝑆2 and

TDS and is more similar to the complete data analysis. Conse-

quently, even at the lowest sampling fraction, JTCsamp is the

only method that consistently detected the four causal variants

across all replicates. Although we observe some outliers in

JTCsamp for noncausal variants at the end of the region, as the

sampling fraction increases, the numbers of outliers decrease

considerably (supplementary Fig. S10).

Results of the WES fine-mapping application are consis-

tent with the simulation studies: higher power for joint QT-

SNP sampling and combined allocation compared to other

methods (𝑆2 alone, TDS). Thus, the proposed method exhibits

better agreement with the results of the complete data analy-

sis. Nonetheless, further investigation is warranted in a lower

powered setting. Results on sensitivity to phase 1 sampling

variation suggest that the extreme and combined allocations

are less sensitive to sampling variation, mainly because of the

enrichment of the strata of interest that leads to sampling of

most (or all) of the subjects in those categories (Appendix C

supplementary material).
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T A B L E 6 Summaries for five sequenced variants identified using JTCsamp under a combined allocation

Mean (min, max) across replicates
Seq. variant MAF

Generating
value Samp. frac Estimate SE −log10(P -value)

Emp. SD
of Est.

chr3.47734700 0.33 0.0 25 −5.57 (−7.4, −4.1) 0.656 (0.59, 0.77) 17.0 (7.6, 28.0) 0.555

50 −5.41 (−7.1, −4.0) 0.566 (0.27, 0.61) 21.4 (12.0, 110.0) 0.473

75 −5.41 (−7.2, −4.0) 0.561 (0.50, 0.59) 21.4 (12.0, 35.0) 0.475

chr3.47956424 0.34 −16.2 25 −6.01 (−7.7, −4.5) 0.636 (0.56, 0.73) 20.7 (12.0, 31.0) 0.592

50 −6.00 (−7.4, −4.6) 0.553 (0.53, 0.59) 26.8 (16.0, 39.0) 0.471

75 −6.00 (−7.3, −4.6) 0.547 (0.52, 0.57) 27.4 (17.0, 39.0) 0.475

chr3.47957996 0.02 −18.2 25 −20.2 (−29.0, −15.0) 2.28 (1.90, 2.80) 18.8 (8.6, 39.0) 2.51

50 −18.7 (−26.0, −14.0) 2.00 (1.80, 2.20) 20.3 (12.0, 38.0) 1.91

75 −18.7 (−26.0, −14.0) 1.97 (1.80, 2.10) 20.7 (12.0, 38.0) 1.87

chr3.47958037 0.31 −1.0 × 10−5 25 −5.97 (−7.7, −4.3) 0.666 (0.66, 0.77) 18.7 (9.6, 30.0) 0.613

50 −5.84 (−7.5, −4.3) 0.574 (0.47, 0.61) 23.8 (14.0, 36.0) 0.500

75 −5.85 (−7.5, −4.3) 0.567 (0.26, 0.60) 24.9 (14.0, 160.0) 0.509

chr3.48040283 0.03 −20.7 25 −18.4 (−25.0, −13.0) 2.10 (1.70, 2.70) 18.4 (8.6, 38.0) 2.38

50 −16.9 (−24.0, −13.0) 1.81 (1.70, 2.00) 20.1 (12.0, 37.0) 1.88

75 −16.9 (−23.0, −13.0) 1.79 (1.70, 1.90) 20.6 (13.0, 37.0) 1.84

Generating values for the multivariate model used for SBP were provided by GAW19 data simulators (Blangero et al., 2016). Sampling fractions are in percentages.

Interestingly, we identified one locus that is not in the list of “causal” variants, chr3:47734700, this can be explained by the LD structure in the MAP4 region (supplementary

Fig. S6B) where we can observe that chr3:47734700 is in high LD with two of the causal variants: chr3:47956424 and chr3:47958037 (see Shin, Yi, and Bull, 2016, for

details on this phenomenon).

7 DISCUSSION

Two-phase joint QT-SNP sampling designs can be more pow-

erful and less sensitive to sample variation than the marginal

counterparts provided the proper allocation is chosen. In

particular, we find that under a combined allocation, that

is, extreme trait and balanced genotype, a joint QT-SNP

design exhibits better power compared to marginal designs.

An important advantage of the SPML estimation is that the

extreme and combined sample allocations we explored can

be handled under this framework unlike, for instance, an

approach based on inverse probability weighted estimating

functions. The EM algorithm described in Section 3 can

accommodate additional nongenetic covariates in the regres-

sion model by assuming 𝑓𝜃(𝑦|𝑔,𝑤) = 𝑓𝜃(𝑦|𝜇𝑔,𝑤), where𝑤 is

a vector of covariates with 𝜇𝑔,𝑤 = 𝛽0 + 𝛽1𝑔 + 𝛾𝑇𝑤; and 𝜃 =
(𝛽0, 𝛽1, 𝛾𝑇 , 𝜎2)𝑇 . Then𝑋𝑔 is replaced with𝑋𝑖,𝑔 = (1, 𝑔, 𝑤𝑇

𝑖
)𝑇

in the M-step, for 𝑖 = 1,… , 𝑁 , where 𝑤𝑖 is the 𝑖th subject's

vector of covariates, these additional covariates are observed

across all subjects in both phases 1 and 2 data. Note that inde-

pendence between 𝐺 and 𝑊 is implicitly assumed. Because

JTC analysis is likelihood based, credible intervals can be con-

structed using Bayes factors, which may be useful for compar-

ison with other fine mapping methods (see Maller et al. (2012)

for an illustration of this approach)

The simulation studies show that JTCsamp outperforms

TDS in terms of power. This may be due to the fact that

the latter formulation was designed for association analysis

of sequencing data under marginal trait-dependent sampling

focusing on set-based analysis of rare variants in hypothe-

sis generating genome-wide analysis. The proposed method

fills a gap for those situations where the missing (by design)

covariate observation (𝐺) is correlated with the surrogate (and

fully observed) covariate 𝑍. It would be of practical interest

to explore the impact of low allele counts of 𝑍 in the per-

formance of the design and the estimation. Choice of strat-

ification criteria for the QT poses some challenges, includ-

ing potential losses of information, and it is arguably a lim-

itation of this approach despite its wide usage in two-phase

designs. We examine a few reasonable joint allocations that

extend existing marginal approaches that have proven useful

in the literature. Further work is necessary to determine robust

or optimal allocations under budget constraints.

Throughout the paper, we assume additive genetic models

for the (surrogate or causal) variants and the QT as these are

most often encountered. We expect that a change in the model

structure, for example, dominant or recessive, may affect the

performances reported here. Past studies (Chen et al., 2014)

suggest, however, that the form of the genetic model has

a limited impact on the efficiency of the two-phase analy-

sis. The current specification of JTCsamp is yet to incorpo-

rate multiple 𝐺 or multiple 𝑍, which can be a desirable fea-

ture in regional sequencing; extensions in this direction are

warranted.

The described method can be extended to generalized linear

models (GLMs) using available estimation methods by replac-

ing the Gaussian distribution by another member of the expo-

nential family. To do so, the individual weights computed in
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the E-step need to reflect the chosen family distribution. Con-

sequently, the updates for the parameters in the M-step cannot

be obtained in closed form, requiring iteratively reweighted

least squares iterations. Extensions to other location-scale

or time-to-event models are warranted. In principle, these

extensions can be covered by a general framework (Derkach

et al., 2015). However, further considerations of sampling

designs for these models will be required (see Lawless, 2016).

We emphasize that the proposed method can be used in

other settings in which molecular genetic technologies are too

expensive to apply to an entire large cohort. For instance, in

microbiome analysis, application of initial rRNA sequencing

in phase 1 could be followed in phase 2 with metagenomic

whole genome shotgun sequencing, a technology that pro-

vides a deeper understanding of the functions and pathways

present in the human microbiome.
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