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ABSTRACT

Access to genome-wide data provides the opportu-
nity to address questions concerning the ability of
transcription factors (TFs) to assemble in distinct
macromolecular complexes. Here, we introduce the
PAnDA (Protein And DNA Associations) approach
to characterize DNA associations with human TFs
using expression profiles, protein–protein interac-
tions and recognition motifs. Our method predicts
TF binding events with >0.80 accuracy revealing cell-
specific regulatory patterns that can be exploited for
future investigations. Even when the precise DNA-
binding motifs of a specific TF are not available,
the information derived from protein-protein net-
works is sufficient to perform high-confidence pre-
dictions (area under the ROC curve of 0.89). PAnDA
is freely available at http://service.tartaglialab.com/
new submission/panda.

INTRODUCTION

Recent chromatin immunoprecipitation and high-
throughput sequencing (ChIP-seq) experiments have
provided genome-wide details of transcription factors
binding sites (TFBS), revealing important information on
transcription factors (TFs) activities in human cells (1).
Although computational analyses are extremely useful to
identify DNA motifs associated with individual TFs (2),
the complexity of regulatory networks requires advanced
methods to capture cell-specific TF interactions with
DNA regions (3). TFs assemble in hetero-complexes (4),
which indicates that protein–protein interactions (PPI)
could play an important role in TFBS recognition. Indeed,
recent reports showed that TFs are present at different
concentrations in human cells (5) and form highly dynamic
complexes (6), suggesting that their DNA-binding abilities
are influenced by the way components of PPI networks
assemble together (7). Here, we investigated how the
information contained in components of PPI networks

can be exploited to perform accurate predictions of TFBS.
The opportunity to study the role of PPI in TF-DNA
associations is offered by details of ChIP-seq protocols,
which involve crosslinking of genomic regions with TFs
and their protein partners (8). Our analysis of ChIP-seq
data sheds light on combinatorial associations of TFs and
reveals new properties of regulatory networks (9).

From analysis of experimental data, we formulated a
novel approach, PAnDA (Protein And DNA Associations),
to predict TF interactions with DNA regions. Our approach
will be useful for the designing of new applications for
biotechnological research, including somatic stem cell re-
programming to pluripotency (10) and genome engineering
with transcription activator-like effectors (11).

MATERIALS AND METHODS

We developed the PAnDA algorithm to predict DNA tar-
gets of TFs using the information contained in PPI net-
works. For each TF (ChIP-seq datasets), we performed a
literature search to retrieve PPI networks (Interaction net-
works) as well as regulatory motifs of DNA-binding com-
ponents (Regulatory motifs). We then selected PPI elements
active in specific cell-lines using expression levels (Expres-
sion levels) and combined their regulatory motifs using a
machine learning approach that distinguishes between low-
and high-affinity interactions with genomic regions (Trend
analysis and models selection). The algorithm is freely avail-
able as a web server (PAnDA web server).

ChIP-seq datasets

We retrieved 607 datasets from ENCODE Transcription
Factor Binding Sites by ChIP-seq tracks [June 2012 uni-
form processing (8)]. Datasets containing <2000 peaks (i.e.
60 datasets) or sequences smaller than 20 nt in length [i.e.
comparable with the average length of a DNA motif (12)]
were filtered out. In the training phase (Trend analysis and
models selection), we used 361 datasets whose target TF
have at least one motif annotated in JASPAR CORE (13),
Jolma (14) and UniPROBE (15). For independent testing,
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we used 186 datasets without annotated motifs for target
TFs. The filter for availability of expression data (Expression
levels) slightly reduced the number of cases to 404 ChIP-seq
datasets (134 target TFs): 275 datasets (86 target TFs, 12 cell
lines) for model selection and 147 datasets (48 target TFs, 9
cell lines) for independent testing (i.e. target TFs not present
in the training phase).

Interaction networks

Within each PPI network, we classify proteins as: (i) target
TFs (layer 1); (ii) cofactors (layer 2); (iii) mediated cofac-
tors (layer 3) [Figure 1a]. To retrieve protein interactions we
used the STRING database (16) that contains physical and
functional interactions (total of 5 214 234 associations) col-
lected from different publicly available sources including Bi-
oGRID [822 889 interactions](17), MINT and IntACT [523
070 interactions](18,19), DIP [11 000 interactions](20) and
PID [16 823 interactions](21). In our analysis, we discarded
interactions with STRING scores < 0.8 because they are
frequently linked to text-mining and co-expression studies
that cannot be easily linked to physical evidence (16). Using
confidence scores >0.8, we compared high peaks versus low
peaks motif counts and found strong enrichments in second
and third layers of PPI networks (total of 1759 unique pair-
wise associations; layer 2 enrichment: P-value = 1.23e-21;
layer 3 enrichment: P-value = 2.69e-10; Wilcoxon’s test).
We note that using STRING scores > 0.9, the number of
interacting partners is sensibly reduced (total of 1 235 pair-
wise associations) and the enrichments were not significant
(layer 2 enrichment: P-value = 0.07; layer 3 enrichment: P-
value = 0.955; Wilcoxon’s test).

As a number of physical interactions are missing at
STRING scores > 0.8, we proceeded with their reinte-
gration using BioGRID [physical interactions: ‘FRET’,
‘Two-hybrid’, ‘Co-localization’, ‘Co-purification’; total of
2047 unique pairwise associations]. The combination of
BioGRID and STRING led to a substantial increase in
the enrichments significance (Figure 1b; layer 2 enrich-
ment: P-value = 7.43e-34; layer 3 enrichment: P-value =
3.43e-66; Wilcoxon’s test). We also investigated cases linked
to stronger evidence for physical interaction in BioGRID
(‘FRET’ and ‘Two-hybrid’; total of 1976 unique pairwise
associations), but we did not observe sensible changes
in discriminative performances (layer 2 enrichment: P-
value = 3.16e-25; layer 3 enrichment: P-value = 7.58e-
16; Wilcoxon’s test). Indeed, fold-change enrichments are
higher when STRING is combined with BIOGRID classes
‘FRET’, ‘Two-hybrid’, ‘Co-localization’, ‘Co-purification’
(layer 2 fold enrichment: 2.08; layer 3 fold enrichment: 1.55;
median comparison between distributions) than ‘FRET’
and ‘Two-hybrid’ (layer 2 fold enrichment: 1.68; layer 3
fold enrichment: 1.12; median comparison between distri-
butions).

In summary, we retrieved 1 093 841 (STRING) and 225
943 (BioGRID) unique protein–protein associations for our
PPI networks. Upon selection of DNA-binding proteins
with annotated sequence motifs (Regulatory motifs), we
counted a total of 13 785 (STRING), 1 529 (BioGRID) and
20 800 (STRING + BioGRID) associations. Finally, the ap-
plication of expression level thresholds (Expression levels)

reduced the set to 3 581 (STRING), 372 (BioGRID) and 5
333 (STRING + BioGRID) interactions.

Regulatory motifs

DNA motifs of PPI networks were retrieved from JASPAR
CORE [205 motifs of 212 TFs](13), Jolma [738 motifs of 432
TFs](14) and UniPROBE [318 motifs of 224 TFs; Supple-
mentary Table S1](15). Notably, motifs contained in JAS-
PAR and Jolma databases were determined through SE-
LEX experiments, while UniPROBE reports motifs identi-
fied via universal protein binding microarray (PBM) tech-
nology. Calculation of motif occurrences was performed us-
ing FIMO software [default P-value threshold of 1e-4] (22).

We cross-validated our results using databases of mo-
tifs derived from ENCODE ChIP-seq experiments [Wang
database (23): 82 motifs of 65 TFs; SeAMotE database (24):
95 motifs of 95 TFs]. Overall, we collected 1 438 distinct
motifs assigned to 570 human TFs using NCBI Homolo-
Gene database (http://www.ncbi.nlm.nih.gov/homologene).
Motif frequencies were computed as fraction of DNA se-
quences (ChIP-seq peaks) containing ≥ 1 motifs recognized
by one or more factors in the experiments from the same cell
line.

To select the DNA-motif database that better describes
the binding sites of a specific PPI network, we introduced
the concept of mappability:

mappability = number of mapped motifs
number of available motifs × motifs size

The mappability score is a measure of the number of mo-
tifs covered by cofactors and mediated cofactors present
in each TF network (number of mapped motifs/number of
available motifs) weighted by their average length (motifs
size). For instance, in the case of EP300 the mappability
scores are 8.24 [Wang (23)], 7.17 [UniPROBE (15)], 5.32
[JASPAR (13)], 4.27 [Jolma (14)] and 2.87 [SeAMotE (24)].
Importantly, the mappability score correlates with testing
performances on each database (PAnDA web server and also
‘Results and Discussion’: Stability of PAnDA models). Co-
factors play a predominant role in TFBS classification com-
pared with mediated cofactors, which results in stronger
correlation between their mappability and predictive perfor-
mances.

Expression levels

We estimated protein abundances using expression levels
from ENCODE experiments (25), that provide a consistent
and homogeneous source of information for our compara-
tive analysis. Although protein and mRNA levels can dif-
fer owing to regulatory mechanisms and post-translational
modifications (26), recent studies indicate that they are sig-
nificantly correlated in human cells (27,28). In agreement
with these findings, we recently showed that predictions of
protein interactions can be performed using mRNA levels
instead of protein abundances (29), which is also in line with
our previous observations (30,31).

In our algorithm, we employed 12 cell types matching
both ChIP-seq and RNA-seq data (A549, AG04450, BJ,
GM12878, H1-hESC, HUVEC, HeLa-S3, HepG2, K562,
MCF-7, NHEK, SK-N-SH RA) representing the main
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Figure 1. Trends in PPI networks. (a) Graphical representation of TF binding modes. In addition to direct binding (layer 1 in the interaction network––blue
dots), we take into account the contribution of cofactors (layer 2––red dots) and mediated cofactors (layer 3––green dots). (b) Each network layer shows
significant difference in frequencies of binding motifs associated with high and low ChIP-seq peaks (motifs were retrieved from a number of open-source
databases; Online methods: TFBSs databases).

cell types in ENCODE ChIP-seq experiments. For each
gene, we computed overall expression levels as sum of
RPKM (Reads Per kb per Million reads) values averaged
across replicates with np-IDR (non-parametric Irrepro-
ducible Discovery Rate) lower than 0.1.

We used quantile normalization to analyze expression
levels from different cell lines because it allows comparison
between statistical distributions without prior knowledge of
their intrinsic features (e.g. 0.1 quantile = bottom 10% of all
observations; 0.5 quantile = 50% of all observations = me-
dian). Thus, the approach introduces an absolute criterion
to select components of PPI networks using optimal thresh-
olds (from 0.1 to 0.5: threshold = 1 – quantile; Trend anal-
ysis and models selection). For each motif database, thresh-
olds were derived in the training phase (Supplementary Ta-
ble S1) and tested on the independent validation set.

Trend analysis and models selection

We employed state-of-the-art machine-learning approaches
(32) to evaluate the contribution of PPI networks to DNA
recognition: K-nearest neighbors (KNN), Adaptive Boost-
ing (AdaBoost), Support Vector Machine (SVM) and Ran-
dom Forest (RF) [see the Online Tutorial for further de-
tails]. Each classifier provides a classification score for
protein–DNA interactions (interactions are considered pos-
itive when the score is >0.5). Using expression levels infor-
mation to select DNA-binding proteins (Expression levels),

we built three distinct classifiers (Supplementary Figure S1)
for the first (i.e. target TFs), second (i.e. target TFs and co-
factors) and third layer (i.e. target TFs, cofactors and me-
diated cofactors) of PPI networks. An additional algorithm
(model 4) was trained without information on target TFs
(Supplementary Figure S1).

In each model, cell-specific expression levels (Supple-
mentary Table S1) were used to select cofactors and medi-
ated cofactors associated with individual target TFs. Mo-
tif frequencies for each set of interest (Regulatory motifs)
were employed as input for the machine-learning approach
(model 1: target TF motifs; model 2/4: target TF and cofac-
tor motifs/cofactor and mediated cofactor motifs; model 3:
target TF, cofactor and mediated cofactor motifs). We eval-
uated performances by measuring accuracies with leave-
one-out cross-validation (LOOCV) on 275 datasets (86 tar-
get TFs, 12 cell lines; LOOCV has been performed on
individual TF networks; Supplementary Figures S1-S4).
For each network, positive and negative non-redundant
instances were balanced by randomly under-sampling the
more populated class (i.e. using the same number of posi-
tive and negative cases).

We estimated performances of PAnDA models using
slopes (�Performance) obtained from a linear regression on
LOOCV accuracies (‘layer 1 → layer 2′ and ‘layer 2 → layer
3′; Figure 2; Supplementary Figure S1). Expression thresh-
olds (Expression levels; Supplementary Table S1) were se-
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Figure 2. Training the PAnDA approach. Network layers and algorithm
performances. In 275 datasets (8), we observed a consistent increase in
cross-validation accuracies (�Performance >0; Online Methods: trend
analysis and models selection) upon layers integration (layer 1 → layer 2;
layer 2 → layer 3; Online Methods: TFBSs databases; blue dots indicate
�Performance with P-value < 0.01). Colors highlight specific trends: light
green and pink indicate that addition of layers 2 and 3 is associated with an
increase in predictive power (light green: layer 3 has stronger signal than
layer 2; pink: vice versa), while light blue and purple indicate decrease (light
blue: layer 3 has lower signal than layer 2; purple: vice versa).

lected by evaluating classifiers agreement on the criterion
�Performances >0 (Figure 2; Supplementary Figures S2
and S3). Performances on independent test sets (ChIP-seq
dataset) were evaluated using the area under the ROC curve
(AUROC), which is independent of positive and negative
datasets size.

PAnDA web server

One or more protein and DNA sequences in FASTA for-
mat are used as input. Query protein sequences are searched
for homologous sequences in PAnDA TFs database using
Pfam (33) DNA binding domain families (version 27.0) and
filtering BLAST (34) hits (E-value ≤ 0.01; sequence iden-
tity ≥ 95%). Interaction networks of homologous TFs are
generated as described in Interaction networks section. As
for query DNA sequences, FIMO (22) software is used to
search motifs occurrences in PWMs databases. Motif fre-
quencies are calculated as described in the Regulatory mo-
tifs section. Expression thresholds are calculated as in the
Expression levels section. If the ‘Default mode’ option is se-
lected, all the motifs repositories in our database are em-
ployed along with their optimal expression thresholds and
optimal classifiers identified in LOOCV (Trend analysis and
models selection; Supplementary Table S1). If no motifs are
found for layer 1, optimal model 4 (Trend analysis and mod-
els selection) is used. Binding propensities are listed using
the ranking provided by the mappability score that corre-
lates with predictive performances (Regulatory motifs; Sup-
plementary Table S1 and Supplementary Figure S5). If the
‘Expert mode’ option if selected, the user can choose mo-
tif databases, expression thresholds and classifiers. By de-
fault we provide components of PPI networks derived from
STRING (confidence score > 0.8) and BioGRID (‘FRET’,

‘Two-hybrid’, ‘Co-localization’, ‘Co-purificational’) and al-
low users to decide combinations depending on their spe-
cific analyses. We note that all combinations of BIOGRID
and STRING sets showed similar AUROCs on the test
set (model 4) in the range of 0.88–0.90, with exception of
STRING confidence score > 0.9 that has AUROC of 0.84
due to the low number of elements in PPI networks (Inter-
action networks).

RESULTS AND DISCUSSION

In this study we analyzed TFBS derived from ENCODE
ChIP-seq datasets (8) (‘Materials and Methods’ section:
ChIP-seq databases) using PPI networks (‘Materials and
Methods’ section Interaction networks), regulatory motifs
(‘Materials and Methods’ section: Regulatory motifs) and
expression levels of DNA-binding proteins (‘Materials and
Methods’ section: Expression levels). For each TF (i.e. layer
1 in Figure 1a), we retrieved high-confidence functional
partners (i.e. cofactors: layer 2 in Figure 1a) as well as their
interactions (i.e. mediated cofactors: layer 3 in Figure 1a),
thus covering up to two ‘degrees of separation’ (35) of func-
tionally related layers of PPI networks.

Trends in PPI networks

Comparing high-affinity (top 500 ChIP-peaks) with low-
affinity (bottom 500 ChIP-peaks) regions, we found that not
only target TFs but also cofactors and mediated cofactors
are significantly enriched in DNA-binding motifs (target
TFs: P-value = 4.74e-36, fold-change = 2.08; cofactors: P-
value = 7.43e-34, fold-change = 2.09; mediated cofactors:
P-value = 3.43e-66, fold-change = 1.55; Wilcoxon’s test and
median comparison between distributions; Figure 1b). Such
findings suggest that the PPI network contains relevant in-
formation that can be exploited to identify TFBS.

Training the PAnDA approach

The ability of PPI networks to identify TFBS was explored
using state-of-the-art algorithms (‘Materials and Methods’
section: Trend analysis and models selection). In our calcu-
lations, we selected TF interactions considering cell-specific
expression levels (‘Materials and Methods’ section: Expres-
sion levels; Supplementary Tables S1) and measured perfor-
mances of classifiers trained on DNA-binding motif counts
of PPI networks (Figure 2; ‘Materials and Methods’ sec-
tion: Regulatory motifs; Supplementary Figures S1–S3).
With respect to standard approaches restricted to the first
layer of PPI networks (i.e. layer 1 or DNA motifs of tar-
get TF), we observed a consistent increase in performances
when second and third layers were taken into account (Fig-
ure 2; Supplementary Figures S1–S3; ‘Materials and Meth-
ods’ section: Trend analysis and models selection). Using
leave-one-out cross-validation (LOOCV), we identified an
ensemble of models with high predictive power (average ac-
curacy of 0.81 and area under the ROC curve, AUROC, of
0.80 on LOOCV per TF network; ‘Materials and Methods’
section: Trend analysis and models selection; Supplementary
Figure S1a; Supplementary Table S1).

To illustrate PAnDA performances with an example,
TFBS of T-cell acute lymphocytic leukemia protein 1
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Figure 3. Testing the PAnDA approach. Performances on independent test
sets [147 datasets (8); ‘Material and Methods’ section: ChIP-seq datasets].
Four models based on different network layers (model 1: layer 1; model
2: layers 1 and 2; model 3: layers 1,2 and 3; model 4: layers 2 and 3) have
been applied to cases without annotated target TF motifs (Supplementary
Figure S1c). Areas Under the ROC curve (AUROCs) show that interac-
tion network information (layers 2 and 3) provides accurate description of
binding events.

(TAL1) were predicted with accuracies of 0.50 (layer 1),
0.75 (layers 1 and 2) and 0.83 (layers 1, 2 and 3) in K562
cells. Similarly for proto-oncogene c-Fos (FOS), TFBS
were identified with accuracies of 0.65 (layer 1), 0.71 (lay-
ers 1 and 2) and 0.77 (layers 1, 2 and 3) in 4 cell lines
(GM12878, HUVEC, HeLa-S3 and K562). Interestingly,
DNA-binding activity of both TAL1 and FOS have been re-
cently investigated using innovative biotechnologies, includ-
ing epigenome editing tools and single-cell high-throughput
sequencing (36,37). We speculate that our predictions could
be interfaced with novel experimental platforms to investi-
gate and engineer TF interaction networks.

Testing the PAnDA approach

We tested PAnDA on 147 never-seen-before ChIP datasets
of target TFs for which DNA-binding motifs are not re-
ported in literature (‘Materials and Methods’ section: Motif
frequencies). High predictive performances were observed
(AUROC = 0.82; Figure 3; Supplementary Figure S1c;
Supplementary Table S1; ‘Materials and Methods’ section:
ChIP-seq datasets), indicating that PPI networks contain
relevant information to identify TFBS even in absence of
target TF motifs. For instance, in the case of reprogram-
ming factor homeobox protein NANOG (38), regulatory
signals are not available (layer 1) but DNA motifs exist
for several cofactors and mediated cofactors. Comparing
our calculations with ChIP-seq data in H1-hESC cells, we
found strong agreement when TF network information is
taken into account (AUROCs of 0.50, 0.60 and 0.98 using
respectively one, two or three PPI layers; Figure 4). Sim-
ilarly, DNA interactions of paired amphipathic helix pro-

tein Sin3a (SIN3A) were predicted with high confidence
in A549, GM12878, H1-hESC, HepG2 cells (AUROCs of
0.50, 0.51 and 0.88 upon addition of PPI layers). In accor-
dance with experimental evidence, we found that SIN3A,
MYC-associated factor X (MAX), homeobox TGIF1 and
mothers against decapentaplegic homolog SMAD3 have
the ability to co-bind DNA sequences (39). Furthermore,
we note that the association SMAD3-TGIF1 is particularly
relevant for the activity of histone acetyltransferase EP300
(40), whose genomic interactions were also predicted with
high confidence in seven cell lines (AUROCs of 0.52, 0.69
and 0.82 increasing the number of layers from 1 to 3). The
finding that PPI networks provide accurate description of
DNA-binding events is further corroborated by the high
performances (AUROC of 0.89; 0.96 for NANOG; Figure
4) of a model trained without information on target TF mo-
tifs (i.e. only using cofactors and mediated cofactors motif
frequencies; Figure 4; Supplementary Figure S1; ‘Materi-
als and Methods’ section: Trend analysis and models selec-
tion). Importantly, recalibration of the algorithm with infor-
mation contained in second and third layers allows better
weighting of the contribution coming from cofactors and
mediate-cofactors, which are intrinsically associated with
lower signals (Figure 1b; see also Stability of PAnDA mod-
els).

Specificity of PAnDA models

To test the sequence-specificity of PPI networks for DNA
regions, we built 10 models using random associations be-
tween proteins and their regulatory motifs. We observed a
substantial decrease in both training [average accuracy =
0.56 with maximum of 0.60 on motif dataset by Wang et

Figure 4. Example of PPI networks used in PAnDA calculations. (a) Com-
ponents of PPI networks selected for predictions of NANOG interactions
[H1-hESC cell line] (8); (b) Performances based on DNA-binding motifs of
target TF (model 1: NANOG; AUROC = 0.50), target TF and cofactors
(model 2: NANOG, TP53, SOX2 and POU5F1; AUROC = 0.60), target
TF, cofactors and mediated cofactors (model 3: NANOG, TP53, SOX2,
POU5F1, CTCF and YY1; AUROC = 0.98) and cofactors and mediated
cofactors (model 4: TP53, SOX2, POU5F1, CTCF and YY1; AUROC =
0.96). The network is represented using squares for target TF (NANOG)
and circles for other proteins (cofactors and mediated cofactors). The color
palette refers to quantiles of expression levels (increasing from blue to yel-
low). Factors predicted to be not relevant for the binding of target TF are
colored in gray.
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al. that was trained on both low and high peaks of ChIP-
seq data (23)] and testing sets (Figure 5a), which indicates
that optimal performances require recognition of precise
regulatory motifs. We also investigated the cell-specificity of
PAnDA predictions by shuffling expression levels of DNA-
binding proteins (10 random models). In this test, elements
of PPI networks have been removed or added consider-
ing randomized expression levels with respect to thresholds
identified in the training phase. Also in this case, we ob-
served poor performances on both training (average accu-
racy = 0.52 with maximum of 0.59 on the motif dataset by
Wang et al. 2012) and testing sets (Figure 5b), indicating
that our absolute criterion based on quantile normalization
is key to identify factors and mediated cofactors participat-
ing in specific cell lines (‘Materials and Methods’ section:
Expression levels).

Stability of PAnDA models

In an additional analysis, we modified PPI networks and
DNA sequences to evaluate their impact on PAnDA pre-
dictions. In this test, we used the UniPROBE dataset as it
shows the highest performances in the testing phase (AU-
ROC of 0.89). Elimination of one cofactor per TF network
significantly reduced performances (AUROC of 0.67; P-
value = 0.0006, Student’s t-test; ‘Materials and Methods’
section: Models stability), while removal of mediated co-
factors showed less dramatic effects (AUROC of 0.82 upon
elimination of one mediated cofactor; P-value = 0.01; Fig-
ure 6a). Thus, our findings suggest that cofactors play a
predominant role in TF binding (see also Supplementary
Figure S5), in agreement with previous reports (41). Sim-
ilarly, modifications of DNA sequences dramatically af-
fected PAnDA predictive power (Figure 6b). We found that

Figure 5. Specificity of PAnDA models. (a) Randomization of regulatory
motifs. We built 10 independent models using shuffled associations be-
tween regulatory motifs and DNA-binding proteins present in the follow-
ing databases: SeAMotE (24), Jolma (14), JASPAR CORE (13), Wang (23)
and UniPROBE (15). Compared to PAnDA performances (red bars), the
random models (gray bars) show negligible predictive power (AUROCs ∼
0.50) on the test set, indicating that regulatory motifs are specific for DNA
targets. We note that the regulatory motifs generated with the SeAMotE
approach (24) are of smaller size [6 nucleic acids on average] than those
present in Jolma (14) [12 nucleic acids], JASPAR CORE (13) [12 nucleic
acids], Wang (23) [16 nucleic acids] and UniPROBE (15) [16 nucleic acids],
which results in poorer performances. (b) Randomization of expression lev-
els. For each PPI network, selection of cofactors and mediated cofactors is
based on cell-line abundances. Shuffling the expression levels of all DNA-
binding proteins, we built 10 models (gray bars) with randomized PPI net-
works. On the test set, the models have poorer predictive power (AUROCs
∼ 0.50) than PAnDA (red bars), which suggests that components of PPI
network are highly specific for the cell line of interest. In both plots, AU-
ROC averages and standard deviations are shown.

Figure 6. Stability of PAnDA models. (a) Interaction network destabiliza-
tion. We found a significant decrease in predictive performance (AUROC;
averages and standard deviations shown) upon removal of cofactors and
mediated cofactors (model 4; Online Methods: Models stability). (b) Muta-
tions of DNA sequences. From low (1/100 or 1 mutation in 100 nt) to high
(R or 1 mutation each nucleotide) mutation rates, motifs mapped by cofac-
tors and mediated cofactors are sensibly reduced (500 sequences per ChIP
dataset; model 4; Online Methods: Models stability), which affects predic-
tive performances (AUROC; averages and standard deviations shown).

performances were significantly reduced at high mutation
rates (AUROC of 0.59; P-value = 0.003, Student’s t-test;
Online Methods: Models stability), although a number of
binding sites could be still identified due to degeneration of
consensus motifs (Figure 6b).

Use of the PAnDA approach

Given a pool of TFs and DNA sequences, PAnDA re-
trieves components of PPI networks from publicly available
databases (‘Materials and Methods’ section: Interaction net-
works) selecting proteins that have expression levels compat-
ible with the cell-line of interest (‘Materials and Methods’
section: Expression levels). Once the binding motifs (‘Mate-
rials and Methods’ section: Regulatory motifs) are mapped
onto the DNA sequences, three independent classifiers are
employed to predict the binding propensities of TF, their
cofactors and mediated-cofactors (Figure 7). As binding
motifs are collected from various sources, the mappability
score is used to select the set with highest information con-
tent (‘Materials and Methods’ section: Regulatory motifs).
In the web server implementation, the algorithm stops if
the signal in the submitted datasets is comparable with ran-
dom submissions (Specificity of PAnDA models). Otherwise,
PAnDA reports DNA sequences and the interacting PPI
networks for further analysis.

CONCLUSIONS

PAnDA is a powerful method to explore protein–DNA net-
works and can be used to design experiments targeting ge-
nomic regions such as promoters, enhancers as well as other
functional elements. The key ingredients of our approach
rely on intrinsic aspects of experimental measurements. In-
deed, due to the formaldehyde fixation step during immuno-
precipitation (8), binding regions reported in ENCODE
ChIP-seq data involve multiple protein interactions. Start-
ing from this observation, we found that PPI network infor-
mation substantially improves the ability to classify TFBS
(Figure 3; Online Methods: Interaction networks). Our re-
sults are in agreement with previous statistical analyses re-
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Figure 7. Using the PAnDA approach. Once DNA and TF sequences are submitted to the PAnDA web server, (a) PPI networks are selected from publicly
available databases using expression levels to retrieve components of PPI networks that are active in specific cell-lines; (b) Regulatory motifs of DNA-
binding proteins are mapped onto DNA sequences and reported in a table; (c) Three algorithms predict protein-DNA interactions exploiting first (TF),
second (TF and cofactors) and third (TF, cofactors and mediated cofactors) layers of PPI networks. If DNA motifs of input TFs are missing, an alternative
model (model 4) based on motifs of cofactors and mediated cofactors is employed. Each protein association is scored with a value for the propensity of
the interaction to occur (see also Online Tutorial).

porting that regulatory motifs of cofactors are significantly
enriched in proximity of transcription factors binding sites
(42). Moreover, our algorithm very well complements re-
cent catalogues of TF interactions (43), providing a tool to
predict combinatorial associations in large-scale studies. It
should be mentioned that our approach is an attempt to-
ward the development of a multi-body potential for molecu-
lar interactions, which could overcome limitations of binary
predictors (44). Implementation of new algorithms based
on combinatorial features will impact performances of ex-
isting methods such as for instance catRAPID for protein–
RNA interactions (45).

In conclusion, while binding site identification based on
nucleic acid motifs of individual proteins provides low-
accuracy predictions, integrative approaches such as the one
presented here will facilitate the discovery of complex func-
tionalities based on combinatorial associations of proteins,
leading to a better understanding of phenomena that gov-
ern genome evolution and stability (46). We envisage that
PAnDA will be extremely useful to investigate and manipu-
late regulatory networks in future engineering studies (47).

Further details about the assessment of PAnDA mod-
els are available in the Supplementary Data. PAnDA web-
service is freely available at http://service.tartaglialab.com/
new submission/panda.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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