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Abstract: Embryonal tumors of the central nervous system represent a heterogeneous group 

of childhood cancers with an unknown pathogenesis; diagnosis, on the basis of histological 

appearance alone, is controversial and patients’ response to therapy is difficult to predict. 

They encompass medulloblastoma, atypical teratoid/rhabdoid tumors and a group of primitive 

neuroectodermal tumors. All are aggressive tumors with the tendency to disseminate 

throughout the central nervous system. The large amount of genomic and molecular data 

generated over the last 5–10 years encourages optimism that new molecular targets will  

soon improve outcomes. Recent neurobiological studies have uncovered the key role of 

microRNAs (miRNAs) in embryonal tumors biology and their potential use as biomarkers 

is increasingly being recognized and investigated. However the successful use of 

microRNAs as reliable biomarkers for the detection and management of pediatric brain 

tumors represents a substantial challenge. This review debates the importance of miRNAs in  

the biology of central nervous systemembryonal tumors focusing on medulloblastoma and 

atypical teratoid/rhabdoid tumors and highlights the advantages as well as the limitations of their 

prospective application as biomarkers and candidates for molecular therapeutic targets. 
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1. Introduction 

Embryonal tumors of the central nervous system (CNS) are biologically heterogeneous neoplasias 

that share the tendency to disseminate throughout the nervous system via cerebrospinal fluid (CSF) [1]. 

They include childhood medulloblastoma (MB), the most frequent malignant brain tumors in children, 

and atypical teratoid/rhabdoid tumors (AT/RT), a highly malignant group of tumor predominantly 

manifesting in the CNS of young children [1,2]. Survival rates of pediatric brain tumor patients  

have significantly improved over the last years due to the developments in diagnostic techniques, 

neurosurgery, chemotherapy, radiotherapy, and supportive care [3]. However, brain tumors are still an 

important cause of cancer-related deaths in children. Diagnosis of brain tumors is currently based on the 

detection of symptoms and neuro-imaging abnormalities, which appear at relatively late stages in the 

pathogenesis. However, the underlying molecular responses to genetic and environmental insults begin 

much earlier and microRNA (miRNA) networks are critically involved in these cellular regulatory 

mechanisms [4]. Profiling miRNA expression patterns could thus facilitate pre-symptomatic disease 

detection [5]. By peering into the black box of how pediatric brain tumors develop, preclinical studies, 

using tumor profiling and several primary and permanent cancer cell lines, have implicated many 

miRNAs in the development, progression and metastasis of embryonal tumors [4,6,7]. It is encouraging 

to note that a great deal of progress has been made recently in dissecting miRNA pathways associated 

with the biology of embryonal brain tumors and a number of miRNAs have been identified as potential 

candidates for molecular therapeutic targets [8]. Although therapeutical targeting of miRNAs has not yet 

been applied in clinical trials as single treatment agent regiments, it has recently been demonstrated both 

in vitro and in vivo that miRNA-targeted therapy may be useful in combination with conventional 

chemo-radiotherapy to sensitize cancer cells [9]. This review describes the current understanding of the 

roles of miRNAs in pediatric MB and AT/RT brain tumors, and highlights the advantages and the 

limitations of miRNAs as potential markers and therapeutic targets for MB and AT/RT. 

2. miRNAs 

miRNAs constitute an evolutionarily conserved class of small non-coding RNAs that  

post-transcriptionally suppress gene expression via sequence-specific interactions with the 3'-UTRs of 

mRNA targets [10]. The function of a miRNA is defined by the genes it targets and the effects exploited 

on its expression. A given miRNA can target several hundreds genes, and around 60% of mRNAs  

have predicted binding sites for one or multiple miRNAs in their UTR. Two major silencing  

mechanisms have been identified for miRNAs: miRNAs can inhibit translation by inhibiting translation 

initiation/elongation or can promote mRNA degradation. Under normal conditions, miRNAs act as 

moderate regulators fine-tuning gene expression, but under conditions of stress or disease, they appear 

to exert more pronounced functions. One of the most interesting aspects of miRNA biology is that one 

single miRNA can regulate multiple genes that are involved in a specific signaling cascade or cellular 

mechanism, making miRNAs potent biological regulators. The frequent aberrant expression and 

functional implication of miRNAs in human cancers, including pediatric nervous system tumors [4], and 

the availability of highly sensitive expression measurements techniques, have lifted these small cellular 

components to the ranks of ideal measurable tumor biomarkers and preferred drug targets [11]. However 
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translation of these markers to clinical settings remains a considerable challenge and has proved more 

difficult than might have been expected. 

2.1. miRNA Detection Methods: Advantages and Concerns 

Alterations in the expression of miRNAs in diseases can be revealed by technologies that accurately 

assess changes in the content of miRNAs. The development of methods for detecting miRNAs has 

become a research field in its own right [12]. Ideal miRNA detection/profiling method should be 

sensitive enough to provide quantitative analysis of expression levels, reproducible, capable of 

processing multiple samples in parallel, and finally, easy to perform without the need for expensive 

reagents or equipment [13]. Currently, various applications are available to detect miRNAs (Table 1) 

and determine their abundance, including microarray-based [14] and PCR-based approaches [15], 

Northern blot analysis with radio-labeled probes [16], in situ hybridization [17] and high-throughput 

sequencing [18] (Figure 1). However, none of these methods is perfect and all have advantages and 

inherent limitations [12]. 

2.1.1. miRNAs Detection by Microarray Approach 

Microarray technology is based on nucleic acid hybridization between target miRNAs molecules and 

their corresponding complementary probes. Microarray technology is a powerful high-throughput tool 

capable of monitoring the expression of thousands of miRNAs at once within tens of samples processed 

in parallel in a single experiment. It is usually used to conduct a genome-wide analysis of miRNA 

expression of normal and/or disease samples, including cancer, and to distinguish expression  

signatures associated with diagnosis, prognosis and therapeutic interventions [19]. The technique 

involves oligonucleotide probes with the same sequence as the target miRNAs which are immobilized 

on glass slides forming a ready-to-use miRNA microarray. The isolated miRNAs are converted to cDNA 

by reverse transcription, labeled with fluorescent dye and then hybridized on the microarray. After a 

series of washing steps to remove any unbound cDNAs, the hybridized miRNAs are detected by a 

microarray scanner to determine the fluorescence intensity on each probe spot, which represents the level 

of expression of each target miRNA from the initial RNA sample. Several technical variants of miRNA 

arrays have been independently developed. The main differences include probe design, immobilization 

chemistry, sample labeling, and microarray chip signal-detection methods [20]. These genome-wide 

miRNA microarray platforms have the advantage of generally being less expensive than the other 

profiling methods and yet they allow large numbers of parallel measurements. The main disadvantage 

of these techniques is that they are unable to identify novel miRNAs. Application of microarray 

technology is also challenged by several innate properties of miRNAs, mainly the short length of 

miRNAs that offers little room to fine-tune the hybridization conditions. The low abundance of miRNAs 

fraction of total cellular RNA (<0.01%) and the imperfect specificity for miRNAs that are closely related 

in sequence and may differ by a single nucleotide, represent yet additional challenges which significantly 

decrease the sensitivity and specificity of microarrays. Another drawback of microarray technology is the 

lack of ability to perform absolute quantification of miRNA abundance [21]. Nevertheless microarrays are 

considered to be the best tool for comparing relative abundance of specific miRNAs between two states 

such as “experimental” vs. “control” or “diseased” vs. “healthy” samples [21]. Finally, a large quantity 
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of RNA is required for testing, and microarray chips are also very expensive to fabricate. However, if 

routinely implemented in basic and clinical research laboratories, microarray-based miRNA expression 

profiling has the certain potential to lead to the discovery of novel biomarkers and therapeutic targets 

(reviewed in [21]). 

Figure 1. miRNA detection/profiling methods. miRNAs are usually extracted from various 

specimen types such as cell culture, fresh tumor tissues, formalin-fixed paraffin embedded 

tumors or cerebrospinal fluid. miRNA isolation methods/kits which are widely available 

commercially typically use a chemical extraction combined with a purification step that 

involves binding and eluting from a silica column. Various methods can be used to  

assess miRNA quality after extraction including spectrophotometry, automated capillary 

electrophoresis with Bioanalyzer. For cerebrospinal fluid (CSF), where usually RNA yields 

are too low, determining the recovery of spiked-in synthetic miRNA oligonucleotides is useful. 

miRNA profiling can be determined with one of the listed methods: Microarray, quantitative 

reverse transcription PCR (q-RT-PCR), In Situ Hybridization (ISH), Northern blot or RNA 

sequencing. FFPE: Formalin-Fixed Paraffin-Embedded. 
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2.1.2. Real-Time-PCR-Based Detection of miRNAs 

Real-time PCR is the gold standard for gene expression quantification. Although global expression 

profiling assays are useful to provide a broad overview of the presence and the regulation of miRNAs, 

these data normally require a confirmation by more specific approaches. To date the most commonly 

used method to detect specific miRNAs is the real-time PCR analysis. This approach relies on reverse 

transcription of miRNA to cDNA, followed by quantitative PCR (qPCR) with real-time monitoring of 

reaction product accumulation. Commercially available customizable plates and microfluidic cards can 

be designed either to examine a small set of miRNAs or to provide more comprehensive coverage by 

large-scale profiling of hundreds of miRNAs [21]. Because of its high level of sensitivity, accuracy and 

its ability to differentiate between single base mismatches, quantitative reverse transcription PCR  

(q-RT-PCR) is accepted as a powerful technique in comparative expression analysis in life sciences and 

medicine [12]. Another appealing aspect of this approach is the practical ease of incorporation  

into the workflow of clinic laboratories. A hurdle in performing highly parallel q-RT-PCR is the challenge 

for scientists to design a conventional PCR assay from miRNAs averaging around 22 nt in length.  

The optimal reaction conditions may also vary substantially between miRNAs owing to sequence-specific 

differences in primer annealing. A limitation of q-RT-PCR technique is that the reaction cannot identify 

novel miRNAs. Another major drawback is the requirement for special equipment that is likely not 

available in most laboratories, which makes widespread application of this method difficult [22]. 

2.1.3. Northern Blot Analysis for miRNAs Detection 

Northern blotting was used to identify the very first miRNAs, and still remains a gold standard for 

miRNA expression analysis [23]. Although it is fairly time consuming and requires large amounts of 

RNA, it is the only approach that will visualize the expression product of a miRNA. After isolation  

of total RNA from cells or tissue, the small RNAs are fractionated by electrophoresis on a high  

percentage gel. After transferring these small RNAs from the gel onto a nitrocellulose membrane,  

to allow detection by hybridization with fluorescent or radio-labeled probes that are complementary to 

the target miRNA, the RNA is fixed onto the membrane by UV cross-linking and/or baking the 

membrane. Because of the small size and the low abundance of miRNA molecules, the use of an 

oligonucleotide probe with high sensitivity is essential for the detection of a given miRNA [24]. Northern 

blotting technique allows the validation of predicted miRNAs by the examination of their expression 

levels and the determination of their sizes. However, there are several technical limitations that prevent 

the routine use of Northern blotting as miRNA expression profiling tool in clinics. Mature miRNA 

molecules are very short and their abundance in total RNA is also very low, leading to a poor sensitivity 

of routine Northern blot analysis. Moreover this method is very time-consuming and not practical in 

clinical studies in which the detection of a large number of miRNAs might be required; its use in 

diagnostic is also limited by the relatively large amount of RNA sample required and the multiple 

handling steps.  
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2.1.4. In Situ Hybridization (ISH) for miRNA Detection 

ISH is an important tool used to detect miRNA accumulation in tissue sections or fixed cells.  

The technique uses labeled complementary nucleic acid sequences to detect a single strand of DNA or 

RNA. The advantage of ISH is the ability to monitor specific miRNA expression at the cellular or even 

at sub-cellular level, which results in asemi-quantitative analysis of miRNA expression. However, 

detection of miRNAs by ISH is technically challenging because of the small size of the target sequences 

and the low expression level of some miRNAs. Hence the use of this technique as a routine tool for 

miRNA expression profiling tool in diagnostics will likely remain limited by the low quantification 

power and by the low throughput nature of this methodology. 

2.1.5. miRNA Detection by High-Throughput Next-Generation Sequencing Platforms 

All of the techniques described above depend on hybridization and are restricted to the detection and 

profiling of previously identified miRNA sequences. Next generation sequencing platforms do not 

depend on hybridization and do not require previous information. The sequence-based methods for 

miRNA profiling determine the nucleotide sequence of miRNAs and involve RNA isolation, ligation of 

linkers to both 3' and 5' ends, reverse transcription, and PCR amplification, followed by the “massively 

parallel” sequencing of millions of individual cDNA molecules. Bioinformatic analysis of the sequence 

reads identifies both known and novel miRNAs in the data sets and provides relative quantification using 

a digital approach [22]. High-throughput sequencing methods permit high-resolution views of expressed 

miRNAs over a wide dynamic range of expression levels and the discrimination of miRNA family 

members that differ in only a nucleotide. Unlike profiling of miRNAs based on microarray techniques, 

deep sequencing measures absolute abundance and allows the discovery of novel miRNAs. Therefore 

deep sequencing methods are emerging as the best tool for studying miRNA expression also because 

they can reliably be used for miRNA detection in fresh frozen paraffin-embedded specimens, thus making 

large-scale clinical studies possible. In addition high-throughput sequencing of miRNAs have successfully 

revealed the differential expression of miRNAs in several cancerogenic and pre-carcinogenic lesions [13,25], 

suggesting that they can be used in diagnostics for early detection and for assessment of tumor 

aggressiveness [12]. 

Potential limitations are high costs and the computational infrastructure required for data analysis  

and interpretation [26]. 

In summary, microarray technology based methods appear to be best suited for detection of miRNA 

profiles, although RT-PCR may be the method of choice in a clinical settings if a combination of only  

a few miRNAs is used as marker. In addition, if it is important to know in which cell type a  

specific miRNA is expressed, ISH methods may be required. Despite being expensive some consider 

next-generation sequencing as the method of choice for studying small RNA expression. In contrast  

to the other methods, this platform is hybridization-independent, more sensitive and accurate in 

discriminating miRNA family members that could differ by only a single nucleotide and can be used to 

simultaneously detect known and yet unknown miRNAs. 
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2.2. miRNA Target Determination 

In the past decade the number of discovered genes encoding miRNAs has risen exponentially and 

researchers have gained substantial in-depth knowledge of the basic mechanism of action of miRNAs, 

but the main challenge still remaining is the identification of the tangible direct targets of these 

molecules, to understand how they regulate so many biological processes in both healthy and diseased 

tissue. Many technologies have been developed in the past few years, all with their own pros and cons [27]. 

Initial insight into miRNA targets can be obtained bioinformatically through a number of available 

programs that predict potential mRNA targets for individual miRNAs. Although it is important to 

confirm these predictions using miRNA target validation techniques, bioinformatic target prediction is 

often the first step toward defining the function of a specific miRNA. Currently, there are a number of 

freely available programs, such as miRanda (http://www.microRNA.org), microCosm (previously 

known as miRBase targets, http://www.mirbase.org), Targetscan (http://www.targetscan.org), or PicTar 

(http://pictar.mdc-berlin.de) that predict which mRNAs can potentially be targeted by a given miRNA 

or which miRNAs might be able to target a certain gene of interest. Main characteristics that these 

programs use to determine whether a miRNA can potentially target an mRNA include sequences 

complementarity between the 5' seed region of the miRNA (usually 2–8 bases) and the 3'-UTR sequence 

of a target gene. Thermal stability of the mRNA/miRNA duplex is often also taken into account; 

reviewed in [22]. After the identification of potential miRNA target genes, the physical binding of 

miRNA to candidate mRNAs and the subsequent translational modulation needs to be confirmed.  

A common approach for miRNA target verification is by cloning the 3'-UTR of a predicted mRNA target 

into a luciferase reporter. By linking the target UTR to the luciferase reporter, a change in luciferase 

signal will indicate whether a miRNA can bind to the UTR and regulate the expression of the gene.  

For this approach cell lines are chosen due to their transfectability (for example, HEK293 cells); however, 

tissue-specific miRNA biogenesis and binding warrants that these studies be performed in relevant cell 

line models resembling the tissue of origin [27]. 

3. miRNA Implications in CNS Embryonal Tumors 

miRNAs are implicated in diverse biological processes including cell self-renewal and pluri-potency [28] 

and as etiologic genes in various human malignancies [29]. Patterns of miRNA expression have been 

shown to distinguish tumor types and to predict tumor behavior [30]. However, their role in malignant 

pediatric brain tumors remains largely unexplored. 

3.1. miRNAs Associated with Neuronal Development and Disorders 

Studying the expression pattern of miRNAs during mammalian brain development, Kim et al. [31] 

identified miR-103, miR-124a, miR-128, miR-323, miR-326, miR-329, miR-344 and miR-192-2 to be 

expressed in the rat cortex and cerebellum during neural differentiation and development, reviewed in [32]. 

Using human embryonic cells that differentiate into neurons upon retinoic acid treatment, Sempere et al. 

showed that miR-9/9, miR-103-1, miR-124a, miR-124b, miR-128, miR-135, miR-156 and miR-218 are 

coordinately induced during the neural differentiation process [24]. Remarkably some of these miRNAs 

were reported to be also active in neuro-developmental disorders [33]. The notion that cancer is fuelled 
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by self-renewing stem cells is gaining prominence, and so is the idea that miRNA can direct cell fate. 

Yu et al. has brought the two fields together by showing that a single miRNA molecule “miRNA let-7” 

can regulate stem-ness in cancer cells [34]. The important role of stem cells both in normal tissue and 

cancer development has driven much of the research into neural cancer stem cell biology. Silber et al. 

reported that miR-124 and miR-137 induce differentiation of neural stem cells and glioblastoma stem  

cells [35]. Desanomi et al. reported that miR-34 deficiency is involved in the self-renewal and survival of 

cancer stem cells, and that in cancer cells lacking functional p53, restoration of miR-34 was able to  

re-establish the tumor suppressing signaling pathway [36]. The research in this area has recently led to 

the identification of specific miRNA genes responsible for embryonal stem cells (ESCs) proliferation 

and differentiation and for the initiation and progression of cancer stem cells [34–38]. miR-17/92 is an 

example of an miRNA associated with MB and neuronal stem cell biology. It promotes neural stem cells 

development by modulating its cell-fate decision and it is also involved in cancer stem cell maintenance 

and in MB biology [39]. Other miRNAs such as miR-7, miR-9 and repression of miR-124 were reported 

to be associated with MB biology and neuronal differentiation [40–42] while miR-125b, miR-324-5p, 

and miR-326 regulate SHH signaling in cerebellar granule neuron precursors and MB cells [4]. 

Interestingly, specific miRNAs such as miR-302 were recently found to be capable of reprogramming the 

cancer cells back into a pluripotent embryonic stem cell-like state, which then could be induced to mature 

into tissue-specific cells [43]. Together these reports suggest that miRNA expression is vital for normal 

as well as abnormal embryonic stem cells development that can lead to cancer stem cell initiation, 

reviewed in [36]. Cancer stem cells have been identified, isolated and characterized recently in 

embryonal neural malignancies including MB [44–48]. With the knowledge that MB harbors  

cancer-initiating cells with stem cell properties, scientists are making a great effort to understand the 

involvement of aberrantly expressed miRNAs in embryonal cancer stem cells and to elucidate the 

mechanisms which distinguish these cells from normal stem cells. Functional studies on miRNAs within 

the cancer stem cells of MB will be crucial for elucidating the mechanisms behind oncogenesis in these 

deadly malignancies and might reveal novel therapeutic targets. 

3.2. Biological Relevance of miRNAs in MBs 

MBs are primary malignant embryonal tumors of the central nervous system and represent more than 

one fifth of all pediatric brain tumors [1,3]. While the prognosis has traditionally been based on 

conventional histopathology and clinical staging, in recent years it has become apparent that the inherent 

biology of the tumor plays a significant part in predicting survival [49]. Recent advances in molecular 

biology and integrated genomics have led to an improved understanding of the genetic abnormalities 

and alterations in cell signaling pathways associated with MBs. Four distinct molecular subgroups of 

MB have been identified (WNT (wingless), SHH (sonic hedgehog), Group 3, and Group 4) [50–52]. 

Profiling of these subgroups revealed distinct genomic events, several of which represent prognostic and 

predictive biomarkers as well as targets for therapy [50–54]. Specifically, stratification of patients into 

their respective subgroups has profound prognostic impact, wherein therapy can be de-escalated in 

patients with favorable prognosis, and intensified therapy or novel agents can be considered in patients 

with poor prognosis [55]. However, despite considerable progress, more effort is still needed to  

fine-tune the identification of specific biological alterations that could be targeted by molecular specific 
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therapies. In this scenario miRNA research is emerging together with the established evidence regarding 

the key roles of these molecules in this cancer. Despite the fact that miRNAs are involved in the 

tumorigenesis of a range of different tumors, the knowledge about the prognostic, diagnostic, and/or 

therapeutic target potential of these molecules in brain cancer, especially MBs, is still at an early stage [8]. 

3.2.1. miRNAs Function as Oncogenes or Tumor Suppressors in MB 

The class of genes that function as tumor suppressors and oncogenes in MB have recently been 

expanded to include the miRNA family [41,42,56,57] (Table 1). miR-124a was amongst the first to be 

characterized as a tumor suppressor miRNA in MB [58]. This miRNA is a brain-enriched miRNA found 

to be expressed in the external granule cells of the cerebellum, reported to be cells of origin of MBs [59–61]. 

miR-124a was found to be decreased in MB cells compared to normal cerebellum and restoration of its 

function inhibits MB cell proliferation [58]. Pierson et al. [58] reported that cyclin dependent kinase 6 

(CDK6) and solute carrier family 16, member 1 (SLC16A1) are functional targets for miR-124a. Both 

genes were reported as an adverse prognostic marker in MB [62,63]. Ferretti et al. [4] identified a set of  

four up-regulated miRNAs (let-7g, miR-19a, miR-106b and miR-191) that are capable of distinguishing 

MB patient samples with aggressive vs. non aggressive histological MB variants. Furthermore, the 

authors observed in MB samples impaired expression of specific miRNAs that are known to be expressed 

during neuronal development such as (miR-9, miR-125a, miR-128a, miR128b and miR-181b), 

suggesting that some of these miRNAs might be involved in MB tumorigenesis [64]. Interestingly,  

these miRNAs were previously identified before in other brain tumors such as glioblastomas [65]. 

Experimentally, increasing the expression of miR-9 or miR-125a decreased MB cells survival and 

promoted MB tumor growth arrest suggesting a role for both miRNAs as tumor suppressors [66]. In a 

recent survey of miRNA expression in pediatric brain tumors including MB, miR-216, miR-135b, miR-217, 

miR-592 and miR-340 were found to be upregulated, whereas miR-92b, miR-23a, miR-27a, miR-146b and 

miR-22 were found to be downregulated, compared to normal brain tissue [67]. MB genome-wide 

miRNA expression profiling studies have revealed close associations of miRNA clusters with molecular 

and clinical subgroups [31,63,68,69]. In these studies miR-21 [70] was found to be up-regulated across 

all MB subgroups compared to normal cerebellum, while a miR-17/92 cluster was reported by Northcott 

and colleagues to be significantly up-regulated specifically in SHH-driven MBs [63,71]. Their results 

were confirmed in a report by Uziel et al. that showed miR-17/92 promoting proliferation of MB cell 

lines in vitro and contributing to the development of MB in vivo [63,71]. Other labs also associated  

miR-17/92 and miR-106b-25 cluster over-expression with both human and mouse SHH MBs [69,72]. 

Moreover miR-17/20 and miR-19a/b inhibitors decreased tumor growth in SHH MB cells in vitro and 

in animals bearing flank or cortical SHH MB allografts [73] suggesting that inhibitors targeting the  

miR-17/92 cluster could be therapeutically useful in SHH MBs [74]. Over-expression of other oncogenic 

miRNA clusters such as miR-183-96–182 were reported in MB subgroups characterized by genetic 

amplification of MYC, and not in SHH MBs [68] and promote metastasis, a hallmark of MYC aggressive 

MBs [75]. Ferretti and colleagues found additional miRNAs differentially regulated in MYC  

over-expressing MBs [69]. However, it is not known whether these miRNAs are directly regulated by 

MYC; reviewed in [74]. Cho et al. discovered a previously unidentified molecular subgroup, genetically 

characterized by gain of MYC copy number, miR-183-96–182 upregulation and significantly associated 
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with lower rates of event-free and overall survival [76]. For the WNT MB subgroup, miR-193a,  

miR-224/miR-452 cluster and miR-148a were reported to have potential tumor/metastasis suppressive 

activity and were found to be over-expressed in WNT signalling-associated MB [77]. To summarize, 

knowledge about miRNA expression signatures in distinct MB subtypes provides new insight into the 

molecular pathogenesis of MB tumors and highlights the hope of potential translation of such valuable 

information into therapy. 

Table 1. MicroRNAs (miRNAs) involved in medulloblastoma (MB) biology as oncogenes 

or tumor suppressors. 

miRNAs (miRs) Targets References 
Oncomirs 

miR-21 PDCD4 [78] 
miR-517c, miR-520g miR-517c WNT/JNK signaling, miR-520g ABCG2 [79,80] 
miR-221, miR-222 p27Kip1 [6] 

miR-183-96–182 
cluster 

Undefined, however knockdown of the full miR-183-96–182 
cluster results in enrichment of genes associated with apoptosis 

and dysregulation of the PI3K/AKT/mTOR signaling axis 
[68] 

miR-17/92 TSP-1, Bmi-1, PTEN, PP2A [63,81,82] 
miR-214 Gli1 [4] 

miR-30b, miR-30d 
Undefined, Both miRNAs are part of an amplicon containing the 

KHDRBS3 gene on 8q24.22 in MB cell lines 
[83] 

miR-106b p21 [69,84] 
Tumor Suppressors miRNAs 

miR-125a t-TrkC [69] 
miR-9 REST/NRSF, Hes1 [39,69] 

miR-125b, miR-324-5p, 
miR-326 

PKM2, SMO, Notch [4,85] 

let-7 RAS, STAT3 [69,86] 
miR-199b-5p HES1, Notch pathway, ErbB2 [87] 

miR-124a CDK6, SLC16A1, REST, BAF34a, RB1,t-TrkC [35,58,60,88,89]

miR-218 EGFR, Bcl-2, B-catenin and MAPK9 [84,90] 
miR-31, miR-153 miR-153 is found in high ErbB2 expressing MB [69,90] 

miR-128a, miR-128b, 
miR-181b 

Bmi-1 [64,91] 

let-7 miRNA family HMGA2 [7] 

3.2.2. miRNAs Associated with MB Metastasis 

Metastases are responsible for the majority of MB-related mortality, yet our understanding of the 

molecular circuitry coordinating this process is fragmentary. miRNAs are believed to play a key role as 

suppressors or promoters of metastasis according to their mRNA targets [92,93]. miR-21 up-regulation  

is associated with metastasis and cell migration in a variety of solid tumors including breast, lung, colon, 

prostate, pancreas and stomach cancers, as well as brain tumors such as glioblastoma [78,94,95]. Our lab 

recently reported the upregulation of miR-21 in MB cells, while miR-21 inhibition decreased MB cell 
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migration in vitro. Subsequent studies have identified other miRNAs as either promoters or suppressors 

of metastasis in MBs [96,97]. miR-106b was found to be overexpressed in MBs and directly interacting 

with PTEN. Inhibition of miR-106b in MB cells reduced cell migration and invasion potential [96].  

In another interesting study, miR-182 was found to be able to contribute to leptomeningeal metastatic 

dissemination in non-SHH MB [75]. Additionally miR-193a, miR-224/miR-452 cluster, and miR-148a 

were reported as exerting potential metastasis suppressor activity [31], while miR-199-5p was described 

as an inhibitor of MB metastasis [87]. Along the same lines, miR-219 suppresses invasion and metastasis 

through targeting CD164 [97]. 

3.3. Clinical Relevance of miRNAs in MBs 

Risk stratification and prognosis assessment have become a major concerns in the era of personalised 

medicine. Although gene expression profiling has reached a plateau in this regard, recent miRNA studies 

show new great promises [31,63,68], reviewed in [98]. Multiple reports have noted the utility of miRNAs 

for the prognostics and risk stratification of MBs (Figure 2). Moreover, miRNA expression profiles have 

been used to distinguish tumor histo-types. For example the oncogenic group miR-let7g, miR-106b, 

miR-191 and miR-19a are up-regulated in more aggressive MB anaplastic histotype with respect to 

classic and/or desmoplastic tumors [69]. The potential clinical utility of miRNAs extends beyond the 

realm of tumor classification to other important clinical measures, such as prognosis and treatment 

response. The low expression of tumor suppressor miRNAs, such as miR-199-5p, was found to be 

predictive for poor prognosis [87]. Low expression of miR-128b and miR-181b has been reported to 

correlate with MB disease risk [64,69], while both miR-31 and miR-153 are down-regulated in clinical 

high-risk MB patients [56,64,69]. On the other hand, oncogenic miRNAs, such as miR-125b, miR324-5p, 

and miR-326, promote progressive events in MBs [4]. Moreover, Weeraratne and colleagues reported 

that increased expression of the miR-183-96–182 cluster characterizes the most clinically aggressive 

subgroup and is associated with genetic amplification of MYC [68]. The same trend was observed when 

the miR-183-96–182 cluster was found to be significantly associated with non-SHH MBs, while miR-182 

promotes metastasis, a hallmark of aggressive MBs [75]. Our group recently identified miR-9 as  

a methylation-silenced tumor suppressor that could be a potential candidate predictive marker for MB 

with poor prognosis [39]. The investigation demonstrated that LC/A MB samples possess lower miR-9 

expression compared to the other variants and that miR-9 under-expression is associated with poor 

prognosis in 34 patient samples of MB. The lower overall survival probability of patients with low miR-9 

expression that also tends to have a more severe pathological grade suggests a strong trend towards 

prognostic significance. Moreover, in line with previous reports, high expression of the main miR-9 

target gene (HES1, hairy and enhancer of split 1 homolog), correlated significantly with lower overall 

survival in a distinct cohort of 129 MB samples [76]. In summary, although the full potential of miRNAs 

as prognostic factors awaits the results of larger prospective studies and further verification steps, the 

above mentioned data imply that in the near future miRNAs may have a wide clinical applicability as 

diagnostic and prognostic biomarkers for MB patients. 
  



Int. J. Mol. Sci. 2014, 15 21565 

 

 

Figure 2. miRNAs associated with outcome prediction in MB patients. ↑: up-regulated;  

↓: down-regulated. 

 

3.4. Biological Relevance of miRNAs in CNS Atypical Teratoid/Rhabdoid Tumors 

CNS AT/RT are highly malignant central nervous system neoplasms that usually affect very young 

children and are typically deadly despite very aggressive treatment [99,100]. A standardized and 

effective approach for the treatment of this tumorremains elusive [101]. Rhabdoid tumors predominantly 

arise in the kidney and brain, but they can also be found in a deep axial location, such as the neck  

or the paraspinal region [102]. Different forms of rhabdoid tumors can be similar in their aggressiveness, 

histological features, and loss of function of INI1/hSNF5 mapping on chromosome 22 [103,104].  

From clinical experience, infants and children with rhabdoid tumors respond very poorly to 

chemotherapy and radiotherapy [105–107], although this remarkable resistance to both cytostatic drugs 

and radiotherapy has not yet found a convincing explanation at the molecular level. Because of the rarity 

of the disease, to date few miRNAsin AT/RT have been studied (Table 2). Sredni et al. [6] demonstrated 

that overexpression of miR-221/222 inhibited the expression of the tumor suppressor and inhibitor of 

cell cycle p27Kip1. The authors suggested that deregulation of miR-221/222 expression might be one of 

the factors contributing to oncogenesis and progression of AT/RT through p27Kip1 down-regulation and 

speculated that anti-miR-221/222 therapy might be an option for the treatment of these very aggressive 

and unresponsive tumors. Comparing miRNA expression in pediatric brain tumors and normal tissue 

controls, AT/RT samples showed high expression of miR-520b, miR-629, miR-221, miR-498 and miR-373, 

while miR-140, let-7b, miR-139, miR-153, and miR-376b were under-expressed [67]. To find new 
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potential therapeutic targets for the treatment of AT/RT, Zhang et al. [7] have recently searched for novel 

genomic aberrations by investigating the copy number and expression alterations of let-7a3/let-7b 

miRNA and correlated them with expression of high-mobility group AT-hook 2 (HMGA2) oncoprotein, 

a target of let-7 miRNA family, in 18 AT/RT samples. Their analysis demonstrated that HMGA2 was 

highly over-expressed in 83.3% of AT/RT tissues while let-7a3/let-7b miRNA copy number and 

expression were reduced. Restoration of let-7 miRNA or knockdown of HMGA2 expression 

significantly suppressed proliferation and colony formation and almost abolished the invasive potential 

of G401 Wilms’ tumor cell line. The authors suggested that the HMGA2 oncoprotein plays a critical 

role in the pathogenesis of AT/RT development and reconstitution of let-7 miRNA may provide a novel 

therapeutic strategy for the treatment of AT/RT patients. 

Table 2. miRNAs involved in atypical teratoid/rhabdoid tumors (AT/RT) biology as 

oncogenes or tumor suppressors. 

miRNAs (miRs) Targets References 
Oncomirs 

miR-517c, miR-520g 
miR-517c WNT/JNK signaling,  

miR-520g ABCG2 
[79,80] 

miR-221, miR-222 p27Kip1 [6] 
miR-520b, miR-629, miR-498, miR-373 Undefined [67] 

Tumor Suppressors miRNAs 
miR-140, let-7b, miR-139, miR-153, miR-376b Undefined [67] 

let-7 miRNA family HMGA2 [7] 
miR-9 Undefined [40,69] 

4. miRNAs as Reliable Clinical Markers: Advantages and Challenges 

With the increasing implication of miRNAs in cancer development and progression, significant 

efforts are underway to use miRNAs as novel biomarkers with clinical applications [108–110]. miRNA 

expression profiling has been used to characterize embryonal and differentiated tissues of the nervous 

system [111], to discriminate cancer from normal tissue [70,93], and to differentiate primary from 

metastatic brain tumors [112]. Moreover, miRNAs identify individuals with increased disease risk, thus 

representing potential novel prognostic factors [113]. Of note, miRNAsncan also be detected circulating in 

several body fluids, including plasma, serum, cerebrospinal fluid, urine, and saliva [114–118]. Because of the 

significant differences that have been reported between the circulating miRNA expression profiles of 

healthy individuals and those of patients, it is encouraging to state that circulating miRNAs are likely to 

become a novel class of non-invasive and sensitive biomarkers for diagnosis and other clinical 

applications in human diseases [119]. In fact the use of circulating miRNAs as potential biomarkers is a 

rapidly evolving study field [108,120] and the number of publications has increased rapidly over the past 

two years. In the context of CNS diseases, several studies have demonstrated significant presence of 

specific miRNAs in CSF samples in patients with CNS lymphoma, glioma [117], metastatic brain 

cancers [116], and Alzheimer’s disease [121]. However, the true source of miRNAs in the body fluids 

and their exact secretory mechanism is still relatively unknown [122]. 
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4.1. Process of Biomarker Development 

The pathological progression from pre-neoplasia to cancer is accompanied by alterations in gene 

sequences, expression and function. Changes that occur exclusively, or more commonly, in cancer cells 

can be detected by specific molecular assays in tumor biopsy or in body fluids, and used as molecular 

indicators of cancer. These indicators/markers are useful in detecting cancer at early stages, assessing 

tumor burden, monitoring disease progression, and determining response to therapy [123]. Biomarkers 

can be broadly classified as prognostic or predictive markers that estimate disease-related patient 

trajectories and predict patient-specific outcome to different treatments [124]. Different conceptual phases 

of biomarker development have been proposed: phase one is the preclinical exploratory step that often 

begins by comparing tumor tissue with non-tumor tissue in order to identify characteristics unique to 

tumors that might lead to tests for clinical cancer detection. After the discovery stage, biomarkers must 

clear a number of practical hurdles before they can be considered for clinical practice. They have to 

undergo multiple defined stages of assay confirmation and validation. According to the US Food and 

Drug Administration (FDA), a “biomarker” is a “biomarker” that is measured in an analytical test system 

with well-established performance characteristics and for which there is an established scientific 

framework or body of evidence that elucidates the physiologic, toxicologic, pharmacologic, or clinical 

significance of the test results (Phase one) [125]. Phase two is a crucial subsequent step that evaluates 

the performance of biomarkers in distinguishing normal controls from cases with tumors (clinical 

validation) by testing the markers in tissues retrospectively collected from research cohorts [126]. This 

is best performed collaboratively with clinical and epidemiology centers. Phase three is the prospective 

screening phase. Ideally, biomarkers should be validated analogously in prospective, well-controlled 

clinical studies of large samples of diverse patients across multiple institutions. Phase four is the cancer 

control phase, comprising large-scale population studies to evaluate both the role of the biomarkers in 

detecting disease and the overall impact of screening in the population [127,128]. Not all biomarkers 

however will need to progress consecutively through all of the phases outlined here. 

4.2. miRNAs as Reliable Markers 

The ideal biomarkers should fit a number of criteria: To show satisfactory predictability and the 

ability to be inspected during onset, progression and/or regression of the disease, to be easy to assay and 

applicable to automatic high-throughput technology [108,129–131]. Today, most of the biomarkers detected 

in cancer patients are proteins, such as prostate specific antigen (PSA) for prostate cancer, alanine 

aminotransferase (ALT) and aspartate aminotransferase (AST) for hepatocellular carcinoma, etc. However, 

the protein assay procedure is not always easy to apply in clinical diagnosis and remains labor-intensive. 

Moreover the complexity of protein composition, post translational protein modifications, proteolysis and 

denaturation, as well as the low abundance of the proteins of interest add to the challenge of using  

proteins as successful biomarkers [132]. As a result, only a few of those protein-based biomarkers have  

been approved to be used in the diagnosis of cancer. Considering the limitations of current cancer 

conventional biomarkers, the use of miRNAs as tumor markers has aroused intense research interests, 

in particular after the discovery that profiling of miRNA expression patterns was more useful than the 

equivalent mRNA profiles [133]. In addition, contrary to mRNA which is not stable in formalin-fixed 
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paraffin-embedded tissue, miRNAs expression seems to well correlate between fresh and FFPE samples, 

possibly due to the small size and resistance to degradation of miRNAs [134,135]. Stable miRNAs have 

also been detected in body fluids including serum, plasma, urine, and other biological fluids as well as 

CSF [108,136]. Together these features make miRNAs extremely attractive for clinical research, since 

archived FFPE tissue and biological fluids is most often available, reviewed in [137]. 

It is estimated that miRNAs regulate around 30% of human protein-coding genes and their 

dysregulation has been associated with the development and progression of cancer [137]. Because 

miRNAs play many roles in diverse aspects of cancer, such as proliferation, apoptosis, invasion, 

metastasis, and angiogenesis, their expression pattern can be used to characterize tumor type, stage,  

or other clinical variables. They also play an active role in the etiology or progression of cancers by 

regulating the expression of oncogenes and tumor-suppressor genes. Thus, they could have potential for 

future cancer diagnosis and prognosis. Recently various studies have successfully identified the histotype of 

tumors of unknown origin according to miRNA expression profiles [138]. miRNA profiling has also shown 

promise in classifying human cancers [133], defining malignant status [139], and accurately identifing 

cancer tissue origin. Furthermore, evaluation of miRNA expression has been found to be of great  

prognostic [140,141] and diagnostic value [142,143]. Additionally, miRNA expression was shown to provide 

promising biomarkers for the outcome prediction of a wide array of human cancers [138,143,144],  

as well as for predicting the response to chemo-radiotherapy [145,146]. 

Utilization of automatic high-throughput technology for precise measurements is a fundamental 

analytical issue that needs to be fulfilled in molecular marker assays. In this regard the widespread and 

comprehensive use of high-throughput miRNA technologies, such as amplification-based quantitative 

real-time PCR (q-RT-PCR), hybridization-based microarrays, and sequencing-based next-generation 

sequencing (NGS) technologies, have enabled the accurate quantification of miRNA expression and the 

identification of miRNAs uniquely expressed in cancers [147]. Advanced technologies not only help to 

identify the oncogenic and tumor suppressor potentials of miRNAs, but also assist in providing a more 

comprehensive understanding of their underlying mechanisms and pathways. In summary, features of 

miRNAs such as rich information content, great discriminatory power, stability, accessibility in different 

specimen types, possibility of being evaluated from different sources, and finally, and importantly, their 

potential for highly sensitive measurement, have qualified them as reliable biomarkers. In fact, some 

tests using miRNA as biomarkers for clinical diagnosis are now available. Rosetta Genomics offers three 

different tests designed to identify specific miRNA signatures and use them to accurately diagnose 

diseases and predict their progress. Another company, Asuragen, has developed tests to diagnose 

pancreatic and colorectal cancer, as well as leukemia [12]. 

4.3. Challenges 

Application of miRNA profiling approaches for many malignancies, including CNS embryonal 

tumors, has produced hundreds of candidate biomarkers for detection and prognostication [40,64,68,69,87], 

yet none have become established in clinical practice. Fundamental issues have slowed the progress  

of clinical deployment, mainly the lack of clinically relevant animal models for miRNA research. 

Therefore, the creation of a suitable, well-defined and validated animal model is essential to elucidate 

the role of miRNAs in embryonal tumors and to transfer knowledge from bench to bedside and so to 
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address clinical questions [148]. Other factors contributing to the failure of candidate biomarkers to 

realize clinical utility include those inherently associated with conventional biomarkers such as (i) lack of 

collaborative research efforts; (ii) availability of tumor tissue samples; (iii) reliability and reproducibility 

of results; (iv) variability of biomarker assessment methods; (v) expenses involved with assessing the 

marker status; (vi) the need for developing new miRNA assessment technologies; and (vii) lack of cellular 

and clinical database resources. 

4.3.1. Lack of Collaborative Research Efforts 

Most of the miRNA alterations in embryonal brain tumors have been identified by research groups 

studying small numbers of retrospectively collected tumor samples, and using different experimental 

methods and protocols. The generated data and results are therefore difficult to compare, statistically 

underpowered, and do not successfully result in the development of fully validated biomarkers [149–153]. 

Hence there is a great need to facilitate the transition and incorporation of miRNA biomarker research 

from single research groups to a more collaborative approach. Large strategic research partnerships and 

international collaborative projects should be developed between pediatric brain tumors labs. Efforts to 

develop and validate miRNAs as biological markers for pediatric brain tumors should be shared between 

different international labs, research responsibility should be divided, and duties should be clear. 

Initiatives are also needed tounitebasic and clinical researchers and promote their collaboration. It is vital 

to link clinicians and researchers of molecular measurements in order that experimentation becomes 

clinical reality. Collaborative and integrative research, proper communication and understanding among 

pediatric brain tumors labs worldwide are key methods of uniting the skills necessary for developing 

successful biomarkers. 

4.3.2. Availability of Tumor Tissue Samples 

To date, most of the investigations into the use of miRNAs as biomarkers have been performed mainly 

in cell lines or animal models while other studies included only small cohorts of patient samples that 

were not validated in prospective clinical trials. A final decision for human use must be based on results 

derived from clinical trials with an adequate number of patient samples that represent a proof of concept 

for the field of miRNAs as biomarkers. The sensitivity and specificity of a molecular marker cannot  

be fully realized until careful testing is carried out in tumor specimens and compared with normal  

controls [123,154–158]. Therefore, access to well-preserved human tissues accompanied by high quality 

clinical data is a prime issue to be considered in order to examine the relationship between molecular 

changes and clinical variables or outcomes. The collected specimens usually include tumors, as well as 

adjacent normal tissues when possible and are associated with a spectrum of information that usually 

includes the collection time, the tissue composition and the alterations within that reflect the type and 

stage of disease (histopathology). The small number of available tumor tissue samples however has 

disappointingly limited the output of researchers in the field of rare tumors, such as embryonal brain 

tumors, and the clinical translation of many candidate miRNA markers is stalled by the lack of  

well-characterized tissue samples [154–158]. An analysis of biomarker publications showed that many 

individual studies report high association between specific biomarkers and disease outcome; however 

when the same marker is subsequently compared with larger studies, or meta-analyses, the effect size is 
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often significantly smaller than initially believed [159]. This has brought recognition to the urgent need  

to improve the availability and access to tissue resources. Tumor collections by single institutions or 

individual scientists are mostly not sufficient to address these resource problems. Therefore, improved 

tools such as biobanks, one of the key resources in the fight against cancer, are certainly needed [160–162]. 

However, unlike other research tools such as cell lines and animal models, the biobank boom spawned an 

increase of regulations and guidelines, which has created controversies, particularly about the importance 

and definition of informed consent [163–165] that is required before biobank samples can be collected 

and used in research. Unclear, conflicting, or burdensome regulatory requirements and lack of agreement 

among clinicians, investigators, and regulators as well as the nature of this consent and how it is obtained 

add another layer of complexity to the sample collection matter. Some European guidelines take the 

view that general consent is acceptable to use samples for future, as yet unspecified research projects; 

US and Canadian policy follows a more rigorous standard of consent [163]. 

4.3.3. Reliability and Reproducibility of Results 

Acquisition of highly reproducible data is necessary to produce reliable markers that could be used 

in clinical situations. However, the lack of standardization that is manifested in the variability in 

experimental conditions, methodology, measurements, protocols, and platforms, is another very 

important factor that challenges the process of miRNAs biomarker validation process. There is 

skepticism and legitimate debate within the research community on what is needed to be done to translate 

laboratory findings into tangible clinical applications [166]. The skepticism is partially derived from 

some inflated expectations, which are frequently followed by disappointment when the original results 

of certain investigations could not be reproduced. As is known from the field of microarrays, data is 

often incomplete or incompletely annotated and the analyses are hard to reproduce [167]. For example, 

four different research groups have reported miRNA profiles for pancreatic cancer, with impressive 

discrepancies between the results [12,168–170]. 

4.3.4. Variability of Biomarker Assessment Methods 

Another key factor that hampers the validation of biomarkers and contributes to the failure of 

candidate biomarkers to realize clinical utility is the multitude and variety of sample processing, RNA 

extraction and expression measurement/assessment methods. Equally important are the differences in 

specimen type, for example FFPE vs. fresh frozen samples. Studying miRNA profiles involves sample 

collection; miRNA detection; analytical platform and protocols, data processing; statistical analysis, and 

clinical interpretation [12]. A variety of these analytic techniques exists, each with specific biases that 

can greatly influence the relative weight of certain miRNA molecules in the tested sample. No wonder 

there is often a low correlation of results obtained from different platforms or even from the same 

platform using kits and reagents from different vendors. These are especially pronounced when  

a highly sensitive technique like sequencing is used. Currently there are no universally implemented 

guidelines for the collection, preparation, and extraction of samples for miRNA analysis. Standardization 

of these assays is a challenge for the near future. Data normalization, an often underestimated aspect of 

data processing, is as well crucially important and a major concern in obtaining accurate results [171]. 

Therefore, it is important to be methodologically consistent across different samples and steps must be 
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taken to carefully select miRNA-profiling platforms and data analysis methods for the acquisition  

of clinically meaningful and dependable data. Furthermore, standardization of miRNA biomarker 

evaluation is definitely needed. 

4.3.5. Expenses Involved with Assessing the Marker Status 

It has been difficult to translate molecular markers to the clinic, owing to not only the above 

mentioned factors, but also due to the vast expense that is involved in developing the necessary platforms 

and technology for testing different assays in a prospective clinical trial. Indeed economic and business 

considerations can slow cancer biomarker development. Appropriate finance to provide clinical 

opportunities for the evaluation of new technologies, reagents and assays is lacking and industrial 

companies do not play a role in most pediatric disease research. Many of the miRNA diagnostic and 

prognostic markers that have been reported in the literature are in the public domain and lack intellectual 

property protection. Companies have shied away from developing clinical tests in the absence of this 

protection. It has to be said, however that the miRNA-based biomarker development problems are not 

only concentrated in the pediatric brain tumor field. There has been a huge increase in intellectual 

endeavors concerning research devoted to the discovery and validation of other disease biomarkers 

within both the biological and clinical sciences during the last decade. For instance, in searching for the 

term “biomarker” in the literature database, more than 660,000 published articles could be found. 

However, these enormous investments and academic output have not yet translated into the expected 

integration of new biomarkers for patient care [172]. 

4.3.6. The Need for Developing New miRNA Assessment Technologies 

There is still no clear-cut consensus as to what is the best approach to analyze large-scale miRNA 

profiles. It is expected that these issues will settle with time, as techniques become more robust and 

analysis methods stabilize [173]. Refining, and/or developing, new detection and measurement 

technologies with improved analytic tools that allow more detailed examinations of the molecular and 

cellular signatures of pediatric brain tumors is an important task that is needed for the development of 

successful miRNA biomarkers and efficacious target gene therapy discovery [174]. It is estimated that 

non-coding RNAs involved in cancer may include over 1500 miRNAs. Such complexity clearly 

highlights the need for ultra-high resolution technology for robust quantitative miRNA measurements 

and data acquisition as well as to analyze already discovered potential markers in a cost-effective  

fashion [123]. Development of new measurement technologies therefore is central to successful 

biomarker development and should be strongly encouraged. 

4.3.7. Lack of Cellular and Clinical Database Resources 

Databases play a major role in cancer research at the cellular and clinical levels, with a central role 

currently played by expression array data. Global electronic database gathering and storing a wide range 

of data for genetic variations and miRNA expression profiles that are pediatric brain tumor-relevant must be 

developed and sustained [174]. Web-service technology linking molecular level databases and biobank 

data as well as software platforms for data and document management, facilitating remote communication 
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between biomarker development’s concerned parties should be encouraged. A common information 

infrastructure for data exchange, analysis and modeling and meta-analysis methodologies should be put 

into practice, thereby allowing researchers the choice between going through lots of papers published 

over the past several decades on individual experiments, or more simply using high throughput datasets. 

All in all we are just starting to uncover the huge potential of miRNAs as novel biomarkers for 

medicine. However, as mentioned above, conceptual and technical issues still need to be overcome. 

Moreover there are still many questions remaining unanswered in understanding miRNA biology and 

function, and as yet, not all the enzymes and proteins involved in miRNA production and processing are 

known [175]. We have not identified other factors contributing to miRNA-target gene recognition, other 

than seed sequence complementarities, nor the actual regulation of miRNAs at the transcriptional level. 

It is still unclear how cancer cells manipulate miRNAs and other regulators to promote their own survival 

and growth under stressed tumor microenvironments [176]. A more thorough understanding of  

miRNA biology is certainly needed before candidate biomarkers realize clinical utility. However, despite 

current limitations, miRNA-based biomarkers constitute an exciting field in biomedical research and it 

is likely to become a routine approach to generate individual patient profiles and allow targeted 

therapeutic intervention. 

5. Therapeutic Potential of miRNAs 

5.1. miRNAs as Druggable Targets 

As noted above, several miRNAs are altered in pediatric brain tumors disease states when compared 

to the normal brain. Whether this differential expression occurs as a consequence of the pathological 

state or whether the disease is a direct cause of this differential expression is currently unknown. 

Nonetheless, since miRNAs are deregulated in cancer, it is thought that normalization of their expression 

could be a potential method of intervention. In this vein, several therapeutic mechanisms have been put 

forth and are described [177–179]. Generally there are two approaches to develop miRNA-based 

therapeutics: miRNA antagonists [70,180] and miRNA mimics/replacement [181]. miRNA antagonists 

inhibits endogenous miRNAs that show a gain of function in cancer tissues. This approach is 

conceptually similar to short interfering RNAs (siRNAs). It usually involves the introduction of anti-miR  

or antago-miR that bind with high affinity to the active miRNA strand and results in its degradation.  

On the other hand, miRNA mimics/replacement are used to restore a loss of function. This approach 

aims to re-introduce miRNAs into diseased cells that are normally expressed in healthy cells. miRNA 

mimics can be delivered systemically using technologies that are also used for therapeutic siRNAs [181]. 

There are several significant advantages of miRNAs for becoming a new class of drug targets.  

Their small size and known and conserved sequence make them attractive candidates from a 

development standpoint. Moreover, many genetic or oligonucleotide-based gain- and loss-of function 

studies have shown very pronounced phenotypes in rodents and even large animal models,  

whereas miRNA manipulation under baseline conditions usually does not exert overt effects. 

Furthermore, and importantly, the direct downstream targets of a single miRNA are commonly related 

genes that function in a comparable cellular process or signaling cascade. This implies that targeting of 
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a single miRNA will probably result in a dramatic effect due to the combinatorial effect of gene 

expression changes in all these related downstream targets, reviewed in [182]. 

5.2. miRNAs as Predictors and Modifiers of Chemo- and Radio-Therapy 

Perhaps the most promising application of miRNAs might lie in the estimation of outcome and 

response of well-established anti-tumor therapies, such as chemotherapy and radiation. For example,  

it has been recently shown that alterations in miRNA expression profiles could provide predictive 

information about sensitivity or resistance of certain tumor types to different treatments; alternatively, 

or in addition, changes in expression during a therapy might offer a tool for treatment response 

monitoring. Finally, modification of miRNA expression by up- or down-regulation may possibly 

enhance sensitivity to the applied chemo- or radio-therapy, reviewed in [183]. Extensive profiling studies 

on cancer cell line, animal xenographs, and tumors, have associated miRNA expression in cancer cells 

with chemo- and radio sensitivity, both with regards to predicting or modulating sensitivity. Several 

miRNAs have been found to predict sensitivity to anticancer treatment, while others were shown to 

influence sensitivity to chemo- or radio-therapy in vitro and/or in vivo. There are many potential roles 

for miRNAs in altering chemotherapeutic response that have been reported in the literature. For example, 

miRNA replacement or silencing may be used to augment chemotherapeutic effects [184,185] or 

alternatively to base the selection of traditional chemotherapies on their ability to deregulate specific 

panels of miRNAs [186]. Perhaps the most clinically applicable approach is to use miRNA signatures to 

guide chemotherapeutic decisions. In vitro studies have identified miRNAs whose expression patterns 

correlate with drug response [187,188]. However, global profiling studies have been used as classifiers of 

responders vs. non responders in various cancers [186,189]. miRNAs may modulate the DNA damage 

response, thus sensitizing tumor cells to both chemotherapy and radiotherapy [190,191]. The role of 

miRNAs as sensitizers to radiotherapy is of particular importance given the fact that many pediatric 

brain tumors in infants and young children require combinations of chemotherapy and high doses of 

spinal radiotherapy as optimal modes of treatment. In this case infants could be treated with a 

substantially less toxic treatment strategy. 

5.3. Challenges of miRNA-Based Therapies 

Although there are many reasons to be excited about miRNAs as a new class of drug targets,  

some aspects of miRNA and anti-miRNA biology are still relatively unknown and the majority of the 

promising miRNA targeting approaches are still at their preclinical stage. The optimization of the 

stability of miRNAs, the improvement in delivery systems, and targeted drug delivery as well as the 

understanding and control of off-target effects of miRNA therapeutics, are the main challenges for their 

future development. Similar to small interfering RNA therapies, difficulties of specific delivery, and the 

insufficient uptake for effective target inhibition challenge the development of miRNA-based therapies. 

Despite the fact that chemical adaptations in oligonucleotides, such as cholesterol conjugation and 

phosphorothioate backbone modifications, were able to overcome these obstacles, impaired biological 

activity and increased toxicity usually accompanied the resulted improved delivery to tissues [192]. 

Moreover it is expected that tumor types and context will add to the complexity and heterogeneity of 

response to any miRNA therapy strategies. Blood-brain barrier (BBB) forms another important hurdle 



Int. J. Mol. Sci. 2014, 15 21574 

 

 

for effective miRNA treatment of malignant brain cancer. Hence, effective brain delivery for miRNAs 

may require the design of particular therapeutic approaches that overcome this physiological obstruction, 

such as the use of nanoparticles, immunoliposomes, peptide vectors or carrier-mediated transport 

through the BBB, reviewed in [193]. New therapies targeting miRNAs or their target genes may best be 

applied in the future together with molecular profiling of cancers for clinical stratification and selection 

of combination therapies. 

6. Concluding Remarks 

miRNAs are revolutionizing the field of cancer research. The emerging role of their dysregulation in 

human cancer has raised exciting opportunities as well as challenges for their clinical application in the 

capacity of cancer detection and prediction. 

In the therapeutic arena, the realization that the inappropriate production of individual miRNAs 

contributes to several aspects of carcinogenesis suggests that inhibition of overexpressed oncogenic 

miRNAs or substitution of tumor suppressive miRNAs could become a novel treatment strategy or a 

promising candidate for treatment response prediction or for modulation of conventional anticancer 

treatment sensitivity. With the advent of high-throughput technologies for the global measurement of 

miRNAs, research has shown miRNAs to have potential as biomarkers for the diagnosis and prognosis 

of pediatric brain tumors. However most miRNA studies have been limited to the preclinical discovery 

stage. The challenge remains to optimize and to validate miRNA biomarkers through carefully designed 

translational/clinical studies. Such studies require careful practical consideration of the best methods for 

sample collection, miRNA isolation, quantification, and data analysis and importantly to translate this 

wealth of discovery into clinical management of pediatric brain tumors patients. It is likely that 

significant progress will be achieved in the usage of miRNAs in cancer diagnosis and outcome prediction 

in the near future, and undoubtedly, the coming years will bring exciting new therapeutic strategies based 

on the targeting of miRNA in the treatment of human cancer. It is hoped that some of these will be 

efficient and beneficial for pediatric brain cancer patients. 
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