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The progression of complex diseases generally involves a pre-deterioration stage that occurs during the transition from a healthy 
state to disease deterioration, at which a drastic and qualitative shift occurs. The development of an effective approach is urgently 
needed to identify such a pre-deterioration stage or critical state just before disease deterioration, which allows the timely 
implementation of appropriate measures to prevent a catastrophic transition. However, identifying the pre-deterioration stage is a 
challenging task in clinical medicine, especially when only a single sample is available for most patients, which is responsible for the 
failure of most statistical methods. In this study, a novel computational method, called single-sample network module biomarkers 
( sNMB ) , is presented to predict the pre-deterioration stage or critical point using only a single sample. Specifically, the proposed 
single-sample index effectively quantifies the disturbance caused by a single sample against a group of given reference samples. 
Our method successfully detected the early warning signal of the critical transitions when applied to both a numerical simulation 
and four real datasets, including acute lung injury, stomach adenocarcinoma, esophageal carcinoma, and rectum adenocarcinoma. 
In addition, it provides signaling biomarkers for further practical application, which helps to discover prognostic indicators and 
reveal the underlying molecular mechanisms of disease progression. 

Keywords: critical point, pre-deterioration stage, critical transition, dynamic network biomarker ( DNB ) , single-sample network 
module biomarkers ( sNMB ) 

 

 

 

 

 

 

 

 

 

 

 

 

itative state transition may occur ( Chen et al., 2012 ; Liu et al., 
2021 ) . Accordingly, regardless of specific differences in clinical 
symptoms and biological processes, disease progression can be 
roughly classified into three stages, i.e. a before-deterioration 
stage, a pre-deterioration stage, and a deterioration stage 
( Figure 1 A ) . The before-deterioration stage is viewed as a 
relatively healthy state with stability and high resilience. The 
pre-deterioration stage refers to a critical transition before 
switching to the onset or deterioration of symptoms and is 
characterized by low resilience and high susceptibility. The 
deterioration stage is another stable state with high resilience 
after the catastrophic transition to the deterioration of the 
disease. In contrast to the irreversible deterioration stage, the 
pre-deterioration stage is sensitive to perturbation and is thus 
usually considered to be reversible to the before-deterioration 
stage by appropriate intervention strategies. However, many 
complex diseases, such as cancers, are difficult to cure unless 
Introduction 
An abrupt switch to a contrasting state through a critical

transition occurs in many complex systems, such as ecosystems
( Beck et al., 2018 ; Chen et al., 2019 ) , financial systems
( Drehmann and Juselius, 2014 ; Huang et al., 2017 ) , climate
systems ( Lenton, 2011 ) , and infectious disease spreading
( Scarpino and Petri, 2019 ) . Similarly, the progression of many
complex diseases is not always smooth but occasionally abrupt;
i.e. there is a so-called critical point at which a sudden and qual-
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Figure 1 Schematic illustration for identifying the pre-deterioration stage based on the sNMB score. ( A ) The progression of complex diseases 
is roughly divided into three stages, including a before-deterioration stage with high stability, an unstable pre-deterioration stage, and 
another deterioration stage with high stability. The pre-deterioration stage is a critical state just before disease onset or deterioration and is 
usually considered to be reversible to the before-deterioration stage through appropriate intervention, since it is sensitive to perturbation. 
( B ) The sNMB score is calculated based on a single case sample and is capable of quantifying the statistical disturbance yielded from the 
single case sample against a group of given reference samples collected from a relatively healthy population. ( C ) The significant change in 
sNMB signals the pre-deterioration stage; i.e. the sNMB score sharply increases when the system is close to the critical point. 
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they are diagnosed at an early stage; i.e. missing the best time
for preemptive clinical interventions results in patients having
no choice but to undergo high-risk therapies. Unfortunately,
because many complex diseases cause few symptoms during
the early stages, the disease has already reached an advanced
stage when the pathological symptoms are easily diagnosed
clinically ( Miller et al., 2019 ) . Therefore, identifying the pre-
deterioration stage is of great significance for preventing or
delaying the occurrence of catastrophic deterioration. However,
it is challenging to accurately identify the tipping point or
pre-deterioration stage of complex diseases, because complex
biological systems exhibit relatively little state change before
approaching the catastrophic transition. 
By exploiting the information of differential expression be-

tween the before-deterioration and pre-deterioration stages, tra-
ditional biomarkers mainly focused on distinguishing the de-
terioration stage rather than identifying the pre-deterioration
stage, which is similar to the before-deterioration stage in terms
of phenotype and gene expression. Recently, a novel concept
of the dynamic network biomarker ( DNB ) ( Chen et al., 2012 )
provided three statistical conditions to select a small group of
relevant variables for detecting the early warning signals of the
critical transition. In other words, when a biological system from
a before-deterioration stage approaches the pre-deterioration
stage, there appears to be a group of DNB biomolecules satisfy-
ing the following three statistical properties: ( i ) the correlations
between DNB biomolecules rapidly increase; ( ii ) the correlations
between DNB biomolecules and non-DNB biomolecules signifi-
cantly decrease; and ( iii ) the standard deviations ( SDs ) of DNB
biomolecules drastically increase. Compared with the differen-
tial information of gene expression widely used in traditional
molecular biomarkers to diagnose ‘a deterioration stage’, DNB
serves as a type of network-based biomarker and detects ‘a pre-
deterioration stage’ by exploiting the information of differential
associations. The DNB approach and its expanded versions have
been employed by many research groups and applied to study
a variety of biological research topics, including the detection
of the cell fate decision ( Richard et al., 2016 ) , the identification
of the critical stage for complex disease ( Koizumi et al., 2019 ;
Zhong et al., 2020 ; Huang et al., 2021 ) , and the study of immune
checkpoint blockade ( Lesterhuis et al., 2017 ) . However, the
classical DNB method requires multiple samples at each time
point to evaluate its three statistical indices, which generally
restricts its application in most practical cases, because the
availability of multiple samples for each individual is difficult
to achieve in clinics. Most statistical methods fail to detect the
early warning signal of critical transition when there is only a
single case sample for each individual. Therefore, a novel single-
sample computational approach is urgently needed to explore
the criticality of complex diseases and further identify the pre-
transition stage. 
In recent years, network-based methods have been frequently

applied to study many distinct biological questions, such as
dysfunctional gene regulation ( Zeng et al., 2013 ) , combinato-
rial drug discovery ( Guo, et al., 2021 ) , and disease prediction
Page 3 of
( Yu et al., 2017 ; Liu et al., 2019 ; Zhang et al., 2022 ) . Inspired
by these pioneering works, we proposed a novel computa-
tional method called single-sample network module biomarkers
( sNMB ) to achieve the identification of the pre-deterioration
stage just before disease onset or deterioration. Specifically,
by exploring the differential information between the before-
deterioration and pre-deterioration stages, a local sNMB score
was designed to quantify the statistical disturbance caused by
the single case sample against a given set of reference sam-
ples collected from a relatively healthy population ( Figure 1 B ) .
The drastic increase in the sNMB score indicates the upcom-
ing tipping point or pre-deterioration stage ( Figure 1 C ) . Clearly,
this method is individual-specific and may thus benefit the
determination of personalized pre-deterioration diagnosis. To
validate the effectiveness of the proposed approach, it was
applied to a numerical simulation and four real datasets, includ-
ing stomach adenocarcinoma ( STAD ) , esophageal carcinoma
( ESCA ) , and rectum adenocarcinoma ( READ ) datasets from The
Cancer Genome Atlas ( TCGA ) database and an acute lung injury
dataset ( GSE2565 ) from the National Center for Biotechnology
Information ( NCBI ) Gene Expression Omnibus ( GEO ) database.
The successful identification of the pre-deterioration stages in
these datasets is consistent with the experimental observation
or survival analysis. The corresponding sNMB signaling biomark-
ers were validated by functional analysis. 

Results 
Validation based on numerical simulation 
An eight-node regulatory network ( Figure 2 A ) is employed to

validate the proposed sNMB method. This regulatory network
with eight variables is governed by a set of eight stochastic
differential equations Eq. ( S1 ) ( Supplementary material Sec-
tion A ) . Such a model of the regulatory network represented in
the Michaelis–Menten form is often applied to study genetic
regulations such as transcription, diffusion, translation, and
translocation processes ( Chen et al., 2009 ) . Based on the vary-
ing parameter p ranging from −0.5 to 0.15, a numerical simula-
tion dataset is generated. The reference samples are generated
from the varying parameter p ( far from the tipping point p = 0 )
ranging from −0.5 to −0.45. The details of the dynamical system
are provided in Supplementary material Section A. 
As shown in Figure 2 B, an abrupt increase in the sNMB indi-

cates the upcoming critical transition when the system is near
the special parameter value p = 0, which is set as a bifurcation
value in Eq. ( S1 ) ( see Supplementary material Section A for
details ) . In addition, it can be seen from Figure 2 B that the
median values of sNMB also reveal the robust performance of
our method in detecting the early warning signal of catastrophic
transition. In addition, we analyzed the critical signals when
the reference sample size ( n ) varies ( Supplementary Figure S1 ) ,
indicating that the number of reference samples within a range
( usually from 3 to 100 ) barely affects the evolution tendency of
the signal curve ( e.g. abrupt increase when approaching the tip-
ping point ) . In Figure 2 C, the landscape of the local sNMB score
for each local network in a global view is presented to exhibit
 12 
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Figure 2 Performance of the sNMB method in numerical simulation. ( A ) An eight-node regulatory network from which a numerical simulation 
dataset is generated. ( B ) The curve of the sNMB score abruptly increases in the vicinity of the critical point ( bifurcation point p = 0 ) . ( C ) The 
landscape of local sNMB scores in a global view is presented to exhibit the dynamic changes in local sNMB scores for eight local networks 
( i = 1, 2, �, 8 ) . It obviously shows that the drastic increase in sNMB scores for some local networks ( i = 1, 2, �, 5 ) centered at the DNB 
variables signals the upcoming critical transition. ( D ) An obvious change in the network structure near the tipping point ( p = 0 ) indicates a 
significant difference between the single case sample of the critical stage and reference samples. 
the dynamic changes in the local sNMB score. It is clear that the 
local sNMB scores of some local networks sharply increase in the 
vicinity of the critical point ( p = 0 ) . As presented in Figure 2 D, 
the dynamic evolution of a network was employed to illustrate 
the difference in the differential SD ( �SD ) and differential Pear- 
son correlation coefficient ( �P CC) between the before-transition 
state and the critical point state. An obvious change in the 
network structure occurs near the critical point, signaling the 
imminent critical transition at the network level. Therefore, the 
numerical simulation validated that the sNMB method can accu- 
rately and effectively detect the early warning signal of a critical 
state transition. The source code of the numerical simulation is 
provided at https://github.com/zhongjiayuan/sNMB _ project . 

Identifying the critical state for acute lung injury 
The sNMB method was applied to the microarray dataset 

( GSE2565 ) obtained from a mouse experiment of acute lung in- 
jury ( Sciuto et al., 2005 ) . In the original experiment, case group 
data were derived from the lung tissues of phosgene-exposed 
Page 4 o
mice, while the control group data were from the air-exposed 
mice. For both the case and control groups, gene expression was 
derived from the lung tissues of six mice at nine sampling time 
points, i.e. 0, 0.5, 1, 4, 8, 12, 24, 48, and 72 h ( Sciuto et al., 
2005 ) . The samples from the air-exposed group ( control group ) 
are regarded as the reference samples. It can be seen from the 
red curve in Figure 3 A that the sNMB score rapidly increases and 
reaches a peak at 8 h, suggesting an upcoming critical transition 
at ∼8 h. To validate the effectiveness of the result, six resam- 
pled datasets were generated from a leave-one-out scheme. 
Applying the proposed sNMB method to these datasets, their 
sNMB scores, shown as the six yellow curves in Figure 3 A, all 
signal the critical transition at 8 h. At the identified tipping 
point, the top 5% of genes with the largest local sNMB values 
are selected as the sNMB signaling genes for further analysis. 
The landscape of local sNMB scores is presented in Figure 3 B, 
and it is observed that the peak of local sNMB values for the 
signaling genes appears at 8 h. Moreover, Figure 3 C exhibits 
the dynamic evolution of signaling genes at the network level. 
f 12 
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Figure 4 Identification of the critical transition of tumor distant metastasis in three cancers. ( A –C ) Identifying the critical transition for 
STAD ( A ) , ESCA ( B ) , and READ ( C ) . ( D –F ) Comparing survival curves between the before-transition stage and the after-transition stage in 
STAD ( D ) , ESCA ( E ) , and READ ( F ) . 

 

Clearly, a notable change in the network structure occurs at 
8 h, indicating an upcoming critical transition. These results 
are consistent with the observation in the original experiment 
( Figure 3 D ) ; i.e. the severe phosgene-induced acute lung injury 
occurred around 12 h, and ∼50%–60% of deaths were observed 
around 24 h ( Sciuto et al., 2005 ) . 

Identifying the critical state for tumor diseases 
To validate the effectiveness of the sNMB method in de- 

tecting the early warning signal of the pre-deterioration stage 
for tumor diseases, the proposed method was applied to 
three tumor datasets ( ESCA, READ, and STAD ) from TCGA. The 
tumor-adjacent samples that represent the relatively healthy 
condition were viewed as reference samples, and then the 
sNMB score of each tumor sample was calculated according 
to the algorithm described in Materials and methods. At each 
stage, the mean sNMB value was adopted to quantitatively 
measure the pre-deterioration stage of tumor diseases. By anal- 
ysis with the proposed method, the pre-deterioration stage was 
identified in stage IIIB for ECSA, stage III for READ, and stage 
IIIB for STAD ( Figure 4 A–C ) . To validate the identification of 
the critical stage, prognostic analysis of before-transition and 
after-transition samples was performed and compared through 
Kaplan–Meier ( log-rank ) survival analysis ( Figure 4 D–F; Supple- 
mentary Figure S2 ) . Specifically, compared with the samples 
from the after-transition stage, there was usually a higher life 
expectancy for before-transition samples. 
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For ESCA, as shown in Figure 4 A, a sudden increase in the 
sNMB score was detected in stage IIIB, after which there existed 
a tumor invading other adjacent structures, such as the aorta 
and vertebral body, and distant metastasis occurred at stage IV 
( Stahl et al., 2010 ) . Figure 4 D shows that there is a significant
difference ( P = 0.028 ) between the survival curves of the before- 
transition samples and the after-transition samples. Clearly, 
samples from stages I–IIIB present significantly longer survival 
periods than samples from stage IV. For the samples from only 
two stages ( stages IIIB and IV ) around the critical stage, the 
survival time of stage IIB samples was much longer than that 
of stage IIIA samples ( P = 0.0215; Supplementary Figure S3A ) . 
In addition, there was a statistically non-significant difference 
among the survival curves of samples from before the critical 
stage ( P = 0.295; Supplementary Figure S3B ) . In Figure 4 B, 
the peak of the sNMB value appears at stage IIIB, implying an 
imminent critical transition of STAD after stage IIIB. References 
show that stage IV is a severely deteriorated stage, in which 
the tumor has spread to nearby tissues or metastasized to 
other organs and ultimately causes distant metastasis ( Kwon, 
2011 ) . Figure 4 E shows that there is a significant difference 
( P < 0.0001 ) between the survival periods of the two groups 
of samples, i.e. samples from the before-transition stage 
( stages IA–IIIB ) and samples from the after-transition stage 
( stage IV ) . It is also noted that the survival time of samples 
from stage IIIB was significantly longer than that of samples 
from stage IV ( Supplementary Figure S3C ) . In addition, there 
was no significant difference ( Supplementary Figure S3D ) in 
f 12 
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survival curves among samples from the before-transition
period ( stages IA–IIIA ) . For READ, as shown in Figure 4 C,
the drastic transitions of the sNMB score appear in stage III,
after which the tumor invades other parts of the human body
and distant metastasis occurs at stage IV ( Jessup et al., 2011 ) .
Figure 4 F shows that there was a significant difference ( P =
1e −04 ) between the survival curves of samples from stages
I–III and samples from stage IV. The before-transition samples
showed a significantly longer survival time than the after-
transition samples. For the samples solely from two stages
( stages III and IV ) around the critical state, the survival periods
of stage III samples were significantly longer than those of stage
IV samples ( P = 0.0167; Supplementary Figure S3E ) . There
was no significant difference ( P = 0.819; Supplementary Figure
S3F ) in survival curves among samples before the critical stage
( stages I–II ) . These results demonstrate that the sNMB score
can detect the early warning signals of a critical transition of
survival time, i.e. the critical transition associated with distant
metastasis at stage IV can be identified by the sNMB score. 

Revealing the potential signaling mechanisms during the tumor
stages 
At the identified pre-deterioration stage ( the critical point ) ,

the top 5% of genes with the highest local sNMB scores were
selected as the signaling genes for further functional analyses.
As presented in Figure 5 A, there were 106 common signal-
ing genes shared among three different tumor datasets: READ,
ESCA, and STAD. To reveal the underlying signaling mechanisms,
Kyoto Encyclopedia of Genes and Genomes ( KEGG ) pathway en-
richment analysis based on the TCGA-STAD dataset was carried
out for these common genes and their 1st-order neighboring
differentially expressed genes ( DEGs ) from the protein–protein
interaction ( PPI ) network. The 1st-order neighboring DEGs sat-
isfy the following two conditions: ( i ) they are the 1st-order
neighbors of common signaling genes in the PPI network and
( ii ) they are DEGs; i.e. from the perspective of gene expression,
there are significant differences ( P < 0.05 ) before and after
the pre-deterioration stage. As shown in Figure 5 B and C, the
common genes and their 1st-order DEG neighbors were sig-
nificantly enriched in cancer-related signaling pathways, such
as the PI3K/Akt signaling pathway, the MAPK signaling path-
way, extracellular matrix ( ECM ) –receptor interaction, and focal
adhesion ( Figure 5 D ) . In addition, KEGG pathway enrichment
analysis was performed for the specific signaling genes of each
cancer ( Supplementary Figure S4 ) . Tumors are the result of the
process of multiple hallmark changes, such as the overexpres-
sion of proliferation signals and abnormal metastasis-promoting
signals ( Hanahan and Weinberg, 2011 ) . For instance, previous
reports indicated that the PI3K/Akt signaling pathway was in-
volved in tumorigenesis and tumor progression by regulating
various cellular activities, including cell differentiation, prolifer-
ation, and apoptosis ( Zhang et al., 2014 ; Huang et al., 2015 ) .
MAPK signaling is known to participate in tumor growth and
progression ( Roberts and Der, 2007 ) . The ECM–receptor inter-
action and focal adhesion play a significant role in tumor pro-
Page 7 of
liferation, adhesion, and metastasis in various cancers ( Wang
et al., 2020 ) . For the TCGA-STAD dataset, Figure 5 D demonstrates
the abnormal signals caused by the pattern of gene expression
changes before and after the transition. Specifically, at the tip-
ping point before and after metastasis, common signaling genes
and their 1st-order DEG neighbors showed different regulatory
patterns in the PI3K/Akt signaling pathway ( Figure 5 E ) . After the
tipping point ( stage IIIA ) , by interacting with its 1st-order DEG
neighbor ITGAV, the upregulation of the upstream regulator VWF
( common signaling gene ) activates the key downstream factor
PI3K together with upregulated FLT1 ( 1st-order DEG neighbor )
and subsequently activates the expression of the downstream
differential gene AKT3. Furthermore, the activation of AKT3 ( 1st-
order DEG neighbor ) triggers a cascade of p53 signaling pathway
responses. Overall, the synergy of common signaling genes and
their 1st-order neighboring DEGs may have favorable biological
significance in tumor progression-related biological processes. 

Discovering ‘dark genes’ 
In the field of biomedicine, DEGs play a crucial role in the dis-

covery of key regulators, drug targets, and new biomarkers. How-
ever, similar to non-coding RNAs regarded as the ‘dark matter’
in sequence, some non-DEGs may be involved in the essential
biological processes of disease progression and should not be
ignored. It has been reported that some dark genes’ are enriched
in key functional pathways ( Han et al., 2020 ) and perform well
in prognosis ( Liu et al., 2020 ) . To discover such dark genes, the
Kaplan–Meier ( log-rank ) survival analysis of sNMB values and
that of gene expression were compared based on the signaling
genes ( top 5% of genes with the highest local sNMB values ) that
were not differentially expressed at the critical point. Figure 6
shows some dark genes for STAD, ESCA, and READ. Clearly, the
dark genes perform well in prognosis and are strongly related to
patient survival, not at the gene expression level but at the sNMB
level. Other dark genes for the three datasets are presented in
Supplementary material. These dark genes can be an indicator
of patient prognosis and may be involved in the important bi-
ological processes that trigger critical deterioration. Therefore,
the proposed method can help to identify new biomarkers and
prognostic indicators in terms of sNMB scores. 

Discussion 
For most complex diseases, it is crucial to detect the early

warning signal for sudden deterioration. However, the lack of
samples in clinical and experimental practice is a general prob-
lem, which often fails most statistical approaches. Therefore,
new approaches are needed to tackle the small-sample prob-
lem. In this study, the proposed single-sample method ( the
sNMB method ) is applied to identify the tipping points or pre-
deterioration stage before the occurrence of obvious symptoms
and successfully identifies the pre-deterioration stage of com-
plex diseases. Specifically, for the acute lung injury dataset, a
significant change in the sNMB score indicates the critical stage
of phosgene-induced acute lung injury before the deterioration
into pulmonary edema. For the three tumor datasets ( STAD,
 12 
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Figure 5 Functional analysis of common signaling genes in different tumor datasets. ( A ) Venn diagrams for the intersection of signaling 
genes in three different cancers. There were 106 common signaling genes shared among the three datasets. ( B ) Dot plot of KEGG enrichment 
analyses for 106 common signaling genes. ( C ) Dot plot of KEGG enrichment analyses for 1st-order DEG neighbors in the STAD dataset. ( D ) The 
important common pathways are shared between common signaling genes and their 1st-order DEG neighbors. The common signaling genes 
mapping into the pathway are depicted with red circles, while their 1st-order DEG neighbors mapping into the pathway are depicted with 
blue circles. ( E ) For the TCGA-STAD dataset, the underlying signaling mechanisms involve both common signaling genes and their 1st-order 
DEG neighbors. 
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Figure 6 ‘Dark genes’ are sensitive to the sNMB score. ( A –C ) Kaplan–Meier ( log-rank ) survival analysis of local sNMB values and gene 
expression for STAD ( A ) , ESCA ( B ) , and READ ( C ) . The non-differential genes sensitive to the sNMB score are considered ‘dark genes’. The 
dark genes perform well in prognosis and are strongly related to patient survival at the sNMB level but not at the gene expression level. 

 

 

 

 

 

 

 

 

 

 

 

ESCA, and READ ) , the drastic transitions of the sNMB score
signal the pre-disease stage before distant metastasis in stage
IV. The successful detection of critical points for these biological
datasets validates the effectiveness of the sNMB approach in
identifying the criticality of complex diseases solely based on
a single sample. 
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There are a few advantages to the sNMB method. First, com-
pared with traditional biomarkers that aim to diagnose the de-
terioration stage based on the differential information of gene
expression, the proposed method is capable of predicting the
pre-deterioration stage based on the information of differen-
tial networks among biomolecules. Second, against a group of
 12 
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given reference samples, the sNMB method can identify the pre- 
deterioration stage or critical point using only a single sample, 
while the conventional DNB method requires multiple samples 
at each time point to evaluate its three statistical indices. In 
addition, the sNMB method not only detects general early warn- 
ing signals of critical transition into the deterioration stage but 
also provides sNMB signaling biomarkers that are involved in 
key biological processes. Furthermore, by combining with dy- 
namics prediction method ( Chen et al., 2020 ) , it may help to 
identify the future critical states based on omics data. Third, 
the sNMB method helps to reveal the dark genes, which are 
non-differential in their expression but sensitive to sNMB and 
perform well in prognosis. Finally, it should be noted that sNMB 

is a model-free method, which implies that the sNMB strategy 
does not involve feature selection or model/parameter training. 
In summary, we proposed a novel computational approach at the 
single-sample level that is helpful for elucidating the molecular 
mechanisms of disease progression at the network level, reveal- 
ing new biomarkers ( dark genes ) -considered prognostic indica- 
tors, and providing a personalized pre-deterioration diagnosis. 

Materials and methods 
Theoretical background 
The theoretical background of this study is the DNB theory. 

Generally, the dynamical process of a complex disease can be 
perceived as a time-dependent non-linear dynamical system, 
while sudden deterioration is regarded as a qualitative state 
shift at a bifurcation point ( Scheffer et al., 2001 ) . Its evolution 
is usually divided into three stages ( Chen et al., 2012 ) : ( i ) a 
stable normal stage with high robustness, ( ii ) a pre-disease 
stage with a high-sensitivity response to perturbations, which 
is a critical point just before disease onset or deterioration, 
and ( iii ) another stable disease stage with high robustness. The 
sNMB method is designed to detect an early warning signal of 
the critical transition from the before-deterioration stage to the 
deterioration stage. When the biological system approaches the 
critical point, there appears to be a group of variables defined 
as DNB molecules, which satisfy the following three statistical 
indices ( Chen et al., 2012 ) . 
SD in sharply increases, where SD in represents the SD 

( coefficient of variation ) for any DNB molecule; 
PCC in abruptly increases, where PCC in represents the PCC be- 

tween any two DNB molecules; 
PCC out rapidly decreases, where PCC out represents the PCC 

between any DNB molecule and any non-DNB molecule. 
From the properties of DNB molecules, the critical state tran- 

sition of a system is actually indicated by a group of highly corre- 
lated and strongly fluctuating variables at the network level ( Liu 
et al., 2017 , 2019 ) . Specifically, for the sub-network composed 
of some variables ( DNB biomolecules ) , an obvious change in its 
network structure occurs when the system is close to the critical 
state, signaling the upcoming critical transition. By exploring the 
dynamic information of such a group of dominant variables at a 
network level, it is possible to predict the qualitative state tran- 
sition. Our proposed sNMB method is designed to quantify the 
Page 10 o
statistical perturbation triggered by every single sample against 
a group of given reference samples, which can accurately detect 
the early warning signals of critical transitions at the single- 
sample level. 

Algorithm to identify the critical point based on the sNMB score 
Given a set of reference samples ( the samples from the normal 

cohort are regarded as the background, representing relatively 
healthy individuals ) , the following computational method is car- 
ried out to identify the pre-deterioration stage using only a single 
case sample. 
[Step 1] Constructing a global template network N 

G by map- 
ping the genes to the PPI network. ( i ) The PPI network is 
downloaded from the functional protein association networks 
( https://string-db.org ) . ( ii ) The interactions of the selected 
genes are incorporated by setting the threshold confidence level 
to 0.900. ( iii ) All the isolated nodes ( nodes without any links to 
other nodes ) are discarded. 
[Step 2] Extracting each local network/sub-network from the 

global template network N 

G . Specifically, there are Q local net- 
works LN 

k ( k = 1 , 2 , . . . , Q ) if there are Q genes { 1 , 2 , . . . , Q } 
in the global template network N 

G . The local network LN 

k is 
centered at a gene g k , which has M first-order neighbors { g k 1 , g k 2 , 
· · ·, g k M 

}. 
[Step 3] Adding a single case sample to the reference samples. 

Specifically, if there exists n samples in the reference group, 
then n + 1 mixed samples are obtained at each time point and 
viewed as a perturbation to n reference samples. For the local 
network LN 

k , the differential local network DN 

k is constructed 
by the difference in the corresponding SD and PCC between the 
reference and mixed samples ( Figure 1 B ) , i.e. 

�SD 

(
g k i 

)
= 

∣∣∣SD n 

(
g k i 

)
− SD n +1 

(
g k i 

)∣∣∣ ( 1 ) 

�P CC 
(
g k , g k i 

)
= 

∣∣∣P CC n 
(
g k , g k i 

)
− P CC n +1 

(
g k , g k i 

)∣∣∣ ( 2 ) , 

where i = 1 , 2 , · · ·M, and SD n ( g k i ) and SD n +1 ( g k i ) represent
the SD of the gene expression of gene g k i based on n 
reference samples and n + 1 mixed samples, respectively. 
P CC n ( g k , g k i ) and P CC n +1 ( g k , g k i ) are the PCC between the center 
gene g k and its first-order neighbor g k i based on n reference 
samples and n + 1 mixed samples, respectively. 
[Step 4] Calculating a local sNMB score for each local network. 

Specifically, for the local network LN 

k centered at a gene g k , the 
corresponding local sNMB LI k is defined as follows. 

LI k = 

⎛ 

⎝ 

(∑ M 

j=1 �SD 

(
g k j 

))
+ �SD 

(
g k 

)

M + 1 

⎞ 

⎠ ×

⎛ 

⎝ 

∑ M 

j=1 �P CC 
(
g k , g k j 

)

M 

⎞ 

⎠ ( 3 ) , 

where k = 1 , 2 , 3 , · · · , Q, and �SD ( g k j ) and �P CC( g k , g k j )
are defined in Eq. ( 1 ) and Eq. ( 2 ) , respectively. 
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[Step 5] Calculating the sNMB score for the single sample at
time point t . The sNMB score for the single sample is calcu-
lated based on a group of genes with the largest local sNMB
score, i.e. 

I t = 

1 
N 

∑ N 

k=1 
LI k ( 4 ) ,

where the constant N is an adjustable parameter representing
the number of the top 5% of genes with the largest local sNMB
scores. I t is applied to quantify the overall perturbation caused
by a single case sample. 
According to the DNB theory, when the system approaches

the critical stage, the sub-network ( local network ) composed
of DNB molecules exhibits significant changes in terms of vari-
ance and correlation, thus resulting in significantly differential
information between the pre-deterioration stage and the before-
deterioration stage. Similar to previous studies ( Zeng et al.,
2014a , b ) , such a sub-network is viewed as a module, which
can be utilized to detect the early warning signal of critical
transition. Therefore, the composite indicator I t would abruptly
increase when the system is near the tipping point, signaling an
upcoming critical transition. 

Data processing and functional analysis 
The proposed sNMB approach was applied to a numeri-

cal simulation and four real datasets, i.e. STAD, ESCA, and
READ datasets from TCGA database ( http://cancergenome.nih.
gov ) and an acute lung injury ( GSE2565 ) dataset from the
GEO database ( http://www.ncbi.nlm.nih.gov/geo/ ) . The tumor
datasets are composed of both tumor and tumor-adjacent sam-
ples. The tumor samples are grouped into different stages ac-
cording to the stage information of TCGA, and the samples lack-
ing corresponding information are ignored. The cancer samples
were grouped into seven stages ( stages IA, IB, IC, IIA, IIB, IIIA,
IIIB, and IV ) for STAD, six stages ( stages I, IB, IC, IIA, IIB, IIIA, IIIB,
and IV ) for ESCA, and four stages ( stages I, II, III, and IV ) for READ.
The details of the sampling conditions are given in Supplemen-
tary Table S1. The tumor-adjacent samples that represent the rel-
atively healthy condition are viewed as reference samples. For all
these datasets, we discarded the probes without corresponding
NCBI Entrez gene symbols. For each gene mapped by multiple
probes, the average value was taken as its gene expression. 
The analysis of pathways was performed with the KEGG

database ( https://www.kegg.jp ) . The enrichment analysis was
performed by Metascape ( Zhou et al., 2019 ) and the Cluster-
Profiler package ( Yu et al., 2012 ) . The functional results were
based on web service tools from the Gene Ontology Consor-
tium ( http://geneontology.org ) and client software from Ingenu-
ity Pathway Analysis ( IPA, http://www.ingenuity.com/products/
ipa ) . The networks were visualized using Cytoscape. 

Availability of data and materials 
STAD, ESCA, and READ datasets are available from TCGA

database ( http://cancergenome.nih.gov ) . Acute lung injury
dataset ( GSE2565 ) is available from NCBI GEO database
( http://www.ncbi.nlm.nih.gov/geo ) . The source code of the
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algorithm is provided at https://github.com/zhongjiayuan/
sNMB _ project . 

Supplementary material 
Supplementary material is available at Journal of Molecular

Cell Biology online. 
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