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Abstract: Raynaud’s phenomenon (RP) is a disease that mainly affects human fingertips during cold
weather. It is difficult to treat this disease using medicine, apart from keeping the body in a warm
environment. In this research, conductive knitted fabrics were fabricated to help relax the vessels
of the patient’s fingertips by providing proper heat, and also serving as a sensor to detect finger
motion after relaxation of the blood vessels of patients. Four different structures, termed plain, purl,
interlock, and rib were produced using conductive silver/PE (polyethylene) yarn and wool yarn, with
a computerized flat knitting machine. The effect of knitted structure on the electro-thermal behavior,
sensitivity, and stability of resistance change (∆R/R) under different tensile forces was investigated.
By comprehensive comparison, the purl structure was identified as the preferred structure for the
heating glove for RP patients, owing to superior electro-thermal behavior. Additionally, the purl
structure had a greater capacity to detect different motions with stable resistance change. This
potential electro-thermal glove could be used for functional, as well as aesthetic (fashion) purposes,
and could be worn at any time and occasion with complete comfort.

Keywords: Raynaud’s phenomenon; electro-thermal property; strain sensor; contact resistance;
knitted structure

1. Introduction

Raynaud’s phenomenon (RP) is a disorder resulting in vasospasm which occurs
because of the contraction of a blood vessel. It is a particular series of discolorations of
the fingers and/or the toes because of limited transportation (flow) of blood to the fingers
after exposure to change in temperature or emotional events [1–4]. In cold temperatures,
the body automatically takes the warm blood from the extremities and draws it toward
the core, where it can keep the heart, lungs, and other organs protected [5]. However, in
RP patients the flow of blood to the fingertips is restricted due to narrow blood vessels
of the fingertips [2,6,7]. Even though several studies have been made to cure the disease,
there is no approved cure for Raynaud’s disease, but there are ways to manage symptoms.
The main recommended method to manage this disease is keeping the hand warm using
hot water to relax the vessels. However, it is an inconvenient method to use hot water
always and everywhere. Thus, using a glove is much more convenient and can reduce
the pre-pain felt by the patients. Though heating gloves have been developed by several
researchers, the gloves were not explicitly for RP patients, and are not comfortable to be
worn at any time and place. Some of the recently reported heating gloves, such as in
Seung-Won. K et al. [8] and Colin V et al. [9], were manufactured specifically for virtual
reality applications. Although in the work of Seung-won the glove had electrothermal
behavior, the glove design was not precisely for a heating glove, as it could not cover the
whole finger and the materials used could affect the comfort of the wearer.
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Knitting fabrics are the most common textiles used in applications to provide warmth,
flexibility, and comfort. Knitting fabric is formed by intermeshing loops of a single yarn, or
set of yarns, together [10].

It has become a promising structure in textile technology because of the flexibility,
comfort, and warmth that the structure provides. For that reason, it is a good candidate
for a variety of uses in medical applications and other areas that integrate electronic
devices [11,12]. Though a knitted fabric can provide warmth and flexibility, it is not enough
to adapt special properties such as electro-thermal and sensing behaviors to wearable
smart textiles if produced separately. The fabric must be aimed at the required, technical,
and exceptional applications, such as the amount of heat needed by RP patients, which
is different from the heat a normal person requires. The amount of heat for RP patients
should be able to relax the blood vessels of the patient’s finger. Meanwhile, there has been
increasing research on heating electro-thermal knitted conductive fabrics that can convert
electrical energy into heat without affecting the human wearing experience. Therefore,
knitted fabric electrical heaters have the potential to be used as medical heat therapy, joint
pain relief, and athletic rehabilitation [13,14].

Electrical conductivity in the knitted fabric can be achieved in many ways, depending
on the desired level of conductivity, durability, and the application. One way to enhance
the conductive properties of a knitted fabric is to blend it with conductive materials or
polymers. Several ways have been presented on how to intermix a conductive mate-
rial with a non-conductive material. The common method to assimilate knitted fabric
with conductive materials is by coating the conductive components onto the existing fab-
rics [15]. Dandan. H et al. [16] introduced a conductive fabric by coating knitted fabric
using Polypyrrole to construct wearable textile sensors. Rujun. M et al. [17] also manufac-
tured conductive knitted fabrics with poly(dimethylsiloxane) coated fibers for application
in strain sensing. Similarly, Hyelim. K et al. [18] reported an electro-conductive para-
aramid knit, manufactured by dip-coating in a graphene/waterborne polyurethane (WPU)
composite for a use as a heating fabric and protective clothing.

It is a simple and convenient method to fabricate a coated fabric using conductive
polymers. However, coated fabrics usually perform poorly due to the impairment of the
conductive circuits during large mechanical deformations [19]. In addition to the heating
textiles, conductive textiles as sensors are also the most explored material in biomedical
applications, for detecting different parts of the body. Strain sensors play significant roles in
biomedical electronics, and can monitor various body signals, including physical, chemical,
and biological signals [20].

Therefore, in this work, an electro-thermal with a sensing function was amalgamated
to give a multifunctional advantage to RP patients. The glove was designed with sensing
functionality to help the patients detect the movement after relaxing the fingertips. It
could be used as a functional and fashionable glove, combined. A conductive fabric was
investigated to optimize a suitable knitted structure that could be used as a multifunctional
heating glove, and sensing the movement of the patient’s finger. The wool yarn was
integrated with silver/PE (polyethylene) conductive yarn to enhance the electro-thermal
behavior of the fabric. Four different weft knitted structures named plain, purl, interlock,
and rib were manufactured to study the effect of the structure on the resistance change
(∆R/R) and electro-thermal behavior of each structure. A suitable knitted structure that
can be used as a heating textile and sensor was identified after a series of experiments.
Based on the optimization, an electro-thermal glove with a sensor function was designed
for RP patients.

2. Material and Methods
2.1. Materials

In this experiment, silver/PE (polyethylene) yarn and 100% pure wool yarn were
utilized to produce four different conductive knitted fabrics. The silver/PE yarn was
purchased from a market supplier (Suzhou TEX Silver fiber technology CO, Ltd., Suzhou,
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China) and the wool yarn was purchased from Hebei ASEAN Cashmere products Co, Ltd.
(Hebei, China).

Due to its good thermal insulation, wool yarn was used as a material for thermal
insulating purposes and to give comfort to the patient. Silver/PE yarn was used as a
conductive yarn and to produce heat through the given power. The tensile strength of both
yarns was examined using a universal mechanical tester, YG028 (Ningbo Dahe instrument
Co., Ltd., Ningbo, China). A gauge length of 50 mm with a speed of 10 mm/min was
used for both yarns. The morphology of silver/PE and wool was observed under scanning
electron microscopy (SEM, Hitachi S-4800, Tokyo, Japan) as presented in Figure S1. Table S1
shows the parameters of the yarns.

2.2. Preparation of Knitted Fabric

Four kinds of knitted structure samples were manufactured using conductive and
non-conductive yarn. The yarns were fed to the machine at the same time parallelly. The
structures were produced using a computerized flat knitting machine (Longxing, Jiangsu
Jinlong technology Co, Ltd., Jiangsu, China), with a needle gauge of 14 G. Based on the
structure’s design and geometry, three structures were produced with a double set of
needles (purl, interlock, and rib), and one structure was produced with a single set of
needles (plain), which is the most common and basic structure. The structural notation,
loop diagram, and simulation effects of each sample are presented in Figure 1. The fabric
morphology was observed using Vistar-Image (Nikon Corporation, Shanghai, China).
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2.3. Characterization
2.3.1. Change in Resistance and the Effect of Knitted Loop Contact

The ∆R/R of the samples under different tensile forces were carried out by using a
universal tensile testing machine (Wenzhou darong textile Instrument Co. Ltd, Wenzhou,
China) and system source meter (Keithley 2401B, Tektronix Company, Cleveland, Ohio),
which were connected with a computer. During the elongation processes, the clamping
pressure was 50 N and the two sides of the samples were covered by copper electrode
blocks to observe precise results in ∆R/R. The applied tensile force was produced at a
constant speed of 50 mm/min. The ∆R/R of each structure was measured from a minimal
tensile force of 1%, up to 5%, 10%, 15%, and 20%.

2.3.2. Electro-Thermal and Temperature Distribution of the Knitted Structure

To perceive the electro-thermal performance and temperature distribution of the
structures, an adjustable DC power supply (Wuxi Anais Electronic Technology Co. LTD
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Wuxi, China) was used under different voltages to produce power (heat). The temperature
distribution of each sample was recorded using a FLIR infrared camera at a voltage value
from 1 V to 3 V (1 V, 1.5 V, 2 V, 2.5 V, and 3 V). Each sample was placed on an insulating
icebox, and the infrared camera was positioned 10 cm above the samples. The temperature
change was recorded to perceive the distribution and change in temperature of the samples
with time and voltage. Furthermore, the temperature distribution was also observed after
several cycles of washing the samples in an ultrasonic washing machine using detergent
(Ethyl alcohol 99%, EtOH) and water. After washing several cycles under 40 ◦C of warm
water, the sample was dryad in a drying machine at 37 ◦C, and then the temperature
distribution of each sample was recorded.

2.3.3. Effect of Voltage and Strain Force on the Property of the Fabric

The effect of voltage on the resistance was tested using a DC power source (Wuxi
Anais Electronic Technology Co. LTD Wuxi, China) under voltage values of (1 V, 2 V,
and 3 V) and the change was examined using a source meter (Keithley 2401B, Tektronix
Company, Cleveland, Ohio). Moreover, the effect of strain on the electrothermal behavior
of the sample was examined. Taking a sample size of 4 cm × 4 cm different tensile forces
were applied using a universal tensile testing machine (Wenzhou darong textile Instrument
Co. Ltd., Wenzhou, China), and the temperature distribution under different strain forces
from 0% to 20% (0%, 5%, 10%, 15%, and 20%) was recorded using a FLIR infrared camera
(FLIR SYSTEM AB, Shanghai, China).

3. Results and Discussion
3.1. The Structure of Conductive Knitted Fabrics

The sample knitted fabrics were made using two yarns (wool and Silver/PE) which
showed good tensile strength, as shown in Figure S2. The wool yarn could resist 8.5 MPa
of stress until 20% of elongation before slippage. While the twisted Silver/PE exhibited
about 195 MPa of stress until 40% of strain. Using the flat knitting machine, four weft
knitted structures were produced (Figure S3). Figure 2 shows all the structures, presenting
different loop formations and yarn distributions. Each structure had a different morphol-
ogy. Each sample had different thicknesses, sizes, and several loops in a specific form
(Table S2). During the production of the samples, the needle creates varied movements
and arrangements, depending on the structure, and this led to the differentiation in the
fabric morphology and yarn distribution. Meanwhile, two different yarns were used at the
same time and the same content, but the appearance of both yarns on the surface of the
fabric varies in each structure. Figure 2a shows that the plain structure differs on the front
and back of the fabric.

The front surface of the plain structure displayed less conductive yarn compared to
the backside of the fabric. The conductive yarns in the plain structure appeared on the
backside of the fabric. However, the purl structure had an even distribution of both the
conductive and non-conductive yarns on the front and backside of the fabric (Figure 2b).
Additionally, the interlock and rib structures tended to create a high overlapping of both
yarns (Figure 2c,d). The interlock structure has a behavior tending to create a sandwich
structure of two fabrics. For this reason, the majority of the conductive yarns were hidden
inside. However, for the rib fabric, it exhibited overlapping of yarns.
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3.2. Effect of Knitted Structures on Resistance Change (∆R/R)

In conductive textiles, resistance is one of the most important factors, which influences
the properties such as strain sensing and the thermal properties of the materials. Total
resistance of conductive knitted textiles is highly dependent on two types of resistance,
called length related resistance and contact resistance [21–24]. Length-related resistance is
mainly decided by the length of the conductive yarn used in the fabric and the electrical
conductivity of the yarn, whereas contact resistance is directly linked to the contact area
and the contact pressure of the overlapped yarns [25–27]. It has been demonstrated
that the electrical contact resistance between overlapped yarns is the key factor affecting
resistance–strain behaviors [28,29]. A knitted structure is composed of several yarn loops
joined together. A single loop knitted structure contains three parts, termed the head, side
limbs, and sinker loop, and different knitted structures have a different loop assembly and
contact [30–32]. Hence, the length of the loop and the contact between each loop can be the
main contributor affecting the resistance change and stable sensing ability of the conductive
knitted fabric [25,33]. The change in resistance of the four different sample structures was
examined to evaluate the sensitivity and stability under minimal tensile elongation.

During the experiment, two sides of the samples were covered by two copper electrode
blocks to get precise and even changes of resistance during deformation of the fabric
(Figure S4a). Conductive knitted fabrics mainly contain contact resistance, the resistance
change of the samples was affected by the loop formation of the fabrics [34]. The yarn
loop involves three main parts, and those create a contact point between each loop in a
fabric (Figure S4b,c). While applying a tensile force to each sample fabric, contact pressure
and friction force were generated between each loop, which existed at the contact point
between the loops. Through a stretching and releasing action, a displacement of the contact
point between each sample was created. The constancy in ∆R/R of the sample structures at
1% of tensile elongation is displayed in Figure 3. Theoretically, the change in resistance of
the conductive knitted fabrics includes the resistance of the conductive fabric at a different
time (Rt) and the resistance at the initial time (R0) of the conductive fabric samples. Based
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on the following Equation (1) the relative resistance change (∆R/R (%)) of the samples was
calculated, and all the sample structures were sensitive under low tensile force.

∆
R

R(%)
=

Rt − Ro
Ro

× 100 (1)
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Markedly different stabilities and uniformities were observed among each sample
structure. Noticeably the different loop formations made the contact point greatly dis-
similar. The purl structures can create constant movement and contact because of the
lined connection of conductive yarns, yet for the other three structures, the assembly of
conductive yarns might cause a broken contact because of the uneven distribution of yarns
in the fabric surface. The purl structure revealed better stability and consistency in the
change because of the even connection and distribution of the conductive yarn on the
surface of the fabric compared to the other three knitted fabrics (Figure 3a).

The plain structure was the second best structure, this was perhaps because the
backside of this structure is similar to the purl structure (Figure 3b). However, the rib and
interlock structures had the most unstable change (Figure 3c,d).

The ∆R/R of the purl, plain, rib, and interlock was 1.62 ± 0.16, 2.16 ± 0.15, 1.06 ± 0.43,
and 5.16 ± 1.06, respectively, which revealed that the resistance variation in interlock was
the highest (Figure S5). The reason for this could be attributed to the structure’s loop
formation and connection, with yarn overlaying and uneven spreading of the conductive
yarns on the surface of the fabric. Hence, this affected the stability of ∆R/R and led to the
formation of two change peak responses in 3% and 5% of plain, rib, and interlock with
great unsteadiness (Figure S6).

The even distribution of the conductive yarn and the continual contact between loops
of the purl structure led to a consistent change in resistance, starting at a low strain of 1%,
to the higher 20% (Figure 4a–d).
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3.3. Electro-Thermal Behavior and Temperature Distribution Test

In conductive materials, the main factors to be examined are the resistance, current,
and voltage. Those factors can help clarify the different properties and behaviors of
conductive materials. To determine the electro-thermal behavior of a material, it is vital
to examine the current flow of the material. Current–voltage characteristic curves show
a relationship between the current flowing through an electronic device and the applied
voltage across its terminals. In a pure resistance, the relationship between voltage and
current is linear at a constant temperature, such that the current is proportional to the
potential difference [35]. The current–voltage IV curve for the silver twisted PE at room
temperature showed a maximum current of 0.05 A under the voltage 0–3 V (Figure 5a).
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Furthermore, the IV character of the different structures where examined, and the purl
structure showed a high current with the increase of voltage (Figure 5b).

The voltage power used and the amount of heat produced are critical in medical
textiles. Using low voltage power to produce a desirable heat is necessary for heating
textiles. Heating textiles are required materials in medical applications such as therapy, yet
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it is important to understand the amount of heat that is suitable for human skin. Human
skin is sensitive to heat depending on the amount of heat on the skin surface. Usually, the
heat tolerated by human skin is between 40 and 44 ◦C, and higher temperatures can cause
serious damage [36,37]. Nevertheless, the previously reported heating textiles were mainly
focused on the production of high temperatures (>50 ◦C), and for this reason the voltage
power utilized was >4 V. [13,38,39]. The drawback of applying high voltage power is that,
not only can it produce a higher temperature than the needed amount, but it also could
be destructive to human skin. This work scrutinized the electro-thermal properties and
capabilities to produce an anticipated amount of heat, by utilizing voltage power from 1 V
to 3 V in the knitted fabric.

The temperature distribution of each fabric structure that is integrated with conductive
yarn was evaluated. Each experimental fabric was cut into a specimen with a size of
4 cm × 4 cm, and exposed to different voltage values from 1 V to 3 V with time, as shown
in Figure 6. Once voltage was applied to the conductive knitted fabric, the entire specimens
were heated, resulting from the effect of Joule heat. However, the distributions of heat were
disparate amid each structure. The temperature was different for each sample depending
on the structure and loop connection. Therefore, in the process of heating the samples, the
purl structure was relatively stable compared to the other three structures. The temperature
change of the purl structure was almost linear, as shown in Figure 6a. Moreover, according
to the Joule heating effect, the lower the resistance of a material, the higher the current
and power under a given voltage. Therefore, the purl structure, with a low resistance
value can produce a higher current and power compared to the other three structures. The
conductive loop yarns in the purl structure have an unbroken distribution and connection
between each other, and this made the temperature change linear. Furthermore, in the
heating garment, it is desirable if there is no fluctuation of the heating effect. The purl
structure could reach 31 ◦C at 1 V and 64 ◦C at 3 V, which was the highest. Moreover, the
rib was 33 ◦C at 1 V, 60 ◦C at 3 V, interlock was 30 ◦C at 1 V and 45 ◦C at 3 V, and the lowest
was plain, being 30 ◦C at 1 V and 43 ◦C at 3 V. That is, under a low voltage power, purl
could produce the needed temperature, and could not damage the skin. Figure 6b shows
that all structures can produce reasonable temperatures under 2 V, yet smooth temperature
distribution was vital. The purl structure was more regular compared to the other three
structures, leading to a consistent heat distribution (Figure 6c). Once the samples were
connected to the power sources, the surface of the entire fabric got warmer from one end to
the other smoothly. Additionally, it had a uniform contact pressure and loop intersection,
which led to a smooth distribution and change of temperature.

Even though the ratio of the yarns was the same (50/50) for both yarns, for all the
structures, the structures formed diverse yarn expositions in the fabric. For the structures
such as rib and interlock, the current flow in the structure was low. Hence both sides of the
fabric got heated quickly and the rest of the fabric became warm after several minutes. As a
result, the temperature change was affected, and it led to uneven temperature distribution,
as shown in (Figure 6d,e).

Similarly, in the plain structure, because the back surface was mainly enclosed by the
conductive yarn, it got warmer first, and after several minutes the front started to get warm
(Figure 6f). The temperature change on both surfaces of the fabric was dissimilar, which
effected the heat distribution. As the back of the fabric temperature reached maximal, the
front side became only warm. Thus, the distribution became uneven.

Hence, in the purl structure, the current flow between the loop structures was
smoother and produced a suitable heat for wearable textiles. Although the temperature
could reach as high as 65 ◦C at 3 V, the structure could provide the required temperature
for RP patients at low voltage (Figure 7a). The rate of temperature change between each
knit structure showed a variation result between different structures, and the change was
disparate. All sample fabrics could be heated with time, yet the rate of change was dissim-
ilar. As the structures showed, the conductive yarns were connected in a miscellaneous
manner. The purl structure showed the highest rate of temperature change between 0 and
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2 min, which was 45 ◦C distributed in the whole fabric, uniformly. Nevertheless, for the
other three, the change rate from 0–2 min not only was lower than the purl but also the
distribution was non-uniform. For example, in the plain structure, the change rate of the
backside of the fabric was high compared to the front side. Similarly, the rib and interlock
also had a non-uniform temperature change and distribution on the surface of the fabric
between 0 to 2 min. The purl structure had a uniform and better temperature change rate,
and a better temperature maintenance property.
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This is a significant advantage in wearable smart textiles for the user and producer.
The structure is auspicious for a wearable heating textile under low voltage power that can
sustain the temperature for a longer time (Figure 7b).
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3.4. Effect of Strain Force on the Temperature, and the Voltage Effect on the Resistance

According to Joule’s law, the heat generated through applying power is one of the
factors affecting resistance. Therefore, the reason for the change in the resistance measured
by changing voltages may have been due to the temperature change. As the temperature
increases, the resistance gradually decreased. Figure 8a shows that after a slight rise, during
the very short initial period of the resistances in the inserted image, the resistance decreased
during the heating process. The resistance of the purl fabric dropped when a different value
of voltage was applied, and within the time it continuously and slowly decreased during
the rest of the heating time. The higher the voltage applied, the smaller the resistance
became. However, the amount of the resistance drop was not significant. Furthermore,
the temperature versus strain of purl fabric was also investigated under strains from 0%
to 20% at a constant voltage of 3 V. During the electro-heating change, under different
strains the electric heating performance decreased slightly with a large strain. However,
the temperature of the fabric was still 40 ◦C at 20% of strain (Figure 8b). The amount of
heat generation was still suitable for an electro-thermal glove under a large strain.
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In the meantime, it is important to study the washability and the effect of water on
the electro-thermal behaviors of the fabric, since this material is used mostly in a moist and
watery environment. The water or detergents used to wash, and the washing cycle can
affect the performance of a conductive fabric [40]. Yet, the purl fabric was able to maintain
an even temperature distribution after several washing cycles. Figure 9a–d illustrates the
temperature change without significant change after a ten-wash cycle.

3.5. Design of the Electro-Thermal Glove with Sensor Function

Knitted fabric has a wide range of applications in the medical, sport, and other fields
because of its properties [41]. Lately, there has been significant attention on developing
knitted textiles that can be used to detect human motion or signal monitoring, but it is
challenging to fabricant strain sensors that can give a uniform signal, are friendly to the
environment, and conform to the human body [28,42,43]. The strain sensing performance
of the purl fabric to human body motion was executed by attaching the fabric to a different
part of the body. The conductive purl fabric was fabricated targeted to be used as a heating
textile, as well as to provide sensor functions for different human body motions. The fabric
texture was possibly compatible with human skin, and gave smooth detection signals
in responding to the strain force. During elongation and release actions, the electrical
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resistance of the sensor mends as conductive materials recover to their original states or
structures [44]. Knit based strain sensors have a great sensing capacity.
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Sometimes it can be difficult to monitor complicated human body deformations
because of multiple direction movements, and to precisely detect these using a strain
sensor [44,45]. However, the purl structure revealed a stable response towards ∆R/R at
several strain forces, to sense the motion of different parts of the human body. The fabric
also was attached to some parts of the human body, such as the finger, wrist, and knee, to
detect activities (Figure 10). As a result, this structure could be used to sense movements,
from a slight movement of fingers, to a higher bending of the knee. It was able to uniformly
respond to the bending of the wrist and the human knee (Figure 10a,b), and the movement
of the finger at different bending degrees (Figure 10c). Therefore, the purl fabric presented a
high potential for medical use, as well as for sportswear, during jogging to perceive signals,
and as a glove to read finger and wrist movements. The fabric was also put under 30%
of strain force for a repetitive 500 cycles, and it was able to preserve the signal detection
consistency, without alteration (Figure 10d). Strain forces from 1% to 50% were applied to
the purl structure, and the fabric was able to maintain the properties without alteration
(Figure 10e). Furthermore, the gauge factor (GF), which is the most important index for the
strain sensor, was calculated based on Equation (2), where ∆R/R is the change in resistance
and ε is the strain. As a result, the strain ranges of 0−50, and GF showed a good fitting
degree (Figure 10f). As the inserted figure in Figure 10f shows, the GF from 0–15% of
strained showed an excellent fitting degree.

GF =
∆R
R

∆L
L

=
∆R
R
ε

(2)
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As was mentioned at the beginning of this work, the main symptoms of this disease
are swelling and pain at the tip of the patient’s finger during cold weather and emotional
variation [1]. This indicates that the rest of the finger is healthy. Therefore, it is preferable
to insert the conductive fabric on one side of the tips of each finger, as shown in Figure 11.
Likewise, to reduce the influence of the direct contact of the conductive fabric with the skin,
it was important to insert a thin layer of wool fabric inside of the glove (Figure 11a).
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This can give an additional heating function, while at the same time protecting the
skin from undesirable and uncomfortable contact between the skin and fabric. Figure 11b,c
demonstrate the final design of the electro-thermal glove, and the glove assembly, re-
spectively. Therefore, after taking necessary consideration of the properties of the purl
structure, it was decided to use it for the construction of the glove for RP patients. By using
the marvelous designer computerized (M9) designing software the glove was designed
considering the requirements of RP disease.

Normally, the finger becomes numb and inflexible during extreme cold and pain [46].
Thus, for RP patients while there is restricted blood and oxygen conveyance to the fin-
gertips, it becomes stiff, numb, and painful to move the fingers. The glove is designed
to be used as an electro-thermal glove to relax the patients’ blood vessels, and sense the
motion on the finger after relaxation. Therefore, this glove can be a great help to read the
movement of the fingertips after providing heat. Consequently, it is important to detect
finger movements during and after the blood vessels are relaxed by the heat provided
through the electrothermal glove.

The designed conductive fabric is joined with a non-conductive wool fabric in the
fingertip, and the palm and wrist will be covered with pure wool yarn. The conductive
silver/PE yarn was selected to reflect the heat and help prevent the loss of body heat,
and the wool yarn provides warmth and comfort to the wearer. Moreover, the fabric was
connected with a low voltage battery using copper wire. The purpose of this glove is
to give warmth to the wearer and help the patient to relax the blood vessels and reduce
pain. Furthermore, this glove is made to be used in any place and occasion for functional
purposes and fashion wear, and it is affordable to all economic levels of user.

4. Conclusions

In summary, four different weft-knitted conducive fabrics were manufactured by
collaborating wool yarn and silver/PE yarn using a computerized flat knitting machine.
The conductive fabrics with different structure designs, termed plain, purl, interlock, and
rib exhibited diverse results in heating performance. In addition, the sensor functionality
of each fabric was explained. The purl structure showed better performance on uniform
sensitivity to ∆R/R, strain force, temperature change, and distribution compared to the
other three structures. The loop formation and conducive yarn distribution in both the
front and backside of the purl structure was uniform, which led to a consistent change
in resistance and temperature distribution. Thus, the purl structure was found to be an
excellent contender to produce a heating glove for RP patients, and to detect the movement
of several parts of the human body. Overall, this electro-thermal and sensor glove will
have the potential to be used as a practical, fashionable, and comfortable textile that can be
worn on any occasion.

Supplementary Materials: The following are available online at https://www.mdpi.com/1996-194
4/14/2/377/s1, Table S1: Yarn specifications parameter, Table S2: Fabric structural, Figure S1: SEM
image of (a) Wool yarn (b) PE yarn (c) Silver yarn (d) Twisted silver and PE yarn (e) silver yarn image,
Figure S2: Tensile strength of wool and Silver/PE yarn, Figure S3: Image of fabric structures (a) purl,
(b) plain, (c) interlock, (d) rib, Figure S4: (a) Machine setup of tensile force experiment, (b) knitted
loop parts, (c) image of fabric stretching, Figure S5: The standard deviation of fabric resistance
change, Figure S6: Strain response at 3% of elongation (a) plain, (b) rib, (c) interlock structure, and at
5% elongation (d) plain (e) rib and (f) interlock.
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