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Abstract

Metrology has been successfully used in the last decade to quantify use-wear on stone

tools. Such techniques have been mostly applied to fine-grained rocks (chert), while studies

on coarse-grained raw materials have been relatively infrequent. In this study, confocal

microscopy was employed to investigate polished surfaces on a coarse-grained lithology,

quartzite. Wear originating from contact with five different worked materials were classified

in a data-driven approach using machine learning. Two different classifiers, a decision tree

and a support-vector machine, were used to assign the different textures to a worked mate-

rial based on a selected number of parameters (Mean density of furrows, Mean depth of fur-

rows, Core material volume-Vmc). The method proved successful, presenting high scores

for bone and hide (100%). The obtained classification rates are satisfactory for the other

worked materials, with the only exception of cane, which shows overlaps with other materi-

als. Although the results presented here are preliminary, they can be used to develop future

studies on quartzite including enlarged sample sizes.

Introduction

Quantification of use-wear has recently seen an increasing interest among specialists [1, 2 and

references therein]. Use-wear studies using metrology can provide a robust and quantitative

approach to analysis, and they have the potential to improve and complement previous quali-

tative methodologies, which have performed poorly in blind-tests [3–6]. Several techniques

have been used to acquire 3D data in order to quantify use-wear, such as focus variation

microscopy, laser profilometry, white-light interferometry and laser scanning confocal micros-

copy (LSCM) [1, 7–15]. Chert i.e. fine-grained silica sedimentary rocks, sensu [16], has been

the most studied raw material in conventional use-wear studies which included large experi-

mental datasets [e.g. 17–19]. Similarly, quantitative methods have mainly been applied on
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chert surfaces [7, 10, 12, 20, 21], with few attempts done to assess their potential for the analysis

of coarse-grained rocks [22–24]. Trials on other raw materials, such as obsidian or basalt, have

also been performed in the past [14, 25–27]. Quantitative surface analysis can be applied to

materials other than rocks [2]. In fact, surfaces of ochre, bone and shells have also been ana-

lyzed mainly using confocal microscopy [28–31].

Nevertheless, quantification studies are still in their infancy and none of the tested tech-

niques have systematically been incorporated into the domain of traceology [6]. Among the

various techniques used to acquire 3D surface topographical data, data acquired with confocal

microscopy proved to be able to discern contact materials obtained from experimentally pro-

duced polished surfaces on chert specimens [10, 12, 32]. LSCM was preferred over the other

available techniques due to its ease of use, relatively quick acquisition time and inherent poten-

tial demonstrated by the initial studies that incorporated relatively small datasets [20, 22, 33,

but see 34]. Confocal microscopes are generally coupled with optical microscopes, which are

useful for observing areas to be measured [12, 35, 36]. 3D topographies are generally acquired

to provide quantitative data of the worn areas resulting from contact with different materials.

The main underlying goal of doing this is to limit the analysts’ subjectivity and to increase the

general accuracy of the method [6, 37]. Moreover, it improves repeatability and reproducibility

of the analyses [38]. However, it has been shown that it is not yet possible to automatically

locate and isolate the worn areas (i.e. areas of interest) for analysis [20], implying that the

choice of the area to be analyzed is still subject to the analyst’s discretion. In this regard it com-

plements the ‘traditional’ microwear method in that the one aspect that has performed well in

prior blind testing is the expert analyst’s ability to identify the location of wear [6].

A further reason that explains the high investment of energy and time into developing and

refining quantitative methods in use-wear analysis is the possibility of producing probability

statements based on surface parameters and the use of a variety of statistical methods [12, 32].

Researchers were able to distinguish polished areas formed after contact with a variable num-

ber (two to six) of worked materials [10, 21, 32]. Moreover, different humidity content of the

contact materials has proved to produce different polishes that can be differentiated based on

confocal measurements (e.g. wild vs. domestic cereals) [39, 40]. All this contributed to give

confocal microscopy its prominent role in use-wear studies involving metrological

applications.

Coarse-grained rocks such as quartzite have been less frequently investigated in conven-

tional use-wear studies [41–43 and references therein], as well as in quantitative ones [22, 23].

As a consequence, comparable quantitative datasets of these rocks are quite limited. Yet,

quartzite is one of the most frequently employed materials for producing stone tools through-

out the Plio-Pleistocene worldwide [e.g. 44–47]. For instance, it is very abundant in lithic

assemblages of key-sites for the understanding of human evolution, such as the Atapuerca [48,

49] and Olduvai [44, 50, 51] sites. Hence, it is crucial to apply quantitative tests on this type of

rock to be able to better characterize, and therefore recognize, different use-wear traits on such

surfaces. It is very likely that, in the same way that some qualitative features are more useful

than others to describe use-wear on different raw materials, different sets of surface parameters

might prove more powerful than others for quantitatively discriminating worn surfaces on dif-

ferent rocks. In the attempt to find out more about the most suitable parameters for each raw

material, trial and error experiments are necessary. Moreover, it is important to consider a

number of varieties of the same rock when setting up future experiments to test quantitative

methods, knowing that they can wear down differently.

This paper presents the first metrological study of quartzite flakes used on five contact

materials documented with LSCM. Two different varieties of quartzite were included in the

experiments. One of the main aims of this study was to add quantitative 3D data to the visual
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descriptions of polished areas on quartzite tools provided in previous contributions [36, 41–

43]. Moreover, the quantification of worn areas produced after contact with a number of

worked materials commonly included in reference collections will contribute to our general

understanding of the polishing process on quartzite.

Materials and methods

Experimental design

In order to limit raw-material intra-variability, we only included one cobble for each of the

two distinct quartzite varieties in our experimental program. The cobbles were collected in

Northern Spain, in the vicinity of the Sierra de Atapuerca archaeological complex. The two

varieties are named for their provenance: VHS—Villasur de Herreros and A3 –at the 3rd kilo-

meter of the BU-820 road (Fig 1a and 1b). The added number following the general denomina-

tion of the variety indicates the number of the selected cobble (VSH4 and A35). These varieties

were selected in an attempt of constructing a large reference collection of use-wear produced

on numerous varieties of quartzite coming from Northern Spain and Southern France [41, 43,

52, 53]. This reference collection was aimed at interpreting the archaeological assemblages of

Gran Dolina-TD10 [48, 54, 55] and Payre [56]. Fourteen experimental unretouched flakes

were knapped and each one was used on a single worked material (Table 1). Two experiments

were carried out in a second step at the IPHES’s lab (samples A35-3 and 7) and subsequently

sent to Bradford for data acquisition. Unfortunately, these two samples were damaged after

mailing them and therefore they could not be scanned.

Five different worked materials commonly associated with early prehistoric tasks—wood,

bone, antler, fresh and dry skin, and cane were worked for an hour. The worked materials

comprised a type of softwood, Aleppo pine (Pinus halepensis), a red deer antler (Cervus ela-
phus), long bovid bones (Bos taurus) and stems of giant cane (Arundo donax). All materials

were worked in a fresh state, except for the dry skin (Cervus elaphus). The antler was soaked

for 48 hours in water before the experiment.

The movement was limited to whittling/scraping in order to control variables that may

impact polish development (Fig 1c and 1d). Both are transversal movements where the used

edge is held at an approximately right angle to the direction of use [17]. In whittling actions,

the working angle is very low (in our cases 40˚ < α< 20˚) and the movement is a pushing

away motion whereas for scraping ones, the working angle is always higher (in our cases 40˚ >

α>70˚) and the direction of the movement is a- pulling toward motion All the experiments

were performed by one of the authors (A.P.), in order to maintain all the variables involved

(e.g. the amount of exerted pressure, relative velocity, approximate number of strokes per

min) as constant as possible. Single strokes were not counted, since the aim of the experiments

was not to control polish development on different materials produced by the same number of

strokes.

Knowing that polish formation generally takes longer to form on coarse-grained rocks than

on fine-grained ones [22, 41, 57, 58], the length of the experiments was prolonged (60 min) to

assure the formation of relatively large and well-developed polished areas. Two control sam-

ples (VSH4-7 and A35-5), one per variety, were left unused.

Cleaning protocol

Soon after the conclusion of the experiments, all the used flakes were cleaned in order to

remove residues of the contact materials. They were initially soaked in water and then sub-

jected to several ultrasonic baths: 1. Bath in hydrogen peroxide (H2O2, 10 Vol) for 15min. This

was done to remove organic matter; 2. Bath in a neutral detergent solution (1Derquim-
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LM02) for 15min to remove remnants of organic matter; 3. Bath in acetone (technical grade)

for 5 min to remove handling residues. At this point, worn surfaces were documented with

scanning electron microscopy at the Rovira i Virgili University (Tarragona) (JEOL JSM-6400;

FEI quanta 600 SEM) before acquiring 3D data [36].

Because some months passed between the two analyses and all lithics were either manually

transported or mailed to the laboratory at Bradford, a second cleaning procedure was applied.

Fig 1. The experimental design. a) VSH4-6; b) A35-2; c) VSH4-6 used to scrape fresh deer skin; d) A35-2 used to whittle a fresh cane stem; e)

One of the VSH variety samples under the confocal microscope during data acquisition.

https://doi.org/10.1371/journal.pone.0243295.g001

Table 1. The fourteen experimental samples presented in this study, sorted into the two different varieties of quartzite: VSH and A3. The worked materials included

in the experiments are listed as well as the type of action (all unidirectional movements).

N. Reference Worked material type and state Action Analyzed herein

1 VSH4-1 Soaked antler Whittling Y

2 VSH4-2 Fresh cane Whittling Y

3 VSH4-3 Dry skin Scraping Y

4 VSH4-4 Fresh wood Whittling Y

5 VSH4-5 Fresh bone Whittling Y

6 VSH4-6 Fresh skin Scraping Y

7 VSH4-7 Unused - Y

8 A35-1 Soaked antler Whittling Y

9 A35-2 Fresh cane Whittling Y

10 A35-3 Dry skin Scraping Y

11 A35-4 Fresh wood Whittling Y

12 A35-5 Unused - Y

13 A35-6 Fresh skin Scraping N

14 A35-7 Fresh bone Whittling N

https://doi.org/10.1371/journal.pone.0243295.t001
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Immediately before analysis with LSCM at the University of Bradford, the flakes were

soaked in a 10% NaOH (sodium hydroxide) solution for 10 min to eliminate all possible resi-

dues deriving either from accidental handling since the SEM observations or from the plastic

bags where they were stored until analysis. A last bath in water for 10 min was necessary to

eliminate all residues of the sodium hydroxide solution. Surfaces of interest were additionally

rinsed with chromatography grade ethanol to remove dust particles and dried immediately

before placing them under the confocal microscope.

3D data acquisition

Scans were acquired on well-developed polished areas. Randomly selected areas were mea-

sured on the unused samples using the same settings.

The microscope used was an Olympus LEXT OLS4000 laser scanning confocal microscope

(LSCM), located at the School of Life Sciences, at the University of Bradford (Fig 1e). Scans

were acquired using the 50x objective at 1x zoom (MPLAPONLEXT50-1x; NA = 0.95) with a

field of view of 256 x 256 μm and a frame size of 1024 x 1024 pixels. The laser source has a

wavelength of 405 nm. The step size was set to 10 nm.

The resulting outputs were �.lext files including height map (topography), maximum inten-

sity map and brightfield images as layers (S1a–S1c Fig).

3D surface texture analysis

Overview. Each acquired height map (topography), commonly called scan, was processed

in batch using templates. These templates applied different operations and filters in order to

make the calculation of 3D surface texture parameters possible.

Because the polished areas were smaller than the field of view, we extracted two 50 x 50 μm

sub-areas from each scan; this step was the only manual step in the whole workflow. We then

compensated for (local) tilt of the sub-areas by leveling. Because we focus on the texture, we

removed the noise and the form (see section “Workflow and terminology” below for defini-

tions). We then cleaned the sub-areas from defects by removing outliers and thresholding.

Removing these defects results in missing data (non-measured points), which prevent the cal-

culation of some parameters. These non-measured points were therefore filled before the cal-

culation of the 3D surface texture parameters.

Parameters from five types of analysis were calculated: ISO 25178–2 [59], scale-sensitive

fractal analysis [60, 61], furrow analysis, texture isotropy and texture direction.

Technical details. Data analyses were conducted using ConfoMap (version 7.4.8633) (a

derivative of MountainsMap Imaging Topography developed by Digital Surf, Besançon,

France). Two templates were created, following previous publications [10, 62].

A first template was created:

1. For each scan (n = 43), two 50 x 50 μm sub-areas were extracted (Table 2);

2. For each sub-area (n = 86) the topography layer was extracted and saved as SUR files;

The areas of interest were manually extracted from well-polished surfaces following past

published works [10, 32] (S1d–S1g and S2 Figs);

A second template was created to process all extracted 3D sub-areas (Table 2). The analysis

workflow was as follows (S1h Fig):

1. Level: LS plane by subtraction;

2. Remove form: polynomial degree 3;
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3. Remove outliers: maximum slope allowed 80˚, soft method, remove measurement noise,

and non-measured points not filled-in;

4. Threshold: 0.1% to 99.9%, reference = height from mean plane, set as non-measured points

5. Robust Gaussian filter to remove the noise: 2.5 μm, manage end effects, keep “waviness”;

6. Fill in non-measured points: replace by a smooth shape calculated from the neighbours (S1i

and S1j Fig);

7. Calculate ISO 25178–2 [59] + SSFA [60, 61] + furrow analysis + texture isotropy + texture

direction parameters.

All ConfoMap templates for each surface (sub-area) in MNT and PDF formats (including

all original and processed surfaces, as well as all results) are freely available on Zenodo (https://

doi.org/10.5281/zenodo.3979116).

We identified issues with some sub-areas (Table 3), which are ultimately due to the proper-

ties of quartzite. During scanning, care was taken so that the whole scanned surface is as hori-

zontal as possible. However, the sub-areas represent only a small portion of these surfaces, and

some sub-areas were therefore acquired with a strong local tilt. Together with the large topo-

graphic variations typical for quartzite, this large tilt can lead to the erroneous measurement of

Table 2. Number of scans per each sample and of the related extracted sub-areas.

Sample reference Number of scans Extracted sub-areas– 50x50 μm

VSH4-1 4 8

VSH4-2 5 10

VSH4-3 3 6

VSH4-4 2 4

VSH4-5 5 10

VSH4-6 5 10

VSH4-7 1 2

A3-1 2 4

A3-2 3 6

A3-4 3 6

A3-5 3 6

A3-6 3 6

TOT = 39 TOT = 78

https://doi.org/10.1371/journal.pone.0243295.t002

Table 3. Potientially problematic sub-areas.

Sample reference Point number Area number

VSH4-1 2 2

VSH4-1 3b 1

VSH4-2 3a 1

VSH4-2 3b 2

VSH4-4 1b 2

VSH4-5 1b 1

VSH4-5 1c 1

VSH4-5 1c 2

TOT = 8

https://doi.org/10.1371/journal.pone.0243295.t003
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some points, usually in the deepest areas. These points were later removed by the Remove outli-
ers operator, leaving substantial areas of non-measured points to be later filled in by the Fill in
non-measured points operator. The result is that these usually deep parts of the problematic

sub-areas were completely filled in, artificially increasing the values of the height and volume

parameters.

Additionally, some sub-areas were identified as potentially problematic because they go

over the edges of quartz grains. At the edges, the topography can be very steep and this too can

result in the erroneous measurement of some points, ultimately artificially increasing the val-

ues of the height and volume parameters.

Because these issues cannot be completely avoided on quartzite, we decided to run the anal-

yses described below with and without these potentially problematic sub-areas.

Workflow and terminology. In the present study, we developed an analysis workflow by

combining and adapting approaches of previous studies. We tried to follow Evans et al. [20]

because the data were acquired on the same LSCM, but we argue that extra processing steps

were necessary. In particular, we incorporated some of the steps of Arman et al. [62], who

developed a template to reduce inter-microscope variability in dental microwear texture analy-

sis. Our analyzed surfaces (sub-areas) are 50 x 50 μm, as in Evans et al. [20]. The optical lateral

resolution of the 50x/0.95 objective is high (see Supplementary Material 1 of [38] but the digital

resolution (= pixel size) is too low (0.25 μm) to allow smaller areas to be analyzed. On the

other hand, larger areas do not fit on the quartz grains of these quartzite varieties. We, there-

fore, extracted two sub-areas per scan. Note, however, that Ramadarshan et al. [63] showed

that, for dental microwear texture analysis, one large area is better for discrimination than sev-

eral smaller areas covering the same total area.

Our template first leveled and removed the form following Arman et al. [62], although we

used a polynomial of degree 3, which seemed more appropriate for our data. Then, still follow-

ing Arman et al. [62], we removed outliers and thresholded the surfaces to remove aberrant

points (spikes due to measurement errors). Since our digital resolution is already low (pixel

size = 0.25 μm), there was no need to resample as recommended by Arman et al. [62], who

resampled to 0.2 μm. This might change when acquiring with other confocal microscopes fea-

turing higher digital resolutions, if one wants to compare data. We followed Evans et al. [20]

for the application of the robust Gaussian filter. This filter, with a cut-off at 2.5 μm, is meant to

remove the measurement noise from the surface [following 20, 62] and ISO 4287/4288 [64,

65].

However, we kept both the roughness and the waviness since it is not clear yet which scale

is the most relevant and since the SSFA is applied across the scales. The final step of our work-

flow was to fill-in non-measured points following Arman et al. [62]. Indeed, this is necessary

to calculate the SSFA and some ISO parameters.

A note on terminology is warranted here to avoid confusion. Following Leach [66], the

term surface topography describes the overall surface structure, while surface form is defined as

the shape of the sampled area, and surface texture is what remains when the form is removed

from the topography during analysis. In this sense, texture includes both roughness and wavi-
ness. The limits between these terms are based on pre-defined wavelength cut-offs. These defi-

nitions differ from those of Evans et al. [20], where texture includes only the roughness

component and where topography and waviness are synonyms. To add to the confusion, the

terms roughness and waviness can also be independently related to the application of a filter.

For the sake of the argument, let us first call the roughness and waviness mentioned above

“absolute roughness/waviness”.

When applying a filter in MountainsMap 7 using the "standard filter" operator, the surface

containing the wavelengths smaller than the cut-off is called “roughness”, while the surface
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containing the wavelengths larger than the cut-off is called “waviness”, irrespective of the abso-

lute wavelength. Let us refer to these as “relative roughness/waviness”. To illustrate this, the

cut-off at 2.5 μm for our robust Gaussian filter is situated at the limit between (absolute)

instrument noise and texture (also called micro- or nano-roughness) (i.e. absolute roughness

+ waviness, the form having been removed before). Because we wanted to remove the noise,

we excluded wavelengths smaller than the cut-off and kept the wavelengths larger than the cut-

off. These larger wavelengths are referred to as “waviness” in the software (i.e. relative wavi-

ness), which is why the step #6 of the history of operators in our templates (see S1h Fig and

"processing-quartzite-final" templates at https://doi.org/10.5281/zenodo.3979116) shows “wav-

iness”, even though it actually includes both absolute roughness and waviness.

MountainsMap 8 changed its terminology to avoid this confusion. There is now a special

operator called “S-filter (λs)” that “remove[s] the micro-roughness”, while the “metrological

filter” is used to “separate roughness [. . .] and waviness [. . .] components” (tooltips for these

operators in MountainsMap 8).

Clearly, a lot remains to be done on defining an appropriate analysis workflow for lithics in

general.

Statistical analysis

Preparation of the data and all descriptive analyses (summary statistics and plots) were per-

formed in the open-source software R (v. 3.6.3; [67]) through RStudio (v. 1.2.5042; [68]) for

Microsoft Windows 10. The following packages were used: chron (v. 2.3–55; [69]), doBy (v.

4.6.5; [70]), ggConvexHull (v. 0.1.0; [71]), ggplot2 (v. 3.3.0; [72]), openxlsx (v. 4.1.4; [73]), and

R.utils (v. 2.9.2; [74]). Scripts, results and reports of the analyses in HTML format, created

with knitr (v. 1.28; [75–77]) and rmarkdown (v. 2.1; [78]; v. 2.0; [79]), are freely available on

Zenodo (https://doi.org/10.5281/zenodo.3979139).

Datasets. As explained above, the same analysis was run on two datasets: one containing

the data from all processed sub-areas (“full dataset” hereafter, n = 78), and the second exclud-

ing the data from the potentially problematic sub-areas (“restricted dataset” hereafter, n = 70;

Table 3). The parameters of the analyses were adjusted as required by the data (see below and

supplementary data on Zenodo; https://doi.org/10.5281/zenodo.4249219).

Handling missing data. Some parameters could not be calculated on all surfaces leading

to missing values (see table "processing-quartzite-final.xlsx" on Zenodo (https://doi.org/10.

5281/zenodo.3979139). The machine learning models we applied cannot deal with missing

input, so cases where parameters values could not be calculated (missing data) were resolved

as follows.

In the case that there was only one value missing for a given group, i.e. combination of

quartzite type and worked material, the missing value was filled by the median of the other val-

ues in the group; otherwise the parameter was discarded for further analysis. This way, the

parameters Asfc and Smfc (full dataset) and HAsfc9 (both datasets) were made useable for fur-

ther analysis, while the parameters HAsfc81, Periodicity, Period and Direction.of.period had to

be discarded for both datasets. After the data preprocessing, 33 parameters and the quartzite

type were available for every scan on both datasets.

Machine learning: Data split, feature selection and classification. Overview. As dis-

cussed above, some parameters could not be calculated on some surfaces, leading to missing

data. The machine learning techniques applied cannot deal with missing data, so we excluded

these parameters from subsequent analyses. Among all possible acquired data that one could

feed to the machine learning models, we selected only those with the highest predictive power

based on the amount of information they provide on the worked materials. Even though all
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data could potentially provide relevant information, including information with low predictive

power typically lowers the performance of a machine learning model. Using these meaningful

independent, input data (i.e. certain parameters and possibly the quartzite type) and their cor-

responding dependent, output data (i.e. type of worked material), we now try to find a general-

izable mapping between those input and output data. This is achieved by repeatedly adjusting

numerical coefficients ("learning") of two types of certain mathematical formulas ("machines")

that have been proven suitable in similar tasks: decision-tree classifiers and support-vector

machines. The dataset is split into two: a training set used to define the mapping between

input and output data, and a test set used to evaluate the accuracy and ability to perform on

unseen input data. The results allow us to calculate the rate of correct classification for each

worked material and for each method, given the chosen parameters and possibly the quartzite

type.

Technical details. In the following, variables used to predict the worked material for each

scan will be referred to as features and the type of worked material as the corresponding label.

All subsequent analytical steps were conducted once using the 33 parameters and the quartzite

type as features, and once using the 33 parameters without the quartzite type as a feature. The

data was split into a test (33% of data, n = 26 for the full dataset and n = 24 for the restricted

dataset) and a training set (remaining data, n = 52 for the full dataset and n = 46 for the

restricted dataset) in a stratified fashion, to ensure roughly equal presence of quartzite types

and labels in both test and training data.

First, the predictive power of each feature is measured by the mutual information between

the features and the labels. Mutual information [80] is a measure from the field of information

theory and thus does not rely on the specific models used afterwards. Mutual information is a

measure similar to correlation between two variables. A high value for one variable indicates

that it explains well the second variable. In our case, the second variable is the worked material.

So we chose variables with high mutual information because they tell us a lot about the worked

materials in the dataset. In other words, the selected variables are expected to have a high pre-

dictive power. The subset of features that distinctly show higher mutual information than the

rest of the features will be referred to as the selected features in the following text. As a test on

the predictive power of the selected features and due to the general expectation that irrelevant

features usually degrade the performance of a machine learning algorithm, the subsequent

analyses were performed once with the full features set and once on the selected features.

Thus, there were in total four test and training sets for each of the two datasets (full and

restricted): using all 33 features or selected features together with quartzite type, and using all

33 features or selected features without considering quartzite type. When the quartzite type

was not considered, a set of three features were selected: Mean depth of furrows, Vmc (core
material volume), Mean density of furrows (Fig 2). The same three features were selected when

quartzite type was additionally considered a feature (S3 Fig).

Two common classification models were used: decision-tree classifiers with entropy-based

splitting and support-vector machines (hereafter SVM) with different kernel functions. Both

algorithms are based on the same principle. Each sample is described as a point in a (possibly)

high-dimensional space with the values of each feature as its coordinates (S4 Fig). Separation

of classes is achieved by drawing boundaries around regions of points with the same label in

that so-called feature space. Decision-tree classifiers are restricted to boundaries orthogonal to

a feature’s axis, i.e. setting a threshold on a single feature at a time. Support-vector machines,

however, are allowed to use more flexible, i.e. non-orthogonal and curved, boundary shapes.

The respective hyperparameters, i.e. the maximum depth for the decision-trees and the ker-

nel functions, the kernel coefficients, and the regularization parameters for the SVM, were

optimized by 3-fold cross-validation on the training data using balanced accuracy as a
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performance measure. The balanced accuracy measures the fraction of correctly predicted

instances, but accounts for imbalanced frequencies of classes. Thus, the classification is forced

to work well on all classes instead of neglecting less frequent classes and concentrating on the

most frequent ones [81].

The final models were trained on the full respective training data using the most promising

hyperparameters from the above optimization procedure. Final performance evaluation was

done on the test sets by measuring the balanced accuracy and computing normalized confu-

sion matrices, i.e. the fraction of cases in which every pair of true label (i.e. actual worked

material) and corresponding predicted label (i.e. worked material identified by the model)

occurred.

The whole handling of missing data and the machine learning part were conducted using

the following free and open-source software packages: pandas in version 0.25.0 [82], matplotlib

in version 3.1.0 [83], numpy in version 1.17.0 [84] scikit-learn in version 0.22.2.post1 [85] and

seaborn in version 0.9.0 [86] under the python programming language in version 3.7.3.

The full code and output are available on Zenodo (https://doi.org/10.5281/zenodo.

4249219).

Results

Two types of models were tested to process the raw data obtained with the confocal scans on

the experimental sample: a decision tree and a support-vector machine (SVM).

Fig 2. Mutual information on training set without type.

https://doi.org/10.1371/journal.pone.0243295.g002
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Dataset

The analyses on the two datasets (full and restricted) produce the same kind of results, but are

very different in details, i.e. which parameters are selected by the mutual information criterion,

the rates of classification for each worked material, etc. All results are available on Zenodo

(https://doi.org/10.5281/zenodo.4249219) but only the results on the full dataset are presented

here for two reasons. (1) The general classification rates are higher on the full dataset. This

implies that the full dataset holds more potential for future studies. (2) Quartzite is a difficult

material to scan with confocal microscopes and process for 3D surface texture analysis. It is

therefore likely that other studies will stumble on the same difficulties. In other words, we

argue that the potentially problematic sub-areas we identified do represent quartzite surfaces,

with all their issues. Addressing these issues seems to be a fruitful avenue for future develop-

ments of the quantitative approach in microwear analysis.

Selected features

All parameters (i.e. features) were tested both when the quartzite “type” (i.e., the rock variety,

either VHS or A3) was considered as a feature and when it was excluded. The performance in

classification rate is comparable when using either all features or the three selected features,

whether quartzite type was considered as a feature or not (S5 Fig). Therefore, the selected fea-

tures can be used without losing performance compared to using the full feature set, with the

added benefit of a higher chance to work well on unseen data.

The three selected features, beside "type", are the ISO 25178–2 parameter core material vol-

ume (Vmc) and the parameters mean depth (Mean depth of furrows) and density (Mean den-
sity of furrows) of furrows. Vmc is the volume below the surface (i.e. material volume) when

the highest 10% and lowest 20% of the points (i.e. core) are excluded [59, 87]. Furrows are

micro-valleys. The furrow analysis identifies the areas where points are lower than the neigh-

boring points on a given surface (Digital Surf, pers. comm. 2020). The mean density and depth

of the identified furrows is then calculated.

Quartzite type

The overall classification rates are moderate for the selected features (the highest balanced

accuracy score on the test set is found for the decision tree with type = 0.47), which is promis-

ing considering the small dataset and the large variation in classification rates between the dif-

ferent materials. For the decision tree, the classification rate is higher when the “type” is not

taken into account in the analysis (balanced accuracy scores on the test set = 0.47 vs. 0.30). The

normalized confusion matrices (with vs. without type) on the test set show the same trends

(Fig 3). The only worked material that is better recognized when the “type” is considered is

wood, while all other worked materials are equally or less correctly recognized (Fig 3).

This means that for the decision tree, the most general model has a higher success, being

promising for future studies including larger datasets. This is not true for the SVM models.

SVM performs much better when “type” is considered (balanced accuracy scores on the test

set = 0.44 vs. 0.06), allowing, for example, discerning perfectly between fresh and dry hide (S6

Fig). When “type” is not included in this model, results are quite dispersive and most of the

materials are not correctly discriminated (S7–S9 Figs).

Thus, it is reasonable to use the tree approach because of its better interpretability. Results

for the decision tree on the test set with selected features not including type are described

below. The tree itself is shown in Fig 4. The results for the decision tree including the type are

found on Zenodo (https://doi.org/10.5281/zenodo.4249219), with the corresponding tree

given in S10 Fig.
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Fig 3. Normalized confusion matrices on the test set, both including (a) and discarding (b) the feature “type”.

Non-normalized confusion matrices are freely available on Zenodo.

https://doi.org/10.1371/journal.pone.0243295.g003
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Decision tree on test set, selected features, excluding type

Looking at the decision tree itself, each box has five attributes, one per line: (1) the parameter/

feature, i.e. the quantity in question and the corresponding inequality; (2) the entropy of the

splitting, 0 indicating pure groups; (3) the number of samples in the group, defined as the

number of extracted sub-areas from the acquired 3D scans; (4) “value” is the list of samples per

class (material category) number; and (5) “class” refers to the material category with most

members in the sample. The class numbers correspond to the material categories in this order:

0 = Antler, 1 = Bone, 2 = Cane, 3 = Dry hide, 4 = Fresh hide, 5 = Unused, 6 = Wood.

On the test set, we see that bone and hide are perfectly classified (100%), although fresh and

dry hide cannot be discriminated from one another (all are classified as fresh hide). Wood and

antler, taken together, can be reliably discriminated from other materials but are not well dis-

criminated from each other. Wood is correctly identified in the 67% of the cases, while it is

misidentified as antler in the other cases. Antler is classified as either bone (20%) or wood

(40%), and only in the 40% of the cases it is correctly identified. The unused samples cannot be

discriminated from antler or wood (33% classification in each category). Cane is as likely to be

classified as both unused and cane (40% each). It can also be often misclassified as antler

(20%).

Discussion

Quantifying polish on quartzite

The use of confocal microscopy in use-wear analysis is relatively new and therefore, largerly

unexplored [6]. For example, it has not been systematically employed in the study of coarse-

grained rocks, such as quartzite [22, 23]. The potential to image use-wear on this type of rock

has recently been shown [35, 36, 41]. The systematic documentation of the areas to be mea-

sured with the optical microscope mounted on the same confocal microscope used to acquire

3D surfaces allows analysts to carefully select the areas of interest. Moreover, this allows pub-

lishing the visual appearance of the measured surfaces, therefore contributing to transparency

and data comparison (S2 Fig).

Attempts to identify the worked material based on polished surfaces have been already per-

formed on chert [7, 10, 20, 32, 39]. The resulting 3D surfaces were statistically sorted into dif-

ferent categories applying different statistical tests and the results generally pointed to a

straightforward recognition of the worked materials. For example, the use of the roughness

parameter Rq (root mean square roughness according to ASME B46.1 [2002], similar to the

Fig 4. Decision-tree model without considering the quartzite variety (type).

https://doi.org/10.1371/journal.pone.0243295.g004
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eponymous parameter in the ISO 4287 norm [64]) showed a remarkable capacity to discrimi-

nate polished areas on English flint used to work different worked materials (antler, hide,

wood) [10: Fig 5]. Ibáñez et al. [32, 40] enlarged the range of worked materials, adding cereals

and cane. Based on ISO 25178 parameters, discrimination of wild from domestic cereals

worked better when large surfaces (200x200 μm) are considered [40], while analysis of smaller

surfaces (50x50 μm) was insufficient to discriminate them [32]. In the latter study, the authors

applied a statistical approach based on a decision tree model, similar to the present analysis.

With this approach, they were able to correctly identify the worked material in 67% of the

cases [32].

The only available studies on quantifying quartzite worn surfaces comprise relatively lim-

ited sample sizes (four samples, 12 measurements per sample; 2 sub-types of the same variety,

i.e. Mistassini Quartzite) and only one contact material (hide) [22, 23]. Scale-sensitive fractal

analysis (SSFA) was applied to discriminate between used and unused areas as well as between

worn areas on tools used to work either fresh or dry hide. One algorithm that measured the

relative area (RelA or Srel) was employed in the first study [22], while a different parameter,

Asfc (area-scale fractal complexity, which is based on Srel) was tested in the most recent one

[23]. Both parameters proved valid to discern used surfaces as well as to discriminate the two

states of the one worked material included (fresh vs. dry). Moreover, the different grain-sizes

of the two sub-types of quartzite affected the discrimination degree of the analyses at different

scales, demonstrating that the degree of coarseness in coarse-grained materials has to be taken

into account when quantifying irregular lithic surfaces. This probably applies to other lithic

raw materials too.

In this study, we evaluated the potential of confocal microscopy to discern contact materials

based on 3D measurements of polished areas formed on quartzite surfaces. Two different

quartzite varieties were included for a total of twelve experimental flakes. Different surface

parameters (n = 37: ISO 25178–2, SSFA, furrow analysis, and texture isotropy and direction

analyses) were calculated to characterize worn surfaces of tools used to work different animal

and vegetal materials (antler, bone, cane, skin, wood). Eight analyzed surfaces were identified

as potentially problematic (Table 3). The issues stem mainly from the very rough topography

of quartzite and its coarse-grained structure (see below), making this material particularly dif-

ficult to scan and analyze without artifacts. The statistical analysis was run on the full dataset

and on the dataset excluding these surfaces. While the general results are comparable, the

details vary greatly between the two analyses. All results are available on Zenodo (https://doi.

org/10.5281/zenodo.4249219) but we have argued that the eight potentially problematic sur-

faces are representative of the difficulties of scanning and analyzing quartzite. Therefore, only

the results for the full dataset are discussed below.

For the analysis, a sub-set of parameters with a high predictive power (Vmc, Mean depth of
furrows, and Mean density of furrows) was selected and used to compare the same experimental

polished surfaces. The experimental sample was divided into a training and a test set in order

to check the validity of the selected parameters to identify the worked material through two

classification models. Two different classifiers, a decision tree and a support-vector machine

(SVM), were selected in order to assign every surface texture to a worked material based on a

selected number of parameters (i.e. features). The decision tree was of great interest because of

its ease in interpretation and accessibility without the need to run codes. The SVM was chosen

as a more capable algorithm to check if the results are limited by the capacity of the decision-

tree models, which is not the case here, as shown by the similar performance with the decision

tree model. Due to the limited number of samples, the predictive performance is expected to

profit most strongly from further data points. Other machine learning algorithms that rely
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Fig 5. Well-developed polishes originated from contact with different materials and unused surfaces. a) LSM-maximum

intensity image of an unused surface. Note the smoothness of the bigger quartz crystals; b) The two selected areas where LSCM

measurements were performed on the same unused area; c) SEM image of a polished area after contact with cane; d) SEM image of

a polished area after contact with antler; e) SEM image of a polished area after contact with bone; f) SEM image of a polished area

after contact with wood.

https://doi.org/10.1371/journal.pone.0243295.g005
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even further on large training data, such as deep neural networks, are considered inappropriate

for the analysis at hand, despite a high potential performance.

Results of the measurements performed on the surfaces of the experimental quartzite flakes

presented in this preliminary study are very promising and can be used to develop further

research. Considering the limited dataset (twelve flakes, 86 sub-areas), results provided by the

decision tree classifier excluding quartzite type as a feature allowed a 47% rate of discrimina-

tion of polishes originated from contact with five different materials. The discrimination of

bone and hide polishes shows 100% of correct identifications, although the identification of

the state of the hide (fresh vs. dry) was not successful, as observed in other studies on chert

[32]. This result contrasts with what was observed on quartzite samples by Stemp et al. [22,

23], as they were able to discriminate the state of the worked material. Wood and antler show

partially overlapping values; therefore, they are sometimes grouped together (40% of antler

misidentified as wood and 33% of wood misidentified as antler). In 20% of the cases, antler is

incorrectly classified as bone. Considering that antler and bone are also difficult to distinguish

in conventional use-wear studies [17, 18, 88, 89], it can be that the marked similarities of worn

surfaces resulting from contact with these materials are due to their very similar material prop-

erties [90].

Polish on tools used to work cane appears problematic, as only 40% of the cases are cor-

rectly classified. Cane polish has also been incorrectly assigned to unused and antler (40% and

20% respectively). Unused surfaces are also complicated because they are equally assigned to

antler, unused or wood (each 33%). This seems to be an issue related to the quartzite varieties

included in this study, as unused English flints could be discriminated from used samples [10].

Polish formation on quartzite and quantification

Quartzite and chert are both composed mainly of silica (> 90–95%). The main microscopic

difference observed between the two big rock categories is noticeably the relative grain size

[16, 91]. Quartz crystals in quartzite typically range from 30 to 150 μm, while in chert they

measure only 3 to 10 μm. This significantly affects the detection of wear features, especially of

polish. Generally unused chert surfaces under a microscope are seen as single silica grains

packed together, forming a relatively homogeneous surface. The abrasion-driven polishing

process on chert, as well as on other fine-grained raw materials, is visually perceived as a tran-

sition from a relatively rougher surface to a significantly smoother area. Due to the fact that

the original surfaces are much more regular, therefore flatter, on chert than on coarse-grained

materials, large polished areas are visually perceived at fine scales as very flat and smooth

under reflected light microscopy, which makes them generally very bright [17, 18]. The differ-

ence in micro-topography between raw materials explains also why polish forms relatively

faster on fine-grained materials than on coarse-grained ones. The highest parts of the topogra-

phy (i.e. peaks) are always abraded first, so polish starts to develop there. Yet, differences in

height between valleys and hills on chert are so negligible, probably due to the small granulo-

metry, that polish can propagate quickly across the surface. As well as being larger, typical

quartz grains in quartzite (and other coarse grained raw material) can have different orienta-

tions, creating further variation in surface relief compared to chert. This variation in orienta-

tion also affects their visualization with optical microscopy, with SEM allowing for easier

distinguishment of the grain borders. Such borders can be obliterated in advanced stages of

polish formation [41, 43].

This is the main reason why, no matter the worked material, polish is generally limited to

the highest topographical parts (i.e. hills) on quartzite and rarely affects the valleys in between

[58]: since the height differences between valleys and hills are greater and hills are much
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sparser on quartzite than on chert (due to grain size and orientation), polish cannot propagate

on quartzite as much as it does on fine-grained materials (during comparatively similar time

spans).

This can have major implications on the acquisition process with confocal microscopy,

affecting mainly the general size of the acquired surfaces [22, 23, 36]. In other words, the fact

that well-developed polish on chert can cover areas as big as ca. 200x200 μm [32], and some-

times a lot larger, has important effects on the selection of sub-areas to be analyzed with confo-

cal microscopy, and therefore on wear quantification itself.

When confocal acquisitions are performed on quartzite, relatively small surface areas need

to be considered (50x50 μm) if one aims at sampling only polished surfaces, thereby ignoring

the unpolished ones. Such surfaces generally coincide with the interior of quartz grains, where

polish is easily detectable (Fig 5b and S2 Fig). As mentioned earlier, even such small areas can

cover more than single grains and can be difficult to scan and analyze.

When unused samples are analyzed, same sized scans are acquired on single quartz grains,

which appear very smooth (Fig 5a and 5b and S11a Fig) and texturally similar to polished

grains (Fig 5c–5f). The low Vmc values and the low density of furrows confirms this (S11c

Fig). Only when polish is particularly well-developed, the borders between grains start disap-

pearing, forming more homogeneous surfaces (Fig 6a and 6e). The fact that the visual texture

of unused and polished crystals (only when smooth polish forms) is visually alike (Figs 5 and

6) could help explain why in this study it was hard to discriminate unused samples (Fig 5a)

from antler and wood polishes (Figs 5d, 5f, 6c, 6d, 7i–7l and 7q–7t).

When the three parameters selected in this study are plotted one against the other in pairs

(S12 Fig), considerable overlaps among various worked materials are evident. Nevertheless,

some worked materials occupy non-overlapping spaces in the plots, and this mirrors the

results of the decision tree. The decision tree classified surfaces with high Vmc and very low

density of furrows as wood-working (Fig 7l; Table 4), while surfaces with low density of fur-

rows were classified as having worked antler (Fig 7t); remember, however, that some of these

surfaces were wrongly classified, explaining the large overlap on the bivariate plot (S12b Fig).

For the same reason, the extremely smooth cane polish (Figs 5c, 6e and 7m–7o; Table 4), char-

acterized by lots of shallow furrows (Fig 7p), has been wrongly classified as either unused or

antler in some instances. Conversely, bone proved to bear clear indicators picked up by the

textural parameters used in this study that allowed a perfect classification, despite the small

dataset, based on the numerous deep furrows (Fig 7d), although not as extreme as hide textures

(Fig 7h and S12a Fig). This could be related to the fact that bone polish (Fig 7a and 7c), in addi-

tion to being extremely smooth, regularly displays other types of use-wear, such as striations

and pits (Figs 5e and 6a) [17]. These, and other so far unknown features, could explain the

high degree of classifications for this worked material type.

A possible solution to overcome these shortcomings could be analyzing larger areas includ-

ing more quartz grains (e.g. ca. 200x200 μm) (Fig 6), as done for chert in Ibáñez et al. [32].

This would first allow better characterization of the unused surfaces on quartzite (Fig 6f) by

quantifying textural topography including the borders between grains. In fact, considering

larger areas could potentially overcome the issue that emerged in this study when unused sur-

faces were mistaken by used ones (antler, wood). Along with helping in solving this problem,

the simplistic dichotomy of smooth vs. rough polished surfaces generally employed in conven-

tional studies to describe visual polish appearance (Fig 6a and 6b) could be replaced by quanti-

tative descriptors. However, it should be reminded that particularly steep surfaces are difficult

to scan and analyze. When such surfaces are being scanned specific adjustments to the acquisi-

tion and analysis settings might be required.
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It is possible that applying the same parameters on larger acquired 3D surfaces could take

additional features into consideration, such as variability of polished hills and valleys (Fig 6c),

state of the borders in between the grains (Fig 6a–6e), undulation traits (Fig 6d), and pits (Fig

6a and 6e). All these visual features are somehow missed when smaller surfaces are acquired

and analyzed. Additionally, polish is characteristic of more advanced abrasion processes, but

non-polished areas do not have to be necessarily in an unused state. These areas might have

been in contact with the worked material for shorter amounts of time but might still have a

texture different from that of truly unused areas. By considering all these aspects, more accu-

rate probability statements for quartzite could be provided.

Another way to better understand the polish formation on quartzite and the gradual tex-

tural changes (from smooth original quartz grains to “smoother” polished surfaces) could be

to set up controlled sequential experiments [92, 93] integrated in quantitative wear studies.

One interesting development could be integrating the sequential observations with quantifica-

tion of the same surface area throughout time by using the original coordinate system pre-

sented in Calandra et al. [94].

The fact that the raw material type seems not to have a major influence on our results [as

observed for chert by 32] is a very useful insight for planning future experiments. Nonetheless,

we think that more varieties of quartzite should be tested in the future to improve the classifi-

cation power of the model tested in this study. This data is apparently in contrast with what

was observed by Stemp et al. [22, 23] on the Mistassini variety, where significant variability

Fig 6. Close-ups of well-developed polished areas (FOV�200μm). a) SEM image of a polished area after contact with bone; b) SEM image of a

polished area after contact with dry skin; c) SEM image of a polished area after contact with wood; d) SEM image of a polished area after contact with

antler; e) SEM image of a polished area after contact with cane; f) LSM-maximum intensity image of an unused surface.

https://doi.org/10.1371/journal.pone.0243295.g006
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Fig 7. Bright field images (left), topographies (middle-left), SEM images (middle-right) and schematic representations (right) of the

textures characteristic (based on the decision tree; Fig 4) of the different worked materials. For simplicity, the schemes show X-Z

profiles, in black, with furrows superimposed in red. Vmc is calculated as the volume below the surface (= area below the XZ profile) and

between the dashed lines. Note that the scales are not preserved and that the values are to be considered only in relative terms among the

schemes. When a range is given for a parameter (e.g. "-! +" for Vmc on antler), it means that the values can vary within the given range.

When the range include the extreme values (e.g. "-! +" for Vmc), it means that this parameter is not characteristic for this worked

material. See Table 4 for the values of the selected parameters for each surface.

https://doi.org/10.1371/journal.pone.0243295.g007
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was documented between the two types. Moreover, discrimination of used vs. unused surfaces

on this quartzite variety as well as between samples used to scrape dry vs. fresh hide, were

understood to be highly dependent on the scale of analysis, mainly due to different granulome-

try. The noticeable difference between Stemp et al. study and ours is the objective used to

acquire 3D data and the parameters used to discriminate the surfaces. Stemp et al. used a 20x

(NA = 0.60) objective, while we used a 50x (NA = 0.95) one. They opted for testing single

parameters (Srel or Asfc), while we tested 37 parameters and then selected a sub-set of them

(three). Major differences in the results, mainly the capacity of discerning unused surfaces,

could be explained by the acquisition scale. It might well be that used vs. unused surfaces on

coarse-grained materials are better discriminated when analyzing larger surfaces acquired at

lower magnifications [22, 23]. On the other hand, the very high classification rates of our anal-

ysis on specific polishes (contact with bone and skin), demonstrates that surfaces acquired

with a 50x objective do have the potential of accurately classifying some materials.

Considering all this, more experiments including larger samples (more quartzite types,

more worked materials, more samples per worked material, more scans and larger areas per

sample) are needed to better characterize worn areas on quartzite and to increase the accuracy

of the model presented here. Moreover, comparison between studies should be performed in

the future in the attempt to understand the best combinations of acquisition and analysis set-

tings and of different parameters for a proper quantification of use-wear on quartzite.

Conclusion

Although conventional inspections of use-wear on archaeological assemblages have been fre-

quently employed and led to interesting insights about how stone tools were used in the past,

criticisms have been raised and they still persist. They mostly revolved around the subjectivity

of the analyst always present in all functional interpretations and the semantical divergences of

the descriptions of wear provided by different specialists. Due to the general lack of quantita-

tive descriptors in conventional functional interpretations, it is extremely hard to objectively

compare use-wear databases built by different researchers.

On the other hand, limitations of the quantitative approach, as it is presently being

developed, also concern data comparison. In fact, different techniques and different

pieces of equipment to acquire 3D surface data are employed. Moreover, few and different

parameters are selected and different analytical workflows (with different cut-offs) are also

systematically used. All this makes it difficult to meaningfully compare published quantita-

tive data.

This study, as several others, is an effort to fill in this gap by systematically applying well-

recognized methods to objectively describe surface modifications on stone tools. Even though

our results are preliminary, mainly because of the small sample used, the quantitative data we

report in this paper add to previous studies indicating that confocal microscopy will likely be a

Table 4. Values of the selected features for the surfaces shown in Fig 7 and S11 Fig.

Sample Point Area Material Mean depth of furrows (nm) Vmc (μm3/μm2) Mean density of furrows (cm/cm2)

VSH4-5 3 2 Bone 139.17 0.11 2350.70

VSH4-3 2b 1 Hide 365.22 0.26 2524.55

VSH4-4 1a 1 Wood 487.85 0.73 2033.89

VSH4-2 2b 2 Cane 61.19 0.12 2439.83

VSH4-1 1a 2 Antler 252,17 0,41 2149.65

A35-5 2 1 Unused 102,66 0,08 1611.55

https://doi.org/10.1371/journal.pone.0243295.t004
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key approach for the future development of the method. By using LSCM, large datasets of

worn surfaces on different raw materials could be compiled and shared between researchers.

The numerical descriptions of the processed 3D surfaces have the potential to overcome two of

the most critical issues of traceology behind researchers’ skepticism including subjectivity of

interpretation and different terminology employed to describe use-wear [37].

Furthermore, once large experimental datasets are available for comparison, confocal

microscopy will become an increasingly viable mean of assessing archaeological assemblages

for determining the contact material, if polished areas are available. However, possible obsta-

cles of the systematic application of this technique to distinguish contact materials based on

worn surfaces is the effect that post-depositional surface modifications (PDSMs) might have

on its accuracy [95, 96]. Hence, more experiments involving trampling and sediment contact

are necessary for further development of the method.

Although the data presented here are preliminary, they allow for a better understanding of

polish appearance and formation on quartzite. This study not only proves that quantitative

methods are a valid tool to differentiate polished areas originated through contact with several

materials (animal and vegetal ones) on quartzite tools, but it also provides thorough datasets

(with raw data) of the surface texture measurements acquired on the experimental replicas

(see Data Availability below). Therefore, all data are fully accessible, and different surface anal-

ysis workflows and statistical comparisons will be possible with future research. Moreover, the

full reproducibility of data acquisition is guaranteed by the reporting of the acquisition settings

of the microscope used in this paper [37, 38].

In sum, this study highlights the great potential of confocal microscopy to solve the ever-

lasting debate on the accuracy of functional interpretation of use-wear based on visual attri-

butes and it stands as a bridge towards the systematic application of metrology in the analysis

of use-wear. We hope that our data will constitute a step forward towards the integration of

quantification methods in conventional microscopic examination of use-wear on stone tools.

Moreover, we hope it can be used to increase the reproducibility and comparability of use-

wear data acquired by different researchers.

Supporting information

S1 Fig. The outputs of any confocal measurement and analysis workflow. a) WF image; b)

Maximum intensity map; c) Height map (topography); d&e) Maximum intensity and height

maps of the first sub-area before processing; f&g) Maximum intensity and height maps of the

second sub-area before processing; h) Analysis workflow using Confomap; i) Height map of

the first sub-area after processing; j) Height map of the second sub-area after processing.

(TIF)

S2 Fig. Examples of the locations of the two extracted surfaces (sub-areas) on polished sur-

faces originated after contact with different worked materials. Variation on the two differ-

ent varieties can be compared. a&b) Antler; c) Bone; d&e) Cane; f&g) Wood; h&i) Cane; l&m)

Wood; n) Dry skin; o&p) Fresh skin.

(TIF)

S3 Fig. Mutual information on training set with type.

(PDF)

S4 Fig. Working principle of the classification algorithms. An example dataset with three

classes (“blue”,”gray”,”red”) and two features (x and y axes) is shown in both plots, where each

dot represents a data point. The classification algorithms aim to segment the plane into areas,

in which ideally only data points of one class exist. One main difference is the type of boundary
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line that is allowed for a segment. The decision tree classifier for instance is restricted to

boundaries parallel to the feature axes, while the SVM may use curved boundary shapes.

(PDF)

S5 Fig. Comparison of the performance in the classification rate when some variables are

either considered or discarded. The different possibilities depend on whether all the features

or the selected set of features are used and whether the type of quartzite is considered as a fea-

ture or not.

(PDF)

S6 Fig. Normalized confusion matrix on the test set for SVM when the type of quartzite is

considered as a feature.

(PDF)

S7 Fig. Normalized confusion matrix on the test set for SVM1 when the type of quartzite is

not considered as a feature.

(PDF)

S8 Fig. Normalized confusion matrix on the test set for SVM2 when the type of quartzite is

not considered as a feature.

(PDF)

S9 Fig. Normalized confusion matrix on the test set for SVM3 when the type of quartzite is

not considered as a feature.

(PDF)

S10 Fig. Decision-tree model including the quartzite variety (type).

(PDF)

S11 Fig. Maximum intensity map (left), topography (middle) and schematic representa-

tion of unused textures (based on the decision tree; Fig 4). See Fig 7 for details and Table 4

for parameter values.

(TIF)

S12 Fig. Pairwise bivariate plots of the three selected features (Vmc, Mean depth of furrows
and Mean density of furrows). The large dots represent the mean of each group and the small

dots mark every measurement. The polygons are convex hulls.

(PDF)
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32. Ibáñez JJ, Lazuen T, González-Urquijo J. Identifying Experimental Tool Use Through Confocal Micros-

copy. Journal of Archaeological Method and Theory. 2018; 26: 1176–1215. https://doi.org/10.1007/

s10816-018-9408-9

33. Macdonald DA, Evans AA. Evaluating Surface Cleaning Techniques of Stone Tools Using Laser Scan-

ning Confocal Microscopy TL—22. Microscopy Today. 2014;22 VN-r: 22–27.

34. Stemp WJ, Macdonald DA, Gleason MA. Testing imaging confocal microscopy, laser scanning confocal

microscopy, and focus variation microscopy for microscale measurement of edge cross-sections and

calculation of edge curvature on stone tools: Preliminary results. Journal of Archaeological Science:

Reports. 2019; 24: 513–525. https://doi.org/10.1016/j.jasrep.2019.02.010

35. Xie L, Gallo T, Macdonald D. Microwear analysis on experimental ground stone earth-working imple-

ments and its implication for investigating ancient agricultural practices. Journal of Archaeological Sci-

ence: Reports. 2019; 25: 351–369. https://doi.org/10.1016/j.jasrep.2019.04.017
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43. Pedergnana A, Ollé A. Monitoring and interpreting the use-wear formation processes on quartzite flakes

through sequential experiments. Quaternary International. 2017; 427: 35–65. https://doi.org/10.1016/j.

quaint.2016.01.053

44. Leakey MD. Olduvai Gorge, volume 3. Excavations in Bed I and II, 1960–1963. Cambridge: Cam-

bridge University Press; 1971.

45. Moloney NL, Raposo L, Santoja M. Non-Flint Stone Tools and the Paleolithic Occupation of the Iberian

Peninsula. Oxford: B.A.R, Tempus Reparatum; 1996.

46. Pappu S, Gunnell Y, Akhilesh K, Braucher R, Taieb M, Demory F, et al. Early Pleistocene presence of

Acheulian hominins in South India. Science. 2011; 331: 1596–1599. https://doi.org/10.1126/science.

1200183 PMID: 21436450

47. Lemorini C, Plummer TW, Braun DR, Crittenden AN, Ditchfield PW, Bishop LC, et al. Old stones’ song:

use-wear experiments and analysis of the Oldowan quartz and quartzite assemblage from Kanjera

South (Kenya). J Hum Evol. 2014; 72: 10–25. https://doi.org/10.1016/j.jhevol.2014.03.002 PMID:

24726228
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93. Ollé A, Vergès JM. The use of sequential experiments and SEM in documenting stone tool microwear.

Journal of Archaeological Science. 2014; 48: 60–72. https://doi.org/10.1016/j.jas.2013.10.028

94. Calandra I, Schunk L, Rodriguez A, Gneisinger W, Pedergnana A, Paixao E, et al. Back to the edge: rel-

ative coordinate system for use-wear analysis. Archaeological and Anthropological Sciences. 2019.

https://doi.org/10.1007/s12520-019-00801-y

95. Caux S, Galland A, Queffelec A, Bordes J-G. Aspects and characterization of chert alteration in an

archaeological context: A qualitative to quantitative pilot study. Journal of Archaeological Science:

Reports. 2018; 20: 210–219. https://doi.org/10.1016/j.jasrep.2018.04.027

96. Werner JJ. An experimental investigation of the effects of post-depositional damage on current quanti-

tative use-wear methods. Journal of Archaeological Science: Reports. 2018; 17: 597–604. https://doi.

org/10.1016/j.jasrep.2017.12.008

PLOS ONE Polish is quantitatively different on quartzite flakes used on different worked materials

PLOS ONE | https://doi.org/10.1371/journal.pone.0243295 December 3, 2020 27 / 27

https://doi.org/10.1016/j.actbio.2008.09.011
http://www.ncbi.nlm.nih.gov/pubmed/18951859
https://doi.org/10.1017/CBO9780511813429
https://doi.org/10.1016/j.jas.2013.10.028
https://doi.org/10.1007/s12520-019-00801-y
https://doi.org/10.1016/j.jasrep.2018.04.027
https://doi.org/10.1016/j.jasrep.2017.12.008
https://doi.org/10.1016/j.jasrep.2017.12.008
https://doi.org/10.1371/journal.pone.0243295

