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Abstract
The term hippocampal replay originally referred to the temporally compressed reinstantiation, during rest, of sequential 
neural activity observed during prior active wake. Since its description in the 1990s, hippocampal replay has often been 
viewed as the key mechanism by which a memory trace is repeatedly rehearsed at high speeds during sleep and gradually 
transferred to neocortical circuits. However, the methods used to measure the occurrence of replay remain debated, and 
it is now clear that the underlying neural events are considerably more complicated than the traditional narratives had 
suggested. “Replay-like” activity happens during wake, can play out in reverse order, may represent trajectories never taken 
by the animal, and may have additional functions beyond memory consolidation, from learning values and solving the 
problem of credit assignment to decision-making and planning. Still, we know little about the role of replay in cognition, 
and to what extent it differs between wake and sleep. This may soon change, however, because decades-long efforts to 
explain replay in terms of reinforcement learning (RL) have started to yield testable predictions and possible explanations 
for a diverse set of observations. Here, we (1) survey the diverse features of replay, focusing especially on the latest findings; 
(2) discuss recent attempts at unifying disparate experimental results and putatively different cognitive functions under 
the banner of RL; (3) discuss methodological issues and theoretical biases that impede progress or may warrant a partial 
revaluation of the current literature, and finally; (4) highlight areas of considerable uncertainty and promising avenues of 
inquiry.
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Statement of Significance
Since its discovery, hippocampal replay during sleep has been assigned an important role in memory consolidation and 
integration. Here, we discuss how this role is evolving in light of the more recently discovered awake replay, which has 
several surprising features and many putative functions, from memory formation to retrieval and planning. We draw at-
tention to the growing complexity of replay across the sleep/wake cycle and discuss recent attempts to provide a unifying 
explanation for this phenomenon.
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The Problem of Defining Replay

It is important to start by stressing the fact that there is no 
consistent technical definition of either reactivation or replay, 
and only recently the need to reach consensus in the use of 
these terms has been recognized [1]. In keeping with most of 
the literature, we use “reactivation” to refer to when a zero-
lag measure of population activity computed over an epoch of 
50–200 ms, for instance cell-pair spike correlations, is similar to 
a reference period. In some cases, the magnitude of similarity 
can provide a measure of “reactivation strength” that, when per-
formed on consecutive epochs, will yield a timeseries. However, 
this measure does not take into account the temporal evolution 
of neural activity during each epoch. With the exception of the 
first seminal study [2], reactivation is always assessed in more 
than one cell, often between cell pairs, and provides a measure 
of cofiring within a variable time window of up to a few hundred 
milliseconds, but without any assumption regarding the order 
in which cells are reactivated. “Replay,” in contrast, implies a 
measure that more directly assesses the temporal structure of 
activity in a population. In its weakest form, this might mean 
assessing whether population state transition probabilities 
are preserved, or checking that an asymmetry of spike cross-
correlograms associated with an experience is reinstantiated. In 
its strictest form, replay implies that an extended sequence of 
neural activity—ideally firing of single units—matches a tem-
plate. Often, this might mean correlating two spike trains or 
checking that the rank order of spiking across cells in a popu-
lation is preserved. Also very popular is a Bayesian approach, in 
which a decoder is trained during active wake to estimate the 
animal’s position from a brief (usually 10–50  ms) snapshot of 
population activity, and then applied later to candidate replay 
events to yield a posterior probability of position versus time 
that must match the reference period.

With the exception of some reactivation studies that have 
significant historical importance for the replay field, we have 
generally tried to focus here on sequence replay derived from 
single-unit data, but we do not always specify whether the 
template was a posterior probability matrix, a spike train, a 
rank-order sequence, etc. It would be impossible to review the 
literature this way, given the wide range of methods in use and 
the fact that no two studies—even from the same lead author—
seem to share precisely the same methods. Combined with 
statistical and conceptual issues that make the study of replay 
particularly challenging (see Box 1), this lack of methodological 
standardization is one of the most problematic aspects of the 
replay literature, as it often makes comparing even congruent 
results very difficult. Unless explicitly stated otherwise (e.g. in 
the section on human replay), all studies mentioned herein were 
performed in rodents—mostly rats.

The Classical Picture of Replay (1989–2005): 
The Link With Sleep, Sharp-Wave Ripples, 
and Memory Consolidation
The first report of a hippocampal cell being reactivated away from 
a stimulus to which it was tuned was provided in 1989 by Pavlides 
and Winson [2], who studied pairs of cells with nonoverlapping 
place fields recorded from freely moving rats. Their stated goal 
was to test the hypothesis that after exposure to a specific 

environment, the firing of place cells during sleep may represent 
“some form of memory processing.” In line with this idea, the au-
thors found that confining the animal to a given cell’s place field 
elicited higher firing rates and increased bursting from that cell 
during subsequent nonrapid eye movement (NREM) and rapid 
eye movement (REM) sleep, but not during postexposure wake, 
compared to place cells that were not activated during prior 
wake. As mentioned, in this seminal study the firing pattern was 
studied separately in each cell, without any measure of cofiring. 
In 1994, after population recordings became feasible, Wilson and 
McNaughton found that pairs of cells whose place fields over-
lapped during behavior had an increased tendency to fire together 
during subsequent sleep [12], although this and other studies [13–
15] actually failed to replicate the previous finding [2] regarding 
higher firing rates during postexposure sleep. The 1994 study sug-
gested for the first time that entire assemblies were being coher-
ently reactivated during postexposure periods of sleep, defined 
based on the presence of sharp-wave ripples (SPW-Rs) in the 
hippocampal EEG, and was followed a few years later, in 1996, by 
the first report that this reactivation preserved the order in which 
place cells fired during spatial navigation [15]. Over the next few 
years, increasingly compelling demonstrations of sequence re-
play over tens of cells were made during slow-wave sleep [14, 16]. 
This replay happens over timescales of up to 200 ms, much faster 
than the original behavior that spans several seconds.

SPW-Rs are one of the most distinctive patterns in the 
hippocampal local field potential (LFP) [17]. The sharp-wave com-
ponent of SPW-Rs is a negative wave lasting about 40–100 ms that 
is prominent in the CA1 stratum radiatum. It is thought to re-
flect the synchronous depolarization of CA1 apical dendrites by 
synchronously bursting pyramidal cells in upstream CA3, where 
strong recurrent connectivity allows small numbers of excitatory 
cells to provoke rapidly spreading population bursts. Often, the 
sharp wave-induced excitation in CA1 also engages interneurons, 
and the rapid oscillation of interneuron-coordinated pyramidal 
cells generates a coincident “ripple” in the LFP at 120–200 Hz [18].

Although replay and reactivation events in rodents are closely 
associated with spiking during these ripples, there does not ap-
pear to be a 1-to-1 relationship between ripples and either replay 
or reactivation events. Most studies restrict their analyses to rip-
ples or SPW-Rs, but when the detection of candidate events is 
not conditioned on ripple events, replay and reactivation are still 
found outside of ripples [13, 19, 20]. Whether or not every ripple 
has replay content is a much more difficult question to answer, 
since it is always possible that candidate replays that do not reach 
significance are, in fact, replays of contexts or episodes that were 
missed by the experimenter, or of events whose representations 
have transformed over time to the point of being unrecognizable.

There are many reasons why the close relationship between 
replay and SPW-Rs is significant, starting from the ability of 
SPW-Rs to effect wide-ranging patterns of activity in both neo-
cortex [21] and subcortical structures [22]. Thus, the first obser-
vations of sequence replay immediately suggested a mechanism 
for memory consolidation (reviewed in Klinzing et al. [23])—in 
particular a “two-stage process” in which “information encoded 
in the hippocampus during awake, exploratory behavior is “re-
played” fast during subsequent sleep [18, 24, 25]. Although there 
were early suggestions that reactivations were not tied to sleep 
per se [12, 13], the many connections between sleep and memory 
consolidation, in the absence of any reports of sequence replay 
during wake until much later [26], facilitated the view of replay 
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as a sleep process. According to this view (simplified consid-
erably), replay is a mechanism by which a hippocampally de-
pendent memory trace is repeatedly rehearsed at high speeds 
during sleep, and in the process is gradually transferred to neo-
cortical circuits. The idea that hippocampal place cells more-
or-less faithfully recapitulate sped-up sequences of activity 
observed during prior awake behavior, viewed in the context of 
the two-stage model of memory consolidation, could be called 
the “classical” picture of replay [5]. Some variations of this model 
stress the fact that the transfer may never be complete, leaving 
the memory always, to some extent, dependent on the hippo-
campus, and/or emphasize that the transfer is associated with 
a cortical transformation of the original memory trace (e.g. gist 
extraction) [23, 27, 28]. In all cases, replay during sleep is seen as 
key for sleep-dependent memory consolidation.

Replay-Like Activity During Wake: 
Immediate, Often in Reverse, and 
Occasionally Nonlocal
Some of the data in the original paper by Pavlides and Winson 
[2] suggested that the reactivations were strongest during sleep, 

but there was nothing in any of the early studies to suggest 
that reactivation or replay could not occur during wake. Indeed, 
Kudrimoti et al. [13] found that reactivations similar to those ob-
served in 12 were more closely associated with the presence of 
SPW-Rs—the dominant pattern in the hippocampal EEG of ro-
dents during slow-wave sleep—than with sleep per se. When 
the authors tested this by comparing post-task reactivations 
during sleep with quiet wake—when SPW-Rs are less frequent 
but still prevalent—they found that the two states were com-
parable. Although the focus on sleep persisted for years after 
this study, compelling sequence replay was eventually observed 
during wake [26].

The finding of sequence replay during wake immediately 
challenged the idea of sleep replay as a faithful recapitula-
tion of prior well-rehearsed experience, because it found that 
these sequences could play out immediately after a single 
brief experience (the first lap in a novel track), and often in re-
verse [26]. In open-field environments, the tendency for place 
fields to be omnidirectional (i.e. true place fields, not sensitive 
to the heading of the animal) makes it difficult to say without 
doubt that a reverse sequence is not in fact a return trajec-
tory played forwards. However, one can either exploit the fact 
that the animal is unlikely to run a return trajectory, or use 

Box 1. Methodological, Statistical, and Conceptual Challenges in the Study of Replay
The statistical issues with reactivation and replay analyses are exceptionally thorny, and with replay especially the choice 
of method can significantly affect which events are detected or reach significance (for excellent recent reviews, see van 
der Meer et al. [3] and Tingley and Peyrache [4]). In particular, for any given study, it is unclear how confident we should 
be in the chance distributions against which replay events reach significance. Replayed sequences are virtually never 
perfect matches to a template. Thus, rather than count the number of unambiguous matches over the course of a night 
and evaluate whether that number exceeds some threshold required for significance, a determination must be made that 
each individual event significantly matches the template. In order to do this, some kind of within-event shuffle—whether 
it be the identity of cells, the position of each cell’s place field, the time of a decoded posterior probability over position, 
etc.—needs to underlie the construction of a chance distribution. The core problem is that there is no way to do this such 
that the factor of interest—the sequential order of spiking—is randomized while other parameters, such as firing rates, 
cell-pair correlations, place field shapes, etc., are preserved (see, for example, Fig. 4 of Foster’s excellent review [5]). Thus, 
every approach increases the likelihood of spurious significance beyond what is necessary (i.e. what would be observed in 
random data), and our incomplete understanding of the structure of neural activity makes the estimation of false-positive 
rates difficult. Even if we had complete knowledge of this structure, virtually all methods have a false-positive rate that 
is heavily dependent on factors like the firing rates of the cells recorded (e.g. fast-firing neurons are more likely to fire 
first [6], and correlation between two spike trains is a function of spike rate, regardless of shared inputs [7]), the number 
of cells recorded, and the length of the sequence of interest. For example, one can check with a few lines of code that 
random rank-order sequences of length 10 will yield significant correlations with a random template up to 12% of the 
time, and this false-positive rate increases as the sequence length drops [4]. In the face of this, one always has to look at 
the proportion of all events that come out significant and compare that proportion across conditions (e.g. pre-task sleep 
and post-task sleep). When one wants to perform “second-order analyses” like comparing strength of replay across con-
ditions, or essentially any analysis for which it is no longer sufficient to determine that activity is structured relative to 
some notion of chance, complexity explodes [3]. Of course, researchers in this field tend to be hyper-aware of these issues 
and use state-of-the-art, large-scale recording methods that offer high statistical power. Most analyses will impose many 
strict constraints on replay, and it is becoming increasingly common to see results reported for a wide range of parameter 
choices. Some studies are meticulous in their methodology and provide excellent examples of how to conduct and dis-
cuss second- and first-order analyses (for example, see Carey et al. [8] and Silva et al. [9], respectively). Nevertheless, the 
fact remains that we have limited understanding of how good our notion of chance is when it comes to spike sequences.
It is not clear that replay is a binary phenomenon either, rather than a graded one. Replay scores often follow continuous 
rather than bimodal distributions, and casting a wider net to include more candidate replay events can substantially 
change the picture of replay [10, 11]. As mentioned, the literature covers a continuum of phenomena ranging from 1-step 
population state transitions that occur above chance to extremely strict single-unit spike sequences across tens of cells, 
to say nothing of the largely overlapping literature on reactivation and other measures of zero-lag population structure. 
What exactly the relationship is between reactivation and replay needs further attention. Perhaps reactivations encode 
a context or environment, and replays encode a specific experience or trajectory within that environment. Or, perhaps, 
reactivation and replay are just two faces of the same graded phenomenon.
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pre-experience sleep as a control to establish that reverse reply 
is not in fact “forward preplay” of a soon-to-be experienced 
trajectory [9, 29]. In 1D settings, the confound of running the 
return trajectory is greater, but the directional nature of place 
fields here can be exploited to disambiguate reverse replay from 
forward replay of the return [9, 26]. Even more compellingly, re-
verse replay can be seen in 1D environments when the animal 
only ever runs in one direction [30].

In many ways, the statistics of forward and reverse replay 
are largely similar. There do not appear to be any reports, for 
instance, suggesting that one is faster than the other, or covers 
longer spatial trajectories. During wake, both tend to begin at 
the animal’s location [31–33]. However, there are clear examples 
(see e.g. Davidson et al. [34] and especially Gupta et al. [30]) of 
both forward and reverse replay of the immediate environment 
that start away from the subject. Despite these similarities, 
there are consistent and striking differences between forward 
and reverse replay in their sensitivity to reward and reward con-
text. When animals are asked to repeatedly run linear tracks for 
water rewards, forward replay dominates before the run (~95% 
of replay), while reverse replay dominates after the run (~85%) 
[31]. The rate of reverse replay increases when an animal en-
counters an increased reward but decreases when the expected 
reward is reduced or removed altogether. In contrast, the change 
in reward does not appear to affect the rate of forward replay 
[35, 36]. When rewards are placed at both ends of a linear track, 
and the reward on only one side is increased, the rate of reverse 
replay increases on the side with increased reward, as expected, 
but also decreases on the other side of the track with unchanged 
reward, suggesting that reverse replay is sensitive to counterfac-
tual scenarios or, at least, the amount of reward received rela-
tive to the total available [35]. Altogether, the strong modulation 
by reward has prompted the suggestion that reverse replay is 
a consolidation mechanism for learning values and solving the 
problem of credit assignment [5, 27] (see section on reinforce-
ment learning).

Although the rate of forward replay does not appear sensitive 
to changes in reinforcing rewards, it is plausible that it is sensi-
tive to changes in punishment. When rats are asked to run back-
and-forth on a linear track and are given an electric shock at one 
end of the track, replay becomes biased toward the area where 
the shock was received, even though the agent avoids that area 
[37]. Unfortunately, the majority of place fields in this particular 
study were omnidirectional (~70%), so the authors were unable 
to discern forward from reverse replay. To date, there is very 
little literature examining the effect of punishment on replay.

For many years, it was assumed that replayed trajectories 
during wake at least reflected recent experience, even if they 
were not always highly faithful recapitulations of it. This fit with 
a theory that awake replays (especially reverse replay) might be 
related to residual or trace activity of recently active cells [29, 
38]. It is now well established, however, that there is often replay 
of locations in the immediate environment that have not been 
recently visited (i.e. within the past 10 minutes) [8, 30]. The pro-
portion of replays that are nonlocal in this way is as high as 40% 
in some studies, though such proportions are rarely reported. 
Proportions of forward and reverse events under these circum-
stances appear to be roughly similar to replay of recently experi-
enced trajectories. Furthermore, “remote replay” during wake of 
entirely separate environments is possible. In the first study to 
report remote replays during wake [39], these events were just 

as frequent as local replay events, though the authors did not 
distinguish between forward and reverse replay. To our know-
ledge, no study has explicitly compared the proportion of for-
ward and reverse events in remote replay as compared to local 
replay, and this proportion would likely be confounded by other 
factors present in the local environment, such as the availability 
of immediate reward.

An Even Broader View: Replay as a Model of 
the World

Model-based recombination of past trajectories

As its name implies, replay has been traditionally framed as the 
temporally compressed reexpression of some behavioral epi-
sode. However, replay can represent trajectories never taken by 
the animal. For example, in an open-field foraging experiment 
with systematically varying start and goal locations, replay was 
found to start at the subject and proceed toward the goal, even 
for entirely novel trajectories untraversed by the animal [20]. In 
another experiment where rats were placed into a T-maze with 
opposing arms blocked off so that they could see rewards in 
either arm but not reach them, formation of novel replay tra-
jectories that led into rewarded arms was observed [33]. Novel 
forward trajectories have also been observed in several other 
studies [10, 30, 34]. These results are more compatible with re-
play as the spontaneous exploration of network attractor states, 
or the expression of structural knowledge about paths through 
the environment triggered by recent behavior.

Importantly, novel sequences cannot be constructed by so 
called “model-free” learning mechanisms, and heavily imply the 
existence of a cognitive map. In one of the more direct attempts 
to assess whether replay explores a model of the environment 
[40], rats were placed into an unusually large Y maze and run 
from the end of one arm to another, through the central choice 
point. It had been shown previously that in large environments 
multiple consecutive replay events (corresponding to separate 
ripple events, discussed later) could be “stitched together” to re-
play an extended trajectory [34]. In the forked maze, arm lengths 
were long enough that replay of a single run was likely to split 
across events. Interestingly, replay events tended to be seg-
mented by the maze’s bifurcation point, even when the replayed 
arms were of unequal length. Furthermore, changes in replay 
direction (e.g. from reverse to forward) were more likely to occur 
at this point. Thus, it seems that the maze’s topology had some 
influence on replay structure. The authors also found that replay 
events of different trajectories covering overlapping parts of the 
maze recruited the same populations of cells (~94% overlap) to 
represent shared maze segments. Given that up to 50% of all 
place cells may be active in an environment, and a single place 
field is often covered by many different place cells, this degree 
of overlap was remarkable and suggested that the different tra-
jectories might have been tied to a common underlying model, 
perhaps of the environment. An even more extreme suggestion 
that replay does not simply represent episodic content comes 
from a recent study by Stella et al. [10] that used an unorthodox 
pellet-chasing task to prevent the animals from following 
stereotyped paths, while also managing to keep their motion 
highly nonrandom. The authors found that in subsequent rest 
replay trajectories resembling random, Brownian motion tiled 
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the entire environment at several spatial and temporal scales, as 
if representing its overall statistics or traversable paths.

Prospective replay and its role in planning

An open question is whether “prospective replay”—that is, replay 
which is predictive of the animal’s future trajectory—is related 
to planning. It has often been suggested that forward replay and 
reverse replay might serve prospective and retrospective roles, 
respectively [31, 41]. One of the strongest pieces of evidence in 
favor of this interpretation comes from a study by Pfeiffer and 
Foster [20] that found that replays just before navigation toward 
known, hidden goals were biased toward these goals, and could 
even predict the animal’s movements after finding the goal, 
but did not predict the animal’s immediate movements during 
random foraging. Another recent study found that forward re-
play of a T-maze arm—experienced visually yet not explored—
was a prerequisite for the correct (i.e. above-chance) choice of 
that arm. More generally, it was found that replay prior to navi-
gation was biased toward the correct arm, although it remains 
unclear whether the effect was driven by planning rather than 
prior sighting of the reward [33]. A recent study that observed re-
plays in a radial maze [42] found that during reference memory 
tasks, replays at the choice point were more likely to be forward 
replays that predicted the animal’s path, while during a working 
memory task, choice-point replays were more likely to be re-
versed and of arms that the animal had already visited. Another 
recent study [41] reported a strong link between forward replay 
and upcoming trajectories, and between reverse replay and 
completed paths—but not at choice points.

Meanwhile, other studies have reported cases of replay being 
biased away from the correct, preferred, or upcoming trajec-
tory [8, 30, 40]. When rats were rewarded on only one arm of 
a continuous T-maze and ran continuous laps on that side of 
the track, they replayed the opposite arm even more than when 
they alternated between arms [30]. In an impressively meticu-
lous recent study, rats were water restricted or food restricted on 
alternating days, and placed each day into a T-maze offering free 
choice between food and water in opposite arms [8]. The replay 
was heavily focused on the nonpreferred, nonexplored arm, and 
multiple analyses suggested that it was actually the animal’s 
motivational state, rather than its immediate past or future ex-
perience, that drove this paradoxical effect. The authors specu-
lated that this sort of replay might serve to preserve or protect 
in some way the options not taken, or might simply reflect the 
fact that in overtrained animals making easy decisions, replay 
circuitry might be freed up for other purposes not related to the 
task at hand. Consistent with this latter possibility, it was previ-
ously found [43] that reactivations ceased to predict upcoming 
paths after a certain point during learning.

Preplay: a highly debated phenomenon

All the reports of novel trajectories described above find that they 
are composed of subpaths previously traversed by the animal or, 
at least, visually experienced and inferred. This makes sense if 
replays are constructed from learned information: how could a 
rat replay an environment of which it had no knowledge? This 
sort of novel sequential activity, though it may predict novel fu-
ture experience, needs to be distinguished from a controversial 

phenomenon dubbed “preplay.” Preplay refers to the sequential 
firing of place cells in a way that presages their relative ordering 
in a not-yet experienced environment. If putative replays might 
in fact be preplays which the experimenter cannot be aware of 
and control for, the entire premise and study of replay—even 
as a prospective computation performed on learned informa-
tion—is threatened. The first study that reported preplay [44] re-
corded hippocampal firing sequences during periods of awake 
rest, alternating with periods of running, on a familiar track. The 
twist was that these recordings were followed by the exploration 
of a visually isolated novel arm contiguous with this familiar 
track. Interleaved with replays of the familiar arm, the authors 
claimed to see firing sequences that were later matched by ex-
ploration of the novel arm. Several additional reports of preplay, 
mostly from the same authors, have followed since [44–48]. 
Other authors [33] have used the term “preplay” to describe their 
findings, but the fact that animals had visual access to the small, 
preplayed area complicates this interpretation.

Taken at face value, these results are consistent with several 
recent observations about the remarkable low dimensionality of 
certain brain activity [11, 49], the brain’s tendency to recycle ex-
isting neural patterns for new purposes [50], and more specific-
ally with an attractive theory that the hippocampus maintains a 
reservoir of preconfigured spike sequences that are dynamically 
assigned to novel experiences [48, 51]. In general, it is not clear 
where to draw the line between replay/preplay and spontaneous 
exploration of a network’s attractor states. In any case, the hy-
pothesis offered to explain preplay is that internally generated, 
preconfigured spike sequences are formed around a backbone of 
rigid synapses with slight, experience-dependent adjustments 
provided by a second set of plastic synapses at runtime [47, 51]. 
On the other hand, other authors [10] have concluded that no 
such reservoir could realistically be large enough to support 
the Brownian trajectories that they observed, and well-powered 
attempts to directly replicate preplay findings have failed [9]. 
Furthermore, there are several reasons to suspect that preplay is 
the artifact of flawed analyses [5]. Put conservatively, “Virtually 
all investigators agree that replay in post-task sleep is stronger 
than preplay in sleep before the task, although exactly how 
much is still under investigation and debate” [3].

Is Replay Fundamentally Different Between 
Wake and Sleep?
As summarized above, most recent experiments have focused 
on awake replay and unfortunately, very few studies have con-
sidered both wake and sleep. Thus, data on the differences in re-
play between the two behavioral states are limited. Of note, most 
studies that focused on sleep used scoring criteria that all but 
guarantee their data were contaminated by quiet wake. Some 
studies treated the entire post-task period as “sleep” or “rest,” 
lumping immobility and sleep together [10, 52], or only per-
formed scoring by visual assessment of posture [16]. Even when 
studies scored using stricter criteria—often using a theta:delta 
band power ratio applied to a single hippocampal field poten-
tial—much analysis was then performed after lumping sleep 
and quiet wake together [47].

There is some evidence that reverse replay is less frequent 
in slow-wave sleep than wake—both implicitly from a lack of 
reports of reverse replay during sleep, and explicitly using spike 
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cross-correlograms in Wikenheiser and Redish [53]. On the other 
hand, it is unclear that this is a feature of sleep per se, given 
that the rate of reverse replay declines both with experience in a 
given environment [26, 54] and with time [39]. It is also possible 
that sleep may contain the reactivation or replay of contexts 
other than the one of interest to the experimenter, which would 
be undetectable by traditional methods.

Another question is the extent to which replay during sleep is 
always a form of remote replay. Ironically, the seminal 1989 paper 
from Pavlides and Winson [2] is still one of the only examples of 
recording both wake and sleep in the same enclosure, and the 
authors were also careful to ensure that the animal did not sleep 
inside a recorded place field. In the great majority of studies, 
however, animals almost never sleep in the open fields or mazes 
where they undergo the behavioral experience and place-cell 
mapping of interest to the experimenters. Instead, their postrun 
sleep takes place in separate, very small enclosures that do not 
share visual cues with the environment of interest. Thus, as far 
as we are aware, all sleep replay in the literature is considered 
remote. Because it is not clear that local and remote replay have 
inherently different statistics during wake, it is difficult to make 
any predictions about what replay of a local environment ought 
to look like during sleep. Importantly, a population of cells in 
CA1 and CA2 do reflect a rat’s immediate location during periods 
of hippocampal desynchronization without ripples that occupy 
roughly one fifth of total sleep [55]. CA2 cells may be capable of 
triggering SPW-Rs, and more so during NREM than wake [56], 
which raises the possibility that nesting location could influence 
these processes [57].

There is some direct evidence that reactivation and re-
play events during sleep are less frequent and/or weaker and 
less structured than during wake. In a recent study from Tang 
et al. using rats trained in a spatial alternation task, measures 
of cofiring revealed that the reactivation between pairs of CA1 
excitatory neurons, and between CA1 and prefrontal cortical 
neurons, was stronger during awake SPW-Rs than during sleep 
SPW-Rs [57]. The replay of CA1 sequences also occurred more 
frequently during awake SPW-Rs than during sleep SPW-Rs, and 
measures of ensemble reactivation of the CA1–prefrontal net-
work suggested stronger reactivation strength during wake than 
during sleep. Of note, the stronger and more structured reactiva-
tion during wake occurred despite the fact that awake SPW-Rs 
were shorter and of smaller amplitude than sleep SPW-Rs, and 
unlike during sleep they were not coordinated by the occurrence 
of cortical slow waves and spindles [57]. It is worth mentioning 
that this study followed the standard practice of recording sleep 
in a dedicated nest box, so the stronger awake reactivations may 
be local to the maze environment, whereas the weaker sleep re-
play may be remote. This local/remote distinction could plaus-
ibly contribute to some of the differences reported between 
wake and sleep, and future studies might explore this possibility. 
Another study from Grosmark and Buzsaki [47] showed that the 
mean “sequenceness” score of candidate events was lower in 
sleep than wake, which may be in line with the hypothesis that 
replay during sleep is more “disjoint” [58], or has lower fidelity to 
prior wake experience [39, 57]. It has been speculated that this 
comparatively noisy reactivation may reflect the active trans-
formation of memory during sleep [59], or the simultaneous ac-
tivation of multiple memories undergoing integration [60].

Putative demonstrations of hippocampal replay during REM 
sleep remain extremely rare and exhibit several odd features. 

These replays do not appear to depend on SPW-Rs—which are 
very rare during REM sleep—and may not exhibit the “fast-
forwarded” or temporally compressed quality seen in other 
states [61]. Moreover, most significant template matches were 
actually identified during the REM sleep episodes that occurred 
before the task, not afterwards, and therefore the term “replay” 
may need to be qualified [61]. One of the few other studies to 
examine REM sleep [13] failed to find significant place-cell re-
activation during this phase.

In short, based on the limited data currently available, per-
haps the most obvious difference between wake replay and 
sleep replay is the lack of modulation by slow waves and spin-
dles during awake replay [57]. By design, sleep replay is almost 
always remote and wake replay is more often immediate, but 
it can be remote as well. Moreover, replay can be forward and 
reverse in both wake and sleep, but whether their relative fre-
quency differs across behavioral states remains unclear. As 
we have seen, replay-like activity has been attributed several 
functions in addition to memory consolidation, from learning 
values to planning, but the specific contribution of sleep replay 
in these processes is unclear. For memory consolidation, one 
influential model, mainly based on in vitro and computational 
experiments, predicts that the high cholinergic activity of wake 
promotes encoding by enhancing afferent inputs to the hippo-
campus, while the low cholinergic tone of slow-wave sleep fa-
vors consolidation by exciting the CA3 association system, thus 
triggering SPW-Rs and their propagation outside the hippo-
campus [62]. Consistent with this hypothesis, medial entorhinal 
cortex (MEC) may exert greater influence over replays during 
wake than NREM, whereas CA3 input to CA1 is essential in ei-
ther state [63]. However, because both wake replay and sleep 
replay promote memory consolidation, it is unclear whether 
replay during sleep is special [27]. If so, it may be because the 
levels of acetylcholine are expected to be lower in NREM sleep 
than in quiet wake [23]; this assumption, however, should be 
confirmed using methods that can detect extracellular levels of 
acetylcholine with high (1-s) temporal resolution [64]. Another 
suggestion is that despite being less frequent and weaker than 
in wake, replay during sleep is uniquely coordinated by slow 
waves and spindles, and thus is in a strong position to inte-
grate multiple experiences across large thalamocortical and 
hippocampal networks [57].

The Time-Course of Replay and Its 
Implications for the Memory Process
There is evidence that both the strength of replay and its speed 
change with time, with obvious implications for the role of re-
play in the memory process. However, the time-course of re-
play is surprisingly difficult to assess. Early studies found that 
the strength of reactivations declined rapidly during the first 
post-task hour [12, 13], and the same trend has been reported 
for post-task sequence replay [14, 19, 26]. Consequently, many 
experiments are now designed to focus on this brief post-task 
window, and largely ignore later periods. If replay decays this 
rapidly, however, it imposes a serious constraint on any hy-
pothesis about its role in memory consolidation, as it ties as-
sociated processes to this critical window [23, 65]. It is possible 
but unproven that replay might resume at unobserved time 
points, continue as transformed sequences undetectable to the 
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experimenter, or persist at very low levels that make it difficult 
to observe.

A recent study from Giri et al. [66] sought to resolve this con-
undrum, observing that previous experiments examining the 
time-course of reactivation or replay had all taken place in rela-
tively familiar environments, and proposing that novel envir-
onments might trigger more sustained effects. In fact, previous 
studies had not overlooked the possibility that novelty might 
significantly modulate reactivation time-course. Tatsuno et  al. 
[67] had examined the effects of novel objects in a familiar en-
vironment and found no evidence of sustained reactivation or 
replay. In another experiment, Kudrimoti et al. [13] had trained 
rats to run one half of a figure eight maze (with the central arm 
shared, i.e. a “digital” eight), never allowing them to enter or see 
the second half. In a “novel environment” condition the animal 
first ran in the familiar half, then in the unfamiliar half, and 
then finally again in the familiar half, with the barriers being 
repositioned each time to occlude either the familiar or novel 
loop of track. Thus, this “novel” condition was arguably two parts 
familiar, and only one part novel. Part of the reason that this was 
done was to establish that there was no significant remapping 
between the beginning and end of the task, in order to argue 
that the same set of cells were being recorded in the novel and 
familiar conditions. Although reactivation in the novel condition 
appeared to decay more slowly than in the familiar-only condi-
tion and had a time constant outside the recording duration of 
the study, Kudrimoti and colleagues [13] saw significantly less 
reactivation of the novel condition in their data, never reaching 
even the lowest levels observed in the familiar-only condition.

Novelty, however, comes in many forms, and the early 
studies discussed above predated the finding that some forms 
of novelty induce “rate remapping” of existing place fields, while 
other forms of novelty induce “global remapping” that elicits 
a new hippocampal map [68]. It is this global remapping that 
is believed to cause sustained reactivation [66]. To test this hy-
pothesis, the authors analyzed data from four different experi-
ments with extended post-task recordings, in which both the 
task and environment were designed to be novel. Using the 
same methods as Kudrimoti [13], as well as a variant approach 
to better account for changes in reactivation due to changes in 
firing rate between pre- and post-task conditions, they observed 
reactivations extending several hours longer than previously re-
ported. Moreover, their data suggest that reactivations may be 
present during REM sleep, peak in strength several hours after 
the novel experience, and be stronger in slow-wave sleep than 
REM sleep or wake, superficially at odds with other data [13, 57]. 
Meanwhile, their control analysis of a familiar task in a familiar 
environment shows an extremely rapid decay in reactivation 
strength, as expected.

While these are intriguing results [66], their implications for 
replay proper are unclear. Although the authors used temporal 
bias in spike cross-correlograms as in a previous study [15] to 
demonstrate that reactivations preserved some of the order in 
which cells fire during the task, this constitutes replay only in a 
weak sense. Given the key role assigned to replay and/or reacti-
vation as mechanisms for active systems consolidation [23] and/
or contextual binding [69], it is critical that future work focuses 
on replicating and refining these these very interesting findings.

The dynamics of replay formation are easier to summarize. 
The older, aforementioned studies that failed to find significant 
reactivation after certain kinds of novel experience suggested 

that many repetitions of an experience were required to elicit 
reactivation, supporting the idea that reactivation reflected 
well-learned content. However, this conflicts with newer, reli-
able reports that even single experiences can spawn multiple 
replay events (see e.g. Foster and Wilson [26]). Indeed, the same 
study which demonstrated that sufficiently novel conditions 
might result in extended reactivation also suggests that even the 
first minute of a novel task session can be detected as repeated 
reactivations after the task [66]. Thus, it seems that replay and 
reactivation can be induced very rapidly under appropriate cir-
cumstances. The speed of replay also appears to change with 
time. The first report of awake replay found that the strength of 
replay increased across consecutive replay events, each separ-
ated by a new experience (one lap), while the speed of replay de-
clined across laps [26]. Why exactly this decrease in replay speed 
occurs is an open question [5].

Existing Tools for Manipulating Replay
Even if replay can predict an animal’s upcoming trajectory 
under certain conditions, it does not follow that this activity is 
necessary for decision-making. Such a claim would have to be 
supported by intervention that disrupts the replays in question. 
Unfortunately, nearly every effort to disrupt replay is based on 
detecting and disrupting SPW-Rs rather than replay sequences 
per se, confounding interpretation in these terms. For example, 
Jadhav et al. [70] used electrical stimulation to disrupt SPW-Rs 
during an E-maze task that required both reference memory 
and working memory, and found that the animal’s choice per-
formance on the working memory component was impaired. 
In a rare gain-of-function study, Fernández-Ruiz et al. [71] used 
optogenetic stimulation to prolong ripples, and saw a boost to 
spatial working memory performance. Similar manipulations 
during sleep have also pointed to a link between SPW-Rs and 
task performance [72–75]. While important, these studies also il-
lustrate one of the largest issues facing replay researchers: there 
are no good tools for precisely manipulating specific sequences 
of activity. Recently, Joo and Frank [27] reviewed many studies 
that used SPW-R manipulations to evaluate the evidence for 
functional subtypes of SPW-Rs (e.g. SPW-Rs for memory consoli-
dation versus SPW-Rs for planning, similar to the proposal that 
forward and reverse replay form functional types). They con-
cluded that there is little evidence for such a distinction. Rather, 
they propose that each SPW-R serves multiple cognitive func-
tions, and that many of these seemingly disparate functions 
may in fact reflect a single, underlying process.

The most sophisticated attempt at replay-specific manipula-
tion comes from a study by Gridchyn et al. [52] that used online 
decoding of ensemble spike patterns [76] to detect reactivation 
of two different open-field cheeseboard environments during 
“high synchrony events” (defined at the spike-level, rather than 
in the LFP, and usually preceding SPW-Rs by ~50 ms). Rats were 
trained to locate hidden food rewards in each environment, and 
any high synchrony event not confidently related to the con-
trol environment was selectively disrupted during sleep using 
optogenetic inhibition of pyramidal neurons in CA1 using the 
neural silencer ArchT. The primary finding, as expected, was that 
spatial memory recall in the target environment relative to the 
control environment was impaired. This effect could have been 
due to the disruption of place field map formation, but because 
their intervention only transiently affected place field maps and 
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continued to affect performance after maps had restabilized, 
the authors argue that the main consequence of their manipula-
tion was to interfere with the proper association of the cognitive 
map and its context. Perturbations in this experiment were tar-
geted at periods of sleep, and it is unclear whether similar per-
turbations could currently be justified in wake, where it seems 
more plausible that basic processes of cognitive map formation 
would be disrupted and confound the interpretation of results 
[77–79]. Of course, despite being selectively triggered, even this 
state-of-the-art manipulation was much less selective in its 
effects: the entire hippocampus was perturbed every time the 
target context reactivated, more excitatory cells were disinhib-
ited than inhibited, inhibited cells exhibited significant rebound 
firing, and overall ripple power was affected. Now that we are 
entering an age where optical detection and perturbation of re-
played sequences at the unit level may soon be possible [80], 
we will likely see these methods combined with spatial navi-
gation virtual reality tasks [81] to finally yield targeted, precise 
perturbations of replay.

Human Replay of Nonspatial Task Elements
Although invasive studies only possible in rodents offer one of 
the most promising paths forward for the field, another frontier 
is opening up in the form of human replay. Far from merely sug-
gesting that the vast rodent replay literature has cross-species 
relevance, these studies are allowing experimenters to divorce 
the study of replay from spatial navigation, and suggest ways 
in which replay might serve more general cognitive functions.

Although reinstated patterns of neural activity from wake ex-
perience have been seen many times over in humans, especially 
in the memory retrieval literature, very few of these bear close 
similarity to rodent replay. They may not, for example, occur pre-
dominantly during ripples, have compressed timescales, show 
context-dependence on reward, have strongly sequential structure, 
occur spontaneously during post-task rest periods, and so on [82].

The most compelling demonstration of human replay comes 
from a recent magnetoencephalography (MEG) study by Liu et al. 
that trained classifiers to detect item-specific patterns of acti-
vation associated with visual images, and then decoded the se-
quential reactivation of these patterns during pre- and post-task 
periods of rest [83]. These periods lasted 5 min and occurred be-
tween two learning phases of the experiment. In the first of two 
experiments, participants were shown a sequence of images and 
told that this actually represented two separate sequences inter-
leaved and out-of-order. Thus, two true sequences [WXYZ] and 
[W′X′Y′Z′] might be presented as [YZY′Z′][WXW′X′]. Participants 
were explained the rule mapping the observed sequences onto 
the true sequences, and then returned the next day to apply it to 
a new set of images. In post-task rest, the “true” sequences were 
replayed, mostly forward over ~200 ms, coincident with ripple-
band power increases source localized to the medial temporal 
lobe. Interestingly, the visually experienced sequence was not re-
played. At the end of the second day, participants were told that 
one true sequence was associated with a reward, then told that 
they would shortly be asked if randomly presented images be-
longed to the rewarding sequence. During rest immediately after 
being given the rewarding sequence but before testing, replay of 
true sequences was again observed, but this time in reverse.

In a second experiment, designed to reduce the likelihood 
that replay of visually experienced sequences could masquerade 

as replay of true sequences, all 1-step structure that existed in 
true sequences was removed from visual sequences. For ex-
ample, if [WXYZ] and [W′X′Y′Z′] were true sequences, the order 
of visual presentation might be [Z′XY′Y…], such that W would 
never transition to X, X to Y, Y to Z, and so on. Replay of true 
sequences was observed as before, but this time the experi-
menters also asked whether the decoded activity included in-
formation about the true sequence that each item belonged to, 
as well as its position in that sequence, above and beyond any 
information about stimulus identity. For example, did items be-
longing to a particular sequence (e.g. sequence 1) all share rep-
resentations absent in the other sequence (e.g. sequence 2), and 
did items in both sequences belonging to the same particular 
position (e.g. position 4)  share representations absent in the 
other positions (e.g. positions 1–3)? Indeed, they found detect-
able neural representations of sequence membership and pos-
ition that activated ~50 ms prior to the representation of each 
stimulus’ identity, suggesting that these abstract, “factorized” 
neural codes facilitate retrieval of the correct image. Finally, the 
authors looked at pre-task rest, before images were ever shown. 
They found that they could detect reverse replay of position 
codes, but not stimulus identity. This would have constituted 
true preplay, as the participants were familiar with the task (and 
therefore its sequence and position aspects) from training the 
previous day, but the precise images in question had not been 
experienced yet. Consequently, they called this phenomenon 
“transfer replay,” suspecting that it might be involved in gener-
alizing previously learned rules to upcoming experience.

These results, speculatively applied back to the rodent litera-
ture, lend strong support to the idea that replay is not a recapitu-
lation of experience, but rather represents a model of the world. 
They also fit well with prior findings that the hippocampal 
system in humans serves an abstract or conceptual—rather 
than a necessarily spatial—cognitive map [84–86]. It is con-
sistent with prior MEG studies showing fast reverse reactivation 
of visual sequences [87], and with a recent fMRI study that re-
ported “replay” (actually a very different but intriguing sort of 
structured, post-task reactivation) of abstract, nonspatial task 
states [88]. Unfortunately, there is still no evidence of human 
or nonhuman primate replay using single-unit activity from 
intracranial electrodes, despite the fact that place-like cells [89], 
concept cells [85], ripples [90], and reinstantiation of sequential 
spiking activity [91] have all been observed in intracranial data.

Replay Beyond the Hippocampus
One of the more intriguing aspects of replay observed using 
MEG is the fact that most of the decoded activity is probably 
cortical. There is not enough space here to review the cortical–
hippocampal dialog with respect to memory reactivation, but 
we can ask two questions of more limited scope: First, does re-
play as it is defined in CA1 exist outside of the hippocampus? 
Second, what is the rest of the brain doing just before, during, 
and after hippocampal replay?

Cortical replay

In order to answer the first question, Ji and Wilson [19] re-
corded spiking activity in the primary visual cortex and CA1 
as rats ran alternating trajectories around a figure-8 maze. In 
addition to classical place cells in CA1, the authors observed 
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that certain cells in V1 also exhibited spatially localized firing. 
It was assumed, especially given the lack of direct input to V1 
from the hippocampus, that these cells were being driven by 
visual stimuli that were specific to particular locations on the 
track. When rank ordered by time of peak firing on a lap, these 
V1 cells offered repeatable sequences that could be template 
matched to later activity, akin to regular place cells. In post-
task slow-wave sleep, these sequences were found to reoccur 
during “frames”—essentially UP states, but defined at the level 
of multiunit activity. Cortical replays and hippocampal replays 
tended to be temporally coincident—perhaps unsurprising 
given the tendency of SPW-Rs to follow cortical DOWN–UP tran-
sitions [92]. Although multiple analyses suggested that cortical 
and hippocampal replays of the same trajectory were coincident 
above chance, the small number of such events detected (only 
9 in post-task sleep) made it impossible to determine whether 
cortical or hippocampal replay reliably preceded the other. Since 
this report [19], something akin to replay has been reported 
during slow-wave sleep in cingulate and prelimbic cortices [41, 
93], parietal cortex [94], and possibly even ventral striatum [95]. 
The relationship of these events to each other, to replay in CA1, 
and even to SPW-Rs is very much unclear.

An open question is what kinds of analyses are appropriate 
when assessing replay in cells whose tuning functions differ 
significantly from unitary place fields. For example, one study 
[96] reported that grid cells in the deep layers of MEC (which 
receive hippocampal output) exhibited replay coordinated with 
place cells in CA1, while another [97] reported that grid cells in 
the superficial layers of MEC (which provide hippocampal input) 
also exhibit replay, but independently of CA1. While it is entirely 
conceivable that these disparate findings reflect a real difference 
between superficial and deep entorhinal cortex, it is also likely 
that the first study did not adequately control for the multiple 
receptive fields of grid cells, increasing the odds both of spurious 
replay detection and spurious coordination [98]. As long as we 
are only interested in replay of spike sequences, this is not much 
of an issue: If a cell responds to stimuli (e.g. locations) A and B, 
and fires during a replay, what does it matter if the cause was 
upstream activity related to A vs B? But if we care that specific 
mnemonic content is being replayed (as is implicitly assumed 
by many of the Bayesian decoding methods used for detecting 
replay in CA1), then care needs to be taken when interpreting 
putative replay in cortical cells whose tuning functions may be 
entirely unknown.

Coordination of hippocampal replay with other 
structures

Perhaps the best attempt to situate hippocampal replay within 
the context of cortical activity comes from Rothschild et al. [99], 
who recorded spiking activity in the auditory cortex (AC) and 
CA1 of rats as they learned a sound-guided navigation task. 
During short (20  min) training-interleaved sleep episodes, the 
authors found transient strong reactivations of AC, and that 
population activity in AC during and up to 400 ms before SPW-Rs 
predicted ripple content, whereas ripple content predicted AC 
activity during and up to 400 ms after the start of a ripple. This 
result held even when activity in AC was biased by presenting 
several auditory cues during the sleep period. Although the task-
relevant auditory cue appeared to elicit more SPW-Rs relative to 

other cues once the task was solidly learned, there was no add-
itional evidence that the task-relevant cue or its associated AC 
activity patterns had any special relationship to hippocampal 
reactivation.

The suggestion of a cortical–hippocampal–cortical loop in 
primary sensory cortex has many intriguing implications, but it 
remains to be seen if this will generalize to other cortices. There 
are several suggestions that frontal and prefrontal regions—in 
particular primate ventromedial prefrontal cortex and rodent 
prelimbic cortex—may activate especially early with respect to 
SPW-Rs, hinting that they may play a role in initiating replay [27, 
83, 100]. In general, a better understanding of how hippocampal 
replay relates to extra-hippocampal activity is missing from the 
literature. The impact of SPW-R-associated activity on putatively 
downstream regions is poorly understood, and literature linking 
replay to subcortical and thalamic activity is scarce [27]. Given 
the considerable complexity of the hippocampal–neocortical 
dialog during and around SPW-Rs [11, 21, 101, 102], the simple 
scenario of the hippocampus broadcasting uniform mnemonic 
content to several downstream regions may need revision.

Attempts at Unification Under the Banner of 
Reinforcement Learning
Reinforcement learning (RL) is a mathematical framework for 
describing how internal representations of states and actions 
can help an agent to maximize cumulative long-term reward 
when learning solely from rewards and punishments by trial-
and-error [103]. Based on the observation that biological agents 
are most likely to learn through something like RL [104], RL 
methods have been applied with great success in recent years 
to problems of artificial general intelligence that require flexible 
behavior in changing environments and, especially, the associ-
ation of rewards with states or actions that may be removed in 
time and space from the reward itself [105]. In brief, RL amounts 
to propagating value between temporally or spatially adjacent 
states for the purposes of this “credit assignment.”

When framed as a sequential decision problem, spatial navi-
gation often requires an agent to perform credit assignment. For 
example, after finding a rewarding Cheerio in a maze, a rat who 
wants to refind that Cheerio on subsequent laps will need to 
connect it with a series of actions taken at maze choice points 
well before the reward was even anticipated—“How did I  get 
here, and how can I get here again?” RL methods generally solve 
this problem by “planning backwards,” propagating the reward 
received at a goal state (e.g. maze location) along a reverse se-
quence of intermediate states and actions, updating each with 
the knowledge that it might yield the reward if visited in the fu-
ture. This kind of reward propagation, in which past states and 
actions are visited in reverse, hints at a similar role for reverse 
replay. However, if RL is going to explain replay, then it must 
account for forward replay too.

For many years, it has been suggested that forward and re-
verse replays might serve different purposes. For example, re-
verse replay might serve RL-based learning, and forward replay 
or theta sequences might serve model-based planning, pre-
sumably using the action policies formed by reverse replay [70, 
106, 107]. Unfortunately, even back-of-the-envelope calculations 
argue that forward replay is unlikely to be a computation cap-
able of considering competing action policies for immediate 
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action without leaving the animal mired in thought [5, 27]. For 
every action immediately available to an animal (e.g. “turn left” 
or “turn right”), there is a constantly branching tree of possible 
future actions that is infeasible to search through on the fly. In 
an excellent review, Joo and Frank [27] argue for an absence of 
SPW-R functional types and, implicitly, an absence of replay 
functional types. Their proposition, instead, is that the separate 
processes often attributed to different forms of replay are, in 
fact, different faces of one process, as yet poorly understood but 
likely encompassing decision-making, planning, recollection, 
imagination, and memory consolidation.

A modern account of replay and RL

Despite early suggestions that place fields and replay might 
be involved in an RL process [26, 108], essentially no promising 
formalization of replay within the RL framework took place 
until very recently [58]. Specifically, Mattar and Daw propose a 
theory that conceives of a place cell’s reactivation as a “Bellman 
backup”—the individual step of computation that uses a single 
past action (e.g. “turned left at choice point #1”) and its outcome 
(e.g. “ eventually found Cheerio”) to improve future action choice. 
Naturally, learning from certain action–outcome pairs will im-
prove future action choice more than others, and because each 
backup operation takes precious time, it makes sense to priori-
tize the order in which they should occur according to their ex-
pected value. Moreover, the expected utility of a backup might 
change depending on the current state and goal of an animal. By 
recognizing this and carefully formalizing the expected value of 
a given backup, Mattar and Daw propose a theory of which ex-
periences should be considered, and when, during deliberation. 
Furthermore, by recognizing that association of a reward with 
a goal state can happen upon reward consumption, and subse-
quent backups can happen any time between that moment and 
future choice, they outline an effective way for learning to occur 
at points temporally far removed from the actual experience.

In brief, their theory revolves around prioritizing backups 
(i.e. which place field should be reactivated next) according to 
a product of “need” and “gain.” Gain is essentially the answer 
to “how much more reward can I expect to earn by acting op-
timally from this location after performing this backup,” while 
the need term is essentially “how likely am I to visit this loca-
tion soon?” Because gain is closely linked to whether or not the 
animal will actually change its behavioral policy if a backup is 
performed (e.g. reducing the reward associated with the best 
possible outcome is not going to change anyone’s behavioral 
policy if that outcome remains the best, and therefore generates 
zero gain), asymmetric effects of increasing versus decreasing 
reward values lead to very different effects on behavior than 
simple surprise-driven reward prediction error frameworks. 
Furthermore, because there is nothing in the model that limits 
replay trajectories to those continuously traversed by the 
animal (i.e. it can compose previously experienced trajectories 
to form novel ones), it can learn policies that would be missed 
by traditional temporal difference learning, which is essentially 
equivalent to performing backups in the order that faithfully re-
capitulates experience [109].

With this framework in hand, the authors are able to capture 
and explain a stunning array of empirical findings including: re-
play accelerates learning on simulated navigation tasks that can 
still be learned without replay [70]; forward replay dominates 

before a run, and reverse replay dominates after a run when re-
ward is present at the end, but both can occur in either context 
[31]; most, but not all, replays begin at the agent’s location [26, 30, 
31]; replays are biased toward the agent’s location, toward choice 
points [36], toward reward [31, 32], and the bias toward reward 
persists during remote replay [33]; replay can construct trajec-
tories not previously traversed by the agent [20, 30]; the number 
of significant replay events in both directions decays with ex-
perience [26], as does individual place field reactivation [54]; and 
when events do occur, the probability that they include specific 
states increases with the number of visits to those states [38].

Perhaps most interesting and compelling is their ability to 
reproduce in simulations several empirical findings that relate 
to the asymmetric effects of prediction errors. For example, it 
is known that forward and reverse replay have different sen-
sitivities to reward context: the frequency of reverse replay in-
creases when rats counters a greater reward than expected, but 
actually decreases when the animal encounters a poorer reward 
than expected, and is sensitive to the amount of reward received 
relative to the total reward available (i.e. to alternative polices). 
On the other hand, the rate of forward replay does not change 
much, if at all, in either context [35, 36]. Finally, they are able 
to reproduce the finding that punishment (e.g. electric shock, 
framed here as negative reward) biases replay toward where the 
punishment was received, even though the agent avoids that 
area [37]. It should be noted that the authors of this study [37] 
were unable to determine replay direction due to a high pro-
portion (~70%) of bidirectional place fields. Mattar and Daw [58] 
do not report if forward or reverse replay drove their simulated 
effect, but this could constitute an interesting prediction of 
their model.

This new framework is reminiscent of the proposition by Joo 
and Frank [27]—in their case made more on the basis of em-
pirical findings than theoretical considerations, but entirely 
complementary—that the separate processes often attributed 
to different forms of replay are, in fact, different faces of one 
process. This new framework also paints a picture of replay as 
an active process, driving computation and change throughout 
systems, rather than simply “strengthening” memory traces. 
That is, memories are not things encoded independently of the 
need for action in an unbiased, dispassionate way. Forming a 
memory is, on this view, a sort of action. More speculatively, it is 
interesting to note that there is nothing in their model [58] that 
limits states to being spatial, and this could be taken as a predic-
tion—now borne out—that we should see replay of nonspatial 
task states where we are sensitive to them [88].

On the other hand, there is just as much new literature that 
does not fit neatly into the Mattar and Daw framework [8, 10, 42]. 
Three important limitations of this model deserve mentioning, 
some of which are relevant for the sleep field. First, it does 
nothing to explain when replay should take place. During their 
simulations, in which agents traversed various 1- or 2D environ-
ments, agents were simply forced to perform backups between 
trials (“quiet wake”), and then the place field reactivations that 
occurred were subjected to the traditional methods used to de-
tect statistically significant replay events. Thus, the form that 
replays took was guided by the model, but the simple fact of 
replay was not. This paradigm also assumes that events not de-
tected as part of statistically significant replay were part of the 
same fundamental process (prioritized Bellman backups), which 
may not be the case.
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Second, their gain term, roughly “how much more reward can 
I expect to earn in a given state after performing this backup,” is 
something that the brain needs to compute, and there are many 
ways that this could be done. For the purposes of their simu-
lations, the authors simply used the true gain, but this is only 
possible from the omniscient perspective of the experimenter. 
Although this tells us how theoretically optimal replay ought to 
behave according to their model, the brain would have to e.g. 
substitute past gain as a proxy for estimated future gain, or have 
some other heuristic. Future experiments could and should at-
tempt to distinguish between candidate heuristics.

Finally, their model assumes that spatial navigation can be 
expressed as a Markovian decision problem, in which the op-
timal action in a given state is independent of state history. 
This is obviously not realistic in, for example, spatial working 
memory tasks. There are several ways that non-Markovian prob-
lems can be reframed as Markovian, for example by defining 
states such that they take into account trial memory. It may not 
be unreasonable to expect that place cells behave this way [110], 
but work still needs to be done to apply the Mattar and Daw 
framework to these kinds of tasks.

Conclusions and Future Directions
The picture of replay that has emerged in recent years is one of 
a highly variable, model-based process whose most notable fea-
tures include modulation by reward, engagement by nonrecent 
and nonlocal contexts, generativity, and a possible relevance for 
abstract (i.e. nonspatial, possibly nonmnemonic) computations. 
It is not entirely clear whether replay is better conceived of as 
a random process biased by experience, or something more al-
gorithmic. The diversity of replay, while potentially reflecting 
wide-ranging and profound effects on several systems, also 
needs a unifying explanation. Alternatively, we may have to con-
clude that replay is not a unitary phenomenon.

Conceptually, one must ask whether there is anything spe-
cial about the reactivation of readily interpretable place-cell 
sequences as compared to “nonsense” replay of place cells, or 
even of nonplace cells. Of course, studying replay of readily in-
terpretable place-cell sequences is massively convenient. It is 
easy to design experiments that will elicit sequential activity in 
predictable ways; such sequences are easily tied to overt behav-
iors and rewards; spatial structure is practically guaranteed to 
be ethologically relevant, especially in rodents. Certainly, if one 
were to open the space of possible template sequences to in-
clude all spiking activity observed during active wake, analysis 
would become computationally and conceptually daunting. And 
yet it does seem that there is an opportunity, especially con-
sidering recently revived skepticism of representationalism 
[51], to consider the replay of neural patterns that might not be 
easily decoded or otherwise interpreted by the experimenter. 
We do not, after all, know what kinds of sequential activity 
really matter to what parts of the brain, and when. To this end, 
“template-free” or “sequence-first” approaches to detecting re-
play have just begun to emerge [10, 111], and are almost sure to 
prove disruptive.

There is also great opportunity to make sense of replay by 
moving beyond the hippocampus and studying what triggers re-
play, what biases its form and content, and what its downstream 
effects are. How might cells differentiate between forward and 

reverse replay? Does it make sense to think of some replay events 
as internally generated by the hippocampus, and others as ex-
ternally generated by cortex? How similar are the neural circuits 
engaged by replay and recall? Given its sensitivity to reward, are 
dopaminergic systems involved in the acquisition, generation, 
or modification over time of replay sequences? These are just 
a small fraction of questions waiting to be answered outside of 
hippocampus.

A merger of the field—which has historically been focused 
on theories of memory consolidation, cognitive map forma-
tion, and spatial navigation—with the computational study of 
decision-making is gaining momentum. This fresh perspective 
may not ultimately fare any better at explaining replay, but its 
precisely formulated theories and relatively tight loops between 
theory and experiment will likely help the field to refine not 
only its understanding of replay, but associated concepts like 
planning and memory. Moreover, the focus on decision-making 
is likely to form a convenient bridge between the rodent litera-
ture, in which replay content is nearly always viewed as spa-
tial (but see Stachenfeld et al. [112]), and the human literature, 
where abstract tasks will be preferred. The current absence of 
single-unit intracranial data supporting replay in humans is 
conspicuous and hunting for such data must surely be a top 
priority.
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