
research papers

J. Synchrotron Rad. (2025). 32, 609–621 https://doi.org/10.1107/S1600577525002334 609

ISSN 1600-5775

Received 12 September 2024

Accepted 15 March 2025

Edited by N. Artrith, Utrecht University,

The Netherlands

Keywords: beam stabilization; machine

learning; orbit correction; accelerator

stabilization.

Published under a CC BY 4.0 licence

Machine learning for orbit steering in the
presence of nonlinearities

Simona Bettoni,* Jonas Kallestrup, Güney Erin Tekin, Michael Böge and

Romana Boiger

Paul Scherrer Institute, Center for Accelerator Science and Engineering, 5232 Villigen, Switzerland. *Correspondence

e-mail: simona.bettoni@psi.ch

Circular particle accelerators require precise beam orbit correction to maintain

the beam’s trajectory close to the ideal ‘golden orbit’, which is centered within

all magnetic elements of the ring, except for slight deviations due to installed

experiments. Traditionally, this correction is achieved using methodologies

based on the response matrix (RM). The RM elements remain constant when

the accelerator’s lattice includes solely linear elements or when a linear

approximation is valid for small perturbations, allowing for the calculation of

corrector strengths to steer the beam. However, most circular accelerators

contain nonlinear magnets, leading to variations in RM elements when the beam

experiences large perturbations, rendering traditional methods less effective and

necessitating multiple iterations for convergence. To address these challenges, a

machine learning (ML)-based approach is explored for beam orbit correction.

This approach, applied to synchrotron SLS 2.0 under construction at the Paul

Scherrer Institut, is evaluated against and in combination with the standard RM-

based method under various conditions. A possible limitation of ML for this

application is the potential change in the dimensionality of the ML model after

optimization, which could affect performance. A solution to this issue is

proposed, improving the robustness and appeal of the ML-based method for

efficient beam orbit steering.

1. Introduction

Beam orbit correction is a critical aspect for a wide range of

accelerators, from those for high-energy physics experiments

to synchrotron light sources for biology and chemistry appli-

cations. Several methods have been established to steer the

beam, with the most commonly used approaches based on

response matrix (RM) inversion or singular value decom-

position, depending on the dimensions of the beam position

monitors (BPM) and correctors. In all these approaches, the

terms of the RM are considered constant, an assumption

strictly valid only when the machine’s lattice contains solely

linear elements.

However, synchrotrons which are equipped with sextupoles

and octupoles do not fulfill this condition, especially in cases of

large orbit excursions. In these machines, the beam orbit is

typically successfully corrected by weakening the error related

to these nonlinear effects by means of correction gains smaller

than one and iteration of the correction process. As the beam

gradually approaches the on-axis condition through the

nonlinear magnets, the error becomes more and more negli-

gible, and the orbit can be more efficiently steered.

Given the large number of variables involved (in principle,

all possible orbits through the nonlinear magnets and the

combinations of corrector strengths), machine learning (ML)

https://doi.org/10.1107/S1600577525002334
https://journals.iucr.org/s
https://scripts.iucr.org/cgi-bin/full_search?words=beam%20stabilization&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=machine%20learning&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=orbit%20correction&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=accelerator%20stabilization&Action=Search
https://scripts.iucr.org/cgi-bin/full_search?words=accelerator%20stabilization&Action=Search
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Bettoni,%20S.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Kallestrup,%20J.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Tekin,%20G.E.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Böge,%20M.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Boiger,%20R.
https://scripts.iucr.org/cgi-bin/citedin?search_on=name&author_name=Boiger,%20R.
mailto:simona.bettoni@psi.ch
http://crossmark.crossref.org/dialog/?doi=10.1107/S1600577525002334&domain=pdf&date_stamp=2025-04-11

is a highly suitable candidate for addressing this type of

problem.

ML has garnered significant interest in recent years across

numerous fields. In accelerators, its applications can be

broadly categorized into two main areas, virtual diagnostics

and optimization of machine performance. Maximizing avail-

ability is a crucial objective for accelerators, making non-

invasive methods to characterize the beam highly desirable.

Virtual diagnostics enable the determination of beam prop-

erties using a pre-trained model, thereby avoiding interrup-

tions to machine operation (Kaiser et al., 2024; Hanuka et al.,

2021; Bettoni et al., 2024).

Another area of ML application in accelerators involves

optimizing machine performance, such as maximizing photon

intensity in free-electron laser (FEL) facilities (Duris et al.,

2020), or stabilizing the beam in synchrotron light sources by

stabilizing the beam transverse size with respect to the

variation of the insertion devices’ properties (Leemann et al.,

2019; Hellert et al., 2024) or the beam orbit (Schirmer, 2019;

Bai et al., 2022; Li et al., 2023). These works explored the use of

neural networks (NNs) as an improved method for beam orbit

steering. In the case of a machine having solely linear magnets

the response of the machine to the corrector excitations is

linear, and the corrector strengths to correct any distortion

from the target orbit are those producing an orbit equal to the

difference between the target orbit and the actual one. For

accelerators that include nonlinear elements, not only does the

response of the machine depend on the actual orbit, but the

resulting orbit is also not simply the sum of the orbits

measured under different conditions. The works cited above

considered the first aspect, and experimental demonstration

has shown that this is a valid approach to accelerate orbit

correction. In our approach, we also account for the second

aspect. Specifically, for a given orbit, we perform a loop of

orbit corrections to determine the optimal corrector strengths.

In other words, in previous work NNs determined the

corrector strengths to produce an orbit equal in amplitude and

opposite in sign to the difference between the actual and

target orbits, assuming that adding this orbit to the actual one

would yield the target orbit. Our approach here directly

associates the actual orbit with the corrector strengths

required to achieve the target orbit. This methodology is

expected to address effectively both of the aforementioned

aspects, and therefore improve even more the orbit correction

in the presence of nonlinearities.

We applied this ML method to SLS 2.0, the synchrotron

under construction at the Paul Scherrer Institut (PSI),

described in Section 2. Section 3 recalls the standard proce-

dure for beam orbit correction based on the determination of

the RM, and its limitations in the presence of nonlinearities in

the machine. It is beyond the scope of this article to give an

exhaustive description of ML, but in Section 4 we provide an

overview of relevant concepts to aid the understanding of the

present work. Finally, in Section 5 we present the findings of

applying the ML approach to SLS 2.0. We considered different

families of perturbations in the lattice, and we used ML as a

standalone application and in combination with the standard

RM-based approach as well. In Section 6 we introduce a

methodology aimed at addressing a limitation of ML

approaches, namely the variability of the parameter space

after the model has been trained, as this is a potentially

important limitation of the use of ML methods for orbit

correction. This constitutes a significant advancement in the

application of ML techniques for accelerators.

2. Swiss Light Source 2.0

The Swiss Light Source (SLS) at the PSI has been a corner-

stone of research for both Swiss and international scientific

communities for more than two decades. The facility has

enabled numerous breakthroughs in various fields of photon

science by providing high-quality photon beams to 16 beam-

lines. However, advances in technology and increasing scien-

tific demand have necessitated an upgrade to maintain its

leading position. In September 2023, SLS was decommis-

sioned to make way for SLS 2.0, a state-of-the-art fourth-

generation light source. The upgrade to SLS 2.0 primarily

focuses on the optimization of the lattice, aiming to reduce the

horizontal beam emittance by more than a factor of 40, and

thus massively increase the photon beam brightness. Table 1

outlines the most relevant parameters for the discussion in this

article, and provides a comparison with those of SLS.

Fig. 1 shows the layout of one of the arcs of SLS 2.0.

Following the example of SLS it was decided to place pairs of

research papers

610 Simona Bettoni et al. � Machine learning for orbit steering J. Synchrotron Rad. (2025). 32, 609–621

Figure 1
(Top) Girder layout of one out of twelve arcs of SLS 2.0 consisting of four remotely adjustable girders and a central monolithic plinth. Each girder has a
length of about 4 m, and the distance between two of them is aboout 3 m. (Bottom) Corresponding schematic magnet arrangement (BPMs are
represented by double arrows). Apart from the last downstream BPM, they are accompanied by adjacent pairs of horizontal and vertical correctors.

horizontal and vertical correctors adjacent to BPMs in the

twelve arcs of SLS 2.0 in order to enable orbit correction by

direct inversion of the resulting square RM. Additional BPMs

are being installed in the machine to improve dispersion

correction (last downstream BPM in the arcs) and to provide

redundancy when applying the linear optics from closed orbits

(LOCO) algorithm (Safranek, 1997). The maximum kick

strength (see Table 1) has been optimized to guarantee the

necessary precision in orbit steering for static bumps and slow

and fast orbit correction feedbacks, and the need for correc-

tion of machine imperfections, assuming a reasonable set of

element misalignments (correlated misalignments from

girders and uncorrelated errors from individual magnets) as

detailed by Streun et al. (2023).

At the time of this work the installation of SLS 2.0 was

underway. For this reason, we performed all our studies

using simulation codes: the virtual accelerator first, based on

MAD-X (https://archive.org/details/manualzilla-id-6906976),

and pyAT (Rogers et al., 2017) later.

3. Orbit correction in synchrotrons

Orbit correction is a critical aspect of beam stabilization in

accelerators and several algorithms have been developed to

address this aspect. In the following sections, we will focus on

an approach based on the use of orbit excitation induced by

changes in the corrector strengths. In particular, we will

describe the methodology for machines containing solely

linear magnets (dipoles and quadrupoles) in Section 3.1. We

will discuss the limitations of this approach when higher-order

magnets (such as sextupoles and octupoles) are present in the

accelerator’s lattice in Section 3.2.

3.1. Linear orbit response

The usual orbit correction method in synchrotrons is based

on either a modeled or a measured RM, R. This matrix may be

divided into four blocks,

R ¼
Rxx;Rxy

Ryx;Ryy

� �

; ð1Þ

where x and y are the transverse horizontal and vertical

dimension, respectively. The sub-matrix Rxx (Ryy) is the pure

block, since it describes the beam orbit response in the plane

of the corrector excitation. The off-diagonal blocks, Rxy and

Ryx, describe the RM coupling terms, since they contain the

orbit response in the plane orthogonal to that where the

correctors are varied. Each block has a size of M � N, where

M and N are the number of the BPMs and correctors,

respectively.

In this section we will assume that the coupling has been

previously corrected using the skew elements in the machine,

implying that the coupling blocks are null. We will focus on the

transverse plane x, but all the considerations are valid for the

vertical plane y as well. The (i, j)th element of each block

describes the orbit change at the ith BPM due to an excitation

induced by the corrector magnet j,

Rxx ¼

a1;1 a1;2 . . . a1;N

a2;1 a2;2 . . . a2;N

..

. ..
. ..

. ..
.

aM;1 aM;2 . . . aM;N

2

6
6
6
4

3

7
7
7
5
; ð2Þ

where the ai, j elements are the derivatives of the orbit varia-

tion at a specific location along the machine (typically at a

BPM) with respect to the strength of the corrector used to

induce the orbit oscillation. If the machine contains only

dipoles and quadrupoles, without any higher-order multipoles,

the terms of the RM are constants and can be calculated

analytically as [see, for example, Chao et al. (2013)]

ai;j ¼
�i�j

� �1=2

2 sin��
cos �i � �j

�
�

�
� � �x�

� �
; ð3Þ

where �x is the horizontal tune, �i � �j the phase advance

between the considered BPM and corrector, and �i and �j are

the Twiss parameters at these locations in the x plane.

In linear machines, the change in beam position �x can be

reproduced by a series of corrector setting changes �hx,

�x ¼ Rxx�hx: ð4Þ

The objective of the beam orbit steering is to determine the

�h which, when added to the actual corrector strengths,

produces the target orbit. For simplicity, and without loss of

generality, we assume that the target orbit is that corre-

sponding to the zero orbit. For a square RM, �x can be

obtained by matrix inversion,

�hx ¼ R� 1
xx �x: ð5Þ

The corrector strengths to steer the beam to the target orbit

are determined by subtracting the deflection vector �h from

the current set point of the correctors. Pseudo-inversion of the

RM using e.g. singular-value decomposition (SVD) may be

considered for non-square RMs. For the inversion, even of

square RMs, it is essential that the RM is well conditioned,

since small singular values of the RM can funnel noise into the

correction; this may be solved using either an eigenvalue cut

or Tikhonov regularization (Friedman & Bozoki, 1994; Tang &

Krinsky, 1993). In the following we consider the RM-based

approach based on matrix inversion, which is the approach

followed at SLS and that will be used at SLS 2.0.

research papers

J. Synchrotron Rad. (2025). 32, 609–621 Simona Bettoni et al. � Machine learning for orbit steering 611

Table 1
Comparison of the parameters of SLS and SLS 2.0 with emphasis on the
most relevant for the discussion in this article.

H and V stand for horizontal and vertical, respectively.

SLS SLS 2.0

Energy (GeV) 2.4361 2.7000
Circumference (m) 288 288
Current (mA) 400 400
H, V emittances (pm) 5630, 10 135, 10

Operation mode Top-up Top-up
Number of H, V correctors 73, 73 115, 115
Number of H, V BPMs 73, 73 115, 115
Number of spare/test BPMs H, V 2, 2 20, 20
Corrector angle H, V (mrad A� 1) 121, 96 120, 80
Maximum H, V kick strength (mrad) 850, 670 600, 400

https://archive.org/details/manualzilla-id-6906976

3.2. Effect of nonlinearities

As outlined above, the RM method inherently assumes

linear optics. However, the next generation of light sources,

such as SLS 2.0, employ strong nonlinear magnets such as

sextupoles and octupoles to correct and control the large

chromatic and amplitude-dependent tune shifts. With these

magnets, the linearity of the response matrix required for the

validity of equations (2)–(5) is no longer guaranteed. As

schematically illustrated in Fig. 2, each element of the RM

depends on the beam orbit as the beam passes off-axis through

one of the nonlinear magnets along the machine.

As an example, the horizontal pure block will look like

RMxx ¼

a1;1ðx; yÞ a1;2ðx; yÞ . . . a1;Nðx; yÞ

a2;1ðx; yÞ a2;2ðx; yÞ . . . a2;Nðx; yÞ

..

. ..
. ..

. ..
.

aM;1ðx; yÞ aM;2ðx; yÞ . . . aM;Nðx; yÞ

2

6
6
6
4

3

7
7
7
5
: ð6Þ

Due to nonlinear coupling arising from high-order magnets

(either normal or skew), the ai, j terms of the RM depend on

both the horizontal and vertical orbit and, furthermore, they

are functions of the beam orbit through the nonlinear

magnets.

We computed the ai, j terms of the SLS 2.0 RMxx and RMyy

sub-matrices as a function of the corrector excitation using the

tracking code pyAT to verify the impact of this effect. As

shown in Fig. 3, the response of the beam orbit to a corrector’s

excitation is not constant with the strength of the corrector.

The impact of the nonlinearity of the machine’s response is

not a negligible effect, as evident from the plots shown in

Fig. 4. These plots illustrate the orbit responses for both

positive and negative kick strengths of equal magnitude and

highlight the discrepancies between these two scenarios.

Even for a kick strength equal to one-sixth of the maximum

kick strength in the horizontal plane (see Table 1), we observe

a difference of approximately 20 mm between the positive and

negative kick orbits. For a corrector strength equal to the

maximum strength expected in the horizontal plane, this orbit

difference increases up to 1 mm. This makes the machine

handling difficult when correcting down to the ‘golden orbit’

from the corresponding very large orbits.

The orbit correction algorithms discussed in Section 3.1

perform effectively even in the presence of nonlinear magnets,

albeit requiring multiple iterations to achieve convergence.

The terms of the RM can be expanded using a Taylor series,

aj;kðx; yÞ ¼ bj;k þ b0j;kðx; yÞ þ b00j;kðx; yÞ þ . . . ; ð7Þ

where bj, k is determined by the linear magnets in the machine,

whereas b0j;k and b00j;k are influenced by the contributions from

the higher-order magnets. The difference between aj, k and bj, k

decreases as the beam orbit aligns with the higher-order

multipole magnets axis due to the iterative orbit correction

process.

ML presents a promising approach for beam orbit control,

given the large number of parameters involved, e.g. any

potential beam orbit in both planes and the numerous

combinations of corrector strengths. Implementing an ML-

based strategy could significantly speed up orbit correction

processes, particularly for large orbit excursions. As a

demonstration, we applied this methodology to SLS 2.0.

However, the approach is equally applicable to any other such

machine, high-energy physics machine, light source or any

other kind of accelerator, where nonlinearities may affect the

orbit response significantly.

4. Machine learning: methodology

Neural networks (NNs) , a special type of machine learning

method (Mitchell, 1997), are powerful computational instru-

ments that link input (xi) and output (yi) data. Many different

NN architectures have evolved over recent decades (Alzu-

baidi et al., 2021). In this work, we focus on densely connected

feedforward NNs, where neurons are grouped in layers and

each neuron from one layer is connected to all neurons in the

subsequent layer. Therefore the number of layers (= width of

the NN) and the number of neurons per layer (= height of a

layer) are the first and most critical hyperparameters that need

to be chosen. A schematic of such a neural network is depicted

in Fig. 5.

research papers

612 Simona Bettoni et al. � Machine learning for orbit steering J. Synchrotron Rad. (2025). 32, 609–621

Figure 2
Beam passing through (a) a quadrupole and (b) a sextupole, assuming
different offsets, corresponding variation in the transverse orbit �x due
to the excitation kick by a corrector, and resulting term of the RM.

Figure 3
(Left) Horizontal and (right) vertical response terms for a single BPM as
a function of the strength of the (left) horizontal and (right) vertical
corrector kick. For a machine containing uniquely linear magnets, the
terms are expected to be constant. In the case of the SLS 2.0 lattice, where
sextupoles and octupoles are present, we observe a dependence of the
machine response on the kick amplitude.

A single neuron maps its inputs xi to the output of this

neuron yi using the activation function g,

yi ¼ g
XN

i¼1

wixi þ b

 !

; ð8Þ

where the weights wi and bias b are learnt through optimiza-

tion, and N is the number of inputs. In this work, we use for g

the ELU (exponential linear unit) activation function, defined

as

ELUðxÞ ¼
x if x> 0 ,

� expðxÞ � 1 if x � 0 ,

�

with � = 1 as the default value. The outputs of neurons in the

previous layer serve as inputs to neurons in the next layer,

forming the densely connected structure.

We followed a three-step approach, where the data are split

into independent sets, DataTRAIN, DataVAL and DataTEST,

each containing inputs and outputs. DataTRAIN is used to

determine the optimal parameters to minimize the loss func-

tion. After each epoch (a group of gradient descent itera-

tions), DataVAL is employed to evaluate the model’s

performance up to that point in the optimization process.

Specifically, the loss for DataVAL is computed to detect over-

fitting, which occurs when the network starts memorizing the

training data points instead of learning the general relation-

ship between input and output. In this scenario, the training

loss decreases, while the validation loss remains constant or

increases. DataTEST is used for subsequent testing once the

model training is completed, providing insights into the

model’s generalizability. Considering the large variation in the

data values, they were scaled from 0 to 1 using MinMax

scaling.

The training of the NN is based on the minimization of a

loss function whose definition depends on the specific problem

considered. In our case we selected the mean squared error

(MSE), defined as

Loss ¼
1

N

XN

i¼1

ypred;iðwÞ � ytrue;i

� �2
þ �

XN

j¼1

w2
j ; ð9Þ

where N is the number of data points, ypred, i and ytrue, i are the

output prediction and the training output values, respectively,

w = (w1, . . . , wN) are the weights and � is the regularization

parameter. This last parameter is used to mitigate overfitting,

since it limits the growth of the weights.

Beyond the regularization rate, many other parameters

must be selected for optimal NN training. A crucial compo-

nent of NN training is the selection of an appropriate opti-

mizer algorithm. After some tests, we employed the ADAM

optimizer (Kingma & Ba, 2015). The learning rate significantly

influences the optimization process by determining the gran-

ularity of the updates, thereby affecting the computation

speed. Typically, the optimization algorithm does not utilize all

samples from the dataset simultaneously; instead, it processes

data in subsets called batches at each iteration, making the

batch size another critical hyperparameter. Additionally, the

research papers

J. Synchrotron Rad. (2025). 32, 609–621 Simona Bettoni et al. � Machine learning for orbit steering 613

Figure 4
Horizontal orbits at one BPM varying the strength of a corrector
assuming an excitation angle of +kick (red line, top plots) and � kick
(blue line, top plots) and the difference between the two orbits (green,
bottom plots). We repeated the simulations for several kick strengths in
the range 100–600 rad, the upper limit being the maximum corrector
strength in SLS 2.0. The value of the kick strength is reported above each
top plot.

Figure 5
Schematic layout of a full NN. Each circle represents a neuron and a
vertical string of neurons composes a layer. The parameters defining the
architecture of the NN, depth (which may vary between the different
layers) and width, are also shown.

number of epochs is crucial for the optimization algorithm,

and must be chosen either manually or through appropriate

stopping criteria.

In the NN presented in this work we also implemented

batch normalization and dropout layers between the dense

connections. This reduces the convergence time of the

training. Batch normalization (Ioffe & Szegedy, 2015)

normalizes the data as they propagate through the network,

preventing small changes in the weights from amplifying into

significant variations in the output or the gradient. This

normalization enables higher training rates, reduces the

number of iterations needed and improves accuracy. Dropout

layers (Srivastava et al., 2014) are employed to reduce over-

fitting by randomly setting a fraction of the neurons’ outputs

to 0 during the training. This strategy decreases reliance on

specific neurons, thereby ensuring that all neurons contribute

to the network output. After training, the dropout layers are

deactivated, and all neurons are used for inference.

A possible limitation of the use of NNs is a change in the

model after the training phase, which may make the use of the

trained model impossible. In our case a typical example is the

malfunctioning of one or more BPMs. We developed a way to

overcome this issue, employing an autoencoder structure,

described in Section 6.

To conclude, for all NN architectures the following hyper-

parameters need to be chosen: width and depth, activation

function, loss function, regularization parameter, optimization

algorithm, learning rate, batch size and number of epochs. We

fine-tuned these parameters to achieve optimal performance,

i.e. minimum loss and validation loss in the smallest possible

number of epochs. We used TensorFlow (Abadi et al., 2015) in

conjunction with Keras (Chollet et al., 2015) and open-source

Python libraries for the implementation of the framework.

5. Machine learning: application to orbit correction

We explored various scenarios with different machine

perturbations and inputs. Specifically, this article focuses on

two cases. In each scenario, the output corresponds to the

corrector strength needed to steer the beam to the target orbit.

The input can either solely consist of the beam orbit (type 1

network, N1a and N1b) or include both the beam orbit and

initial corrector strengths (type 2 network, N2).

5.1. Dataset generation

To generate the datasets, we perturbed the ideal lattice of

the machine. We used both static perturbations, i.e. constant

across all the data generation seeds, and dynamic perturba-

tions, i.e. varying at each seed. Table 2 provides an overview of

the type and magnitude of perturbations applied to generate

datasets for the different networks.

We conducted simulations under conditions where machine

elements exhibited both uncorrelated and correlated mis-

alignments, and also perturbations occurring during synchro-

tron operation, like changes in tunes via variation of the

quadrupole strengths and light wavelength changes via

adjustment of the ID gaps. The orbit correction algorithms

described in Section 3.1 assume prior correction of coupling.

Conversely, the ML-based approach remains effective even in

the presence of coupling within the machine. To demonstrate

this capability, we intentionally introduced additional coupling

into the lattice.

For each seed, we generated an orbit (as input for the NN)

by introducing perturbations according to the distributions

specified in Table 2. We then iteratively steered the beam

towards the target orbit using the RM inversion approach

until the maximum difference between the simulated orbit and

the target one was less than 10 nm, unless otherwise specified.

For each initial orbit, we recorded the corresponding corrector

strengths as outputs. For the networks of the first type, we

reset the corrector strengths to their initial values at each seed.

Conversely, for the networks of the second type, we allowed

the corrector strengths to vary freely without resetting them.

The first case corresponds to operation under a reference

condition and making adjustments back and forth from it (for

example changing the machine tunes and returning to the

nominal set point). This corresponds to the networks of the

first kind, N1a and N1b. The second option corresponds to

scenarios where we freely move around the operating condi-

tion. In this case, the output remains consistent with previous

cases, but the input includes not only the BPM readings in

both planes, as in the previous scenario, but also the initial

strengths of correctors before the orbit correction. For SLS

2.0, this results in doubling the number of input values per

data point. This corresponds to the network of the second

kind, N2.

Our perturbations aimed to ensure large orbit excursions of

the order of a few millimetres, where nonlinear dynamics is

non-negligible, corresponding to corrector strengths of a few

amperes across all scenarios considered for the data genera-

tion.

We generated the training, validation and test datasets.

DataTRAIN and DataVAL were utilized for model development

research papers

614 Simona Bettoni et al. � Machine learning for orbit steering J. Synchrotron Rad. (2025). 32, 609–621

Table 2
Perturbations introduced in the SLS 2.0 design lattice for the generation
of the datasets.

The datasets are generated using the virtual accelerator (N1a) and pyAT (N1b

and N2). The type of perturbation, static (S) or dynamic (D), is also reported.
The majority of the perturbations are defined as fractions of the machine

imperfections used for the SLS 2.0 performance evaluation (Gaussian distri-
butions truncated at two standard deviations) (Streun et al., 2023). To them we
added some extra coupling by varying the quadrupolar strength of the first
sextupole from the injection, and extra kicks in both transverse planes to
simulate residual dipoles introduced by the insertion devices (IDs) as func-
tions of their operating gaps.

N1a N1b, N2 Type

Element-to-element (mm r.m.s.) 0.9 15 S
Girder center (mm r.m.s.) 1.8 30 S
Girder-to-girder (mm r.m.s.) 0.6 – S

BPM offset (mm r.m.s.) 9 – S
Magnet rotation (mrad) 9 150 S
BPM rotation (mrad r.m.s.) 0.3 – S
Extra coupling: k1 at Sext1 (m� 1) – 0.1 S
Relative k1 (%) �0.5 �1 D
ID kicks (H and V) Variable – D

as detailed in Section 4. Subsequently, the trained model was

applied to estimate the corrector strengths based on the orbits

in DataTEST. In our ML model, the input consists of orbit data

while the output corresponds to the corrector strengths. Under

a standard testing approach, the evaluation would conclude at

this stage. However, we extended the analysis by imple-

menting the calculated corrections on the orbits in DataTEST

within the machine’s lattice. This approach offers two advan-

tages: it enables direct evaluation of the orbit correction

scheme’s performance on the beam by measuring orbit

excursions rather than corrector strengths, and it facilitates the

transition to future real-data implementation of the ML-based

method, where BPM and corrector strength readings from the

control system would replace those obtained by simulated

data.

In the following subsections, we will focus on evaluating the

performance of the networks belonging to the first kind, N1a

and N1b.

5.2. Neural network optimization and performance

We conducted a detailed study of network N1b, optimizing

its hyperparameters and convergence speed. We prevented

overfitting by applying techniques such as batch normalization

and dropout layers, as discussed in Section 4. While we did not

extend the optimization efforts for network N1a to the same

extent (especially in terms of convergence speed) as for the

other considered cases, we used the results obtained from it to

compare the ML performance with the pure RM-based

method, explore its combined usage with it and assess the

robustness of the approach proposed in this work.

5.2.1. Network N1a

We optimized network N1a by performing a grid search over

all relevant hyperparameters, selecting those minimizing the

loss and also maintaining a small validation loss. During the

training/validation phase, we observed that networks with

insufficient complexity tended to underperform, resulting in

high training and validation losses. Conversely, excessively

complex networks exhibited overfitting, as showed by a

significant increase in validation loss despite a continued

decrease in training loss. With these considerations, we

selected a network architecture that balanced performance

(low losses) with simplicity, avoiding unnecessary complexity.

Our primary criterion for choosing the architecture was

achieving minimal loss while mitigating overfitting (small

validation loss). This behavior is illustrated in Fig. 6, where

overfitting appears in the most complex architectures. For

instance, in the bottom right-hand graph, the validation loss

begins to increase after approximately 10000 epochs, even as

the training loss continues to decrease. Based on these

considerations, we selected a network architecture with width

and depth equal to 2 and 230, respectively, for all subsequent

analyses.

We used both DataTRAIN and DataVAL to compare the

expectations of the trained model with the outputs. In parti-

cular, Fig. 7 shows the peak-to-peak absolute difference

between the model predictions and data not included in either

the training or validation phases.

Fig. 8 shows the standard deviation of the absolute differ-

ence between the model prediction and the data as a function

of corrector location along the ring. Even though the number

of epochs required for convergence is probably not optimal,

the performance of the trained model is deemed satisfactory

for the purposes of our discussion, with the discrepancy

between the model predictions and the actual data being of

the order of one in a thousand at most at the ID locations.

Fig. 9 shows the expected number of iterations required by a

pure RM-based approach using matrix inversion to correct the

orbit, assuming different tolerances on the maximum orbit

excursion in both transverse planes and considering the same

lattice perturbations introduced during the generation of the

research papers

J. Synchrotron Rad. (2025). 32, 609–621 Simona Bettoni et al. � Machine learning for orbit steering 615

Figure 6
Loss and validation loss when varying the complexity of the network
architecture (network N1a). The first and second numbers reported in
parentheses in the plots indicate the width and the depth of the hidden
layers, respectively.

Figure 7
NN prediction for the network N1a: seed-to-seed (upper plots) and
corresponding distributions (lower plots) of the trained model expecta-
tions with respect to the data output (DataVAL and DataTRAIN together)
in both planes. Each color corresponds to a corrector.

dataset for network N1a. On average between three and four

iterations are necessary to correct the beam orbit to a

maximum excursion within 1 mm to 10 mm, and up to seven

iterations are required to achieve a correction of 10 nm.

Fig. 10 shows that ML can steer the beam orbit down to a few

micrometres in a single iteration.

ML may be utilized in various ways to correct the beam

orbit: either as a standalone method, or as a preliminary phase

followed by an RM-based or any other conventional approach

applied in cascade. The latter option is particularly attractive

because it exploits the ML approach’s capability to steer the

beam efficiently close to the on-axis trajectory where the RM-

based method becomes effective as well. The latter strategy

allows an improvement in the machine’s stability to large

perturbations, reducing the number of necessary iterations by

a factor of two in our case, as shown in Fig. 11.

For all the studies described up to this point, we used the

design RM, as this reflects the normal operating conditions of

a running synchrotron during photon delivery. Measuring the

RM typically requires half an hour or more at SLS, depending

on factors such as the number of BPMs and correctors.

However, relatively recent methods based on a sine-wave

excitation of correctors at multiple frequencies have signifi-

cantly expedited this process, reducing the time needed to

measure a full RM to just a few minutes (Martin et al., 2014;

Yang et al., 2017). We repeated the studies using the RM

computed around the orbit at each seed (RM-seed) to verify

research papers

616 Simona Bettoni et al. � Machine learning for orbit steering J. Synchrotron Rad. (2025). 32, 609–621

Figure 8
Network N1a. NN versus data comparison: standard deviation of the
difference between the trained model expectations and the data output
(DataVAL and DataTRAIN are used).

Figure 9
(Top) Distributions of the number of iterations necessary to correct the
orbit, assuming different maximum orbit excursions in both transverse
planes (orbit tolerances) in the presence of lattice perturbations intro-
duced during generation of the dataset of the N1a network. (Bottom)
Mean (dots) and standard deviation (error bars) corresponding to these
distributions.

Figure 10
(Top) Distributions of the error on the corrected orbit using the trained
model (network N1a) in both transverse planes. (Bottom) Maximum orbit
deviation as a function of the percentile referring to these distributions.
The majority of the seeds correspond to an orbit correction error below
5 m in both planes in a single ML iteration.

Figure 11
Comparison of the RM-based approach (blue) and the ML and RM-
based method in cascade (network N1a, orange), showing the distribution
of the number of iterations necessary to steer the beam assuming a
maximum tolerance of 10 nm in both transverse planes.

that the improvement in the orbit correction speed was not

due to the use of the design RM instead of the RM-seed.

For the majority of seeds, employing the ML and RM-based

methods in cascade proves to be advantageous compared to

using the standalone RM-based approach, even when the RM

calculated for each seed (RM-seed) is utilized, as shown in

Fig. 12. This excludes the possibility that the reduction in the

number of iterations required to steer the beam is due solely

to the use of the design RM. Moreover, if the RM-seed instead

of the design RM can be utilized for orbit correction (further

reducing the time necessary to measure it), the acceleration

achieved by the ML method can be even more significant.

5.2.2. Network N1b

We used different variables to generate the datasets for case

N1b to investigate different scenarios. We tuned the strengths

of the variables to achieve similar beam orbit excursions and

corresponding corrector strengths, but distributed differently

along the ring. As a result, we obtained similar distributions

for the number of iterations required to steer the beam using a

fully RM-based approach based on RM matrix inversion, as

evident from comparison of Fig. 13 and Fig. 9.

Fig. 14 shows a comparison of a typical training plot

between the case optimized using the same procedure as for

network N1a and that applying more advanced techniques

such as dropout and batch normalization to improve the

convergence of the training, as described in Section 4. The

application of these techniques improves the convergence

speed in terms of loss, and gives an even smaller validation loss

than the standard optimization. Table 3 reports the optimized

hyperparameters referring to the results reported in Fig. 14.

In the following we report the analyses obtained using the

NN corresponding to the worst convergence speed, but they

are also valid for the other case, which corresponds to an even

better final validation loss.

We obtained a very small (less than 5 mA) seed-to-seed

discrepancy between the model predictions and the datasets

for all cases considered, as shown in Fig. 15. This discrepancy

research papers

J. Synchrotron Rad. (2025). 32, 609–621 Simona Bettoni et al. � Machine learning for orbit steering 617

Table 3
Optimized hyperparameters and results referring to the N1b network,
obtained from a grid scan.

Parameter Value

Width 2
Depth 230

Batch size 512
Regularization parameter (l2) 1 � 10� 8

Learning rate 5 � 10� 5

Dropout function parameter 0.1
Final loss 3.4 � 10� 3

Final validation loss 2.9 � 10� 3

Figure 12
Number of iterations as a function of the percentile of the standalone
RM-based approach, and the ML and RM-based approach used in
cascade, assuming both the design and the seed RM (computed at each
seed) for network N1a.

Figure 13
Usage of the trained NN to correct the orbit. (Top) Distribution of the
number of iterations to correct the orbit assuming different values for the
maximum orbit excursion. (Bottom) Mean and standard deviation of the
distributions shown in the top plot.

Figure 14
Loss and validation loss for network N1b trained in the same way as N1a

and, in addition, with the implementation of batch normalization (B.N.)
and dropout (Drop.).

corresponds to a standard deviation of about 2 mA in the

worst case, and of the order of half this value for the majority

of the shots, as reported in Fig. 16.

We created several orbits by varying the parameters in the

same manner as during dataset generation, and subsequently

applied the trained model to steer the beam. Fig. 17 shows the

results.

Starting from a maximum orbit excursion of the order of

millimetres or a fraction thereof, the pure RM-based method

brings the excursion down to a few hundred micrometres in a

single iteration. The ML-trained model manages to steer the

beam down to a few micrometres, corresponding to an

improvement of about a factor of 70 in a single iteration. The

RM-based approach would steer the beam orbit to the same

values or even smaller, but it would require a larger number of

iterations, between three and four according to Fig. 13. The

inherent drawback of ML and NNs, in general, is that we

cannot achieve a perfect model of the physics we aim to

describe, but rather a model with some degree of error. This

limitation is, to the best of our understanding, an undesirable

yet unavoidable feature of any ML model. As a result, the

most appealing approach to utilizing ML for beam steering is

to employ it for the first iteration which, we have confirmed,

sufficiently adjusts the beam off-axis to a degree where the

nonlinear effects of the higher-order magnets typically present

in synchrotrons are negligible. Therefore, we propose using

ML solely for the first iteration and subsequently employing

the more conventional and well established RM-based

approach for further beam orbit correction. Combined use of

ML (first iteration) and the RM-based approach (subsequent

iterations) in cascade would allow a significant improvement

in beam stability in cases of large orbit excursions.

5.2.3. Extension to N2

So far, we have presented a scenario corresponding to the

case of moving from the set point of the synchrotron and

coming back to the same operating conditions (network of the

first kind). We used this as our reference case: we verified the

expected performance of the orbit steering using solely ML,

exploiting it in combination with RM and computing the RM

on the actual beam orbit, and optimized the network in terms

of convergence. A synchrotron may also operate in a different

way, characterized by changes without coming back to the

research papers

618 Simona Bettoni et al. � Machine learning for orbit steering J. Synchrotron Rad. (2025). 32, 609–621

Figure 15
Comparison of NN versus data (network N1b). (Top) Seed-to-seed and
(bottom) corresponding distributions of the model expectations with
respect to the data output (DataVAL and DataTRAIN) in both planes.

Figure 16
Network N1b. NN versus data comparison: standard deviation of the
difference between the trained model expectations and the data output
(DataVAL and DataTRAIN are used).

Figure 17
Comparison of the RM-based and ML methods (network N1b). Distri-
butions of the maximum orbit deviation from the target orbit before any
correction (blue), after one RM-based correction (orange) and after one
ML correction (green). The upper and lower plots refer to the horizontal
and vertical plane, respectively. The mean and standard deviation of each
distribution are also reported in the plots.

initial set point. This case corresponds to the second kind of

network. As mentioned above, this doubles the number of

variables in the input, since the corrector strengths before the

orbit correction must be included too. We verified that the

increased complexity of the NN does not degrade the meth-

od’s performance in terms of the discrepancy between the

trained model and the actual data, as shown by a comparison

of Figs. 16 and 18.

We can therefore conclude that the performance of network

N2 is equivalent to that of networks of the first kind. This

further expands the applicability of the ML approach to

correct the beam orbit.

6. Machine learning: model robustness to hardware

failures

A critical challenge in applying ML to real-world systems is

the potential change in data conditions over time, which can

differ from the data used during training. If not properly

addressed, this issue can render ML applications impractical.

We examined the scenario where one or more BPMs

malfunction after the data have been used for training. The

NN architectures previously described cannot handle a

different dimensionality and require retraining if a BPM value

is missing. To address this, we modified our NN, making use of

an autoencoder to enhance its robustness to such events.

An autoencoder is designed to encode input data into a

lower-dimensional vector space, often referred to as the latent

space, and subsequently to reconstruct the input from this

encoded representation. This is achieved by decreasing the

width of the dense layers during the encoding phase and

increasing it during the decoding phase, as shown schemati-

cally in Fig. 19.

Ideally, the latent space should possess just enough

dimensions to encapsulate all the essential information of the

input vector. Our objective is to train the autoencoder such

that the encoder can accurately represent the state of the

beam in the latent space, even if some BPMs are broken. We

can then utilize a new network to calculate the corrector

strengths directly from the latent space, bypassing the need for

the decoder. Instead of training the networks separately, we

train both of them together as a single integrated network.

This combined architecture takes the BPM measurements as

input and it gives as output both the corrector strengths and

the reconstructed BPM values.

We applied this technique to the data of network N1b. We

replaced a fraction of the BPM readings with constant value

data points that were not present in the training data, to

simulate a broken device. For each selected data point, we

substituted the measurement from a randomly chosen BPM

and axis (x or y) with this constant value. Both the BPM and

the axis with the faulty reading were selected randomly, as

elaborated in the following. Generalizing to a scenario where

a malfunctioning BPM affects both horizontal and vertical

measurements can be done relatively easily without changing

the results described in the following.

We employed an autoencoder architecture to reconstruct

the missing BPM readings. Similar to the other case, we used

the MSE as the loss function, but adding to it the MSE

between the reconstructed BPMs and the original BPM

readings. The autoencoder trained in this way also learns how

to reconstruct accurately the readings of the broken BPMs.

After careful optimization of the hyperparameters of the

NN, we found that the best performing configuration is a

symmetrical autoencoder with two layers in both the encoder

and decoder, and a 30-dimensional latent space, i.e. a reduc-

tion of almost a factor of eight with respect to the previous

networks. The additional section to calculate the corrector

strengths consists of two layers as well. Fig. 20 shows the mean

of the discrepancy between the computed corrector strengths

and the generated data as a function of the number of BPMs

giving a faulty reading, �I, and the corresponding mean error

on the BPM reading reconstruction, �x.

Using the autoencoder NN, we obtained an error in the

prediction of the corrector strengths of the order of a few

milliamperes for up to three faulty BPM readings. This

represents a step forward for the use of NN in real accel-

research papers

J. Synchrotron Rad. (2025). 32, 609–621 Simona Bettoni et al. � Machine learning for orbit steering 619

Figure 18
Network N2. NN versus data comparison: standard deviation of the
difference between the trained model expectations and the data output
(DataVAL and DataTRAIN are used).

Figure 19
Schematic view of an autoencoder. The dimensionality of the NN varies
along the different sections: the depth is reduced, constant and increased
along the encoder, the latent space and the decoder, respectively. The
circles represent the neurons.

erators, because it makes us confident that we can use the NN

even in cases of malfunctioning hardware, which may some-

times happen during the machine’s operation.

7. Conclusions

The RM-based approach is conventionally used for beam

steering in accelerators. In machines equipped not only with

linear but also higher-order magnets such as sextupoles and

octupoles, the RM terms are influenced by the beam orbit

through these higher-order magnets. As a result, the standard

RM-based approach often requires multiple iterations to

correct the beam orbit, in particular for large deviations.

Given the typically large number of variables involved, we

explored the possibility of using an ML-based approach either

as a standalone correction technique or in conjunction with

RM-based methods. This approach is independent of the

specific algorithm used for beam steering and uses past orbit

corrections to adjust beam orbits efficiently. Moreover, it

works well in the presence of machine element misalignments,

coupling and other unknowns. We applied this approach to

SLS 2.0. In the case of large perturbations (millimetre-scale

excursions) the ML-based method predicts the corrector

strengths needed to steer the beam with a precision of a few

parts per thousand (maximum orbit excursions of the order of

a few micrometres) in a single iteration step, corresponding to

an approximately 70 times smaller orbit deviation compared

with the prediction of the commonly used RM-based

approach. Our investigations yielded consistent results across

various types and strengths of perturbations. We also studied

two operational scenarios – fixed set points and dynamic ones

– and found comparable performances for the two cases.

Additionally, we enhanced the method’s robustness in the

event of hardware failures, such as malfunctioning BPMs,

which could potentially hinder ML applications. We devel-

oped strategies to mitigate these issues, further enhancing the

attractiveness of the ML-based method.

The current ML approach shows very promising results for

orbit correction. For future research, we plan to investigate

different ML strategies as well. A combination of reinforce-

ment learning with the simulation software used could

enhance both efficiency and robustness. Additionally,

ensemble methods that combine different ML models could

offer further performance benefits. Exploring alternative NN

architectures, such as convolutional-based networks, particu-

larly those incorporating periodic boundary conditions, may

provide a better representation of synchrotron dynamics.

Finally, integrating uncertainty metrics and active learning

could further optimize the model by refining predictions and

adapting to evolving conditions.

Based on our findings, ML or, even better, ML integrated

with an RM-based method, represents a robust tool for

improving the SLS 2.0 stability in cases of large machine

perturbations. Its applicability extends to other synchrotrons

and machines featuring higher-order magnets beyond quad-

rupoles in their lattice.

Acknowledgements

Simona Bettoni acknowledges M. Caubet Serrabou for his

exceptional and timely assistance with the PSI cluster, and

expresses gratitude to S. Foiera and R. Kapeller for their

support in installing TensorFlow within the PSI control room’s

control system, and to A. Chapelain for interesting discus-

sions. Special recognition is extended to M. Aiba for adapting

the virtual accelerator used in initial simulations, and to G. L.

Orlandi, C. Ozkan Loch and V. Rizzoglio for their various

forms of support. All authors appreciate the support provided

by H. H. Braun and R. Ischebeck. Special thanks are extended

also to T. Schietinger for proofreading of the manuscript.

References

Abadi, M. et al. (2015). TensorFlow: Large-Scale Machine Learning
on Heterogeneous Systems, https://www.tensorflow.org/.

Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-
Shamma, O., Santamaria, J., Fadhel, M. A., Al-Amidie, M. &
Farhan, L. (2021). J. Big Data, 8, 53.

Bai, Y., Wei, Y., Liu, W., Xu, G. & Wang, J. (2022). Radiat. Detect.
Technol. Methods, 6, 179–186.

Bettoni, S., Orlandi, G. L., Salomone, F., Boiger, R., Ischebeck, R.,
Xue, R. & Mostacci, A. (2024). Rev. Sci. Instrum. 95, 015110.

Chao, A., Mess, K. H., Tigner, M. & Zimmermann, F. (2013). Editors.
Handbook of Accelerator Physics and Engineering. Singapore:
World Scientific.

Chollet, F. et al. (2015). Keras, https://keras.io.
Duris, J., Kennedy, D., Hanuka, A., Shtalenkova, J., Edelen, A.,

Baxevanis, P., Egger, A., Cope, T., McIntire, M., Ermon, S. &
Ratner, D. (2020). Phys. Rev. Lett. 124, 124801.

Friedman, A. & Bozoki, E. (1994). AIP Conf. Proc. 315, 43–50.
Hanuka, A., Emma, C., Maxwell, T., Fisher, A. S., Jacobson, B.,

Hogan, M. J. & Huang, Z. (2021). Sci. Rep. 11, 2945.

research papers

620 Simona Bettoni et al. � Machine learning for orbit steering J. Synchrotron Rad. (2025). 32, 609–621

Figure 20
Mean error of the BPM reading reconstruction and corresponding
corrector strengths as a function of the number of faulty BPM readings.

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB20
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB18
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB8
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB3
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB14
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB21
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB4
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB12
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB2
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB2

Hellert, T., Ford, T., Leemann, S. C., Nishimura, H., Venturini, M. &
Pollastro, A. (2024). Phys. Rev. Accel. Beams, 27, 074602.

Ioffe, S. & Szegedy, C. (2015). Proc. Int. Conf. Mach. Learn. Res. 37,
448–456.

Kaiser, J., Xu, C., Eichler, A. & Santamaria Garcia, A. (2024). Phys.
Rev. Accel. Beams, 27, 054601.

Kingma, D. P. & Ba, J. (2015). arXiv :1412.6980.
Leemann, S. C., Liu, S., Hexemer, A., Marcus, M. A., Melton, C. N.,

Nishimura, H. & Sun, C. (2019). Phys. Rev. Lett. 123, 194801.
Li, R., Zhang, Q., Jiang, B., Zhao, Z., Li, C. & Wang, K. (2023). J.

Instrum. 18, P09035.
Martin, I. P. S., Abbott, M., Furseman, M., Rehm, G. & Bartolini, R.

(2014). Proceedings of the 5th International Particle Accelerator
Conference (IPAC-2014), 15–20 June 2014, Dresden, Germany, pp.
1763–1765.

Mitchell, T. (1997). Machine Learning. Boston, Massachusetts, USA:
McGraw Hill.

Rogers, W. A. H., Carmignani, N., Farvacque, L. & Nash, B. (2017).
Proceedings of the 8th International Particle Accelerator Conference
(IPAC2017), Copenhagen, Denmark, May 2017, pp. 3855–3857.

Safranek, J. (1997). Nucl. Instrum. Methods Phys. Res. A, 388, 27–36.

Schirmer, D. (2019). Proceedings of the 13th International Conference
on Accelerator and Large Experimental Physics Control Systems,
pp. 1426–1430.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Sala-
khutdinov, R. (2014). J. Mach. Learn. Res. 15, 1929–1958.

Streun, A., Aiba, M., Böge, M., Calzolaio, C., Ehrlichman, M.,
Negrazus, M., Riemann, B. & Vrankovic, V. (2023). Phys. Rev.
Accel. Beams, 26, 091601.

Tang, Y. N. & Krinsky, S. (1993). Proceedings of International
Conference on Particle Accelerators, pp. 492–494.

Yang, X., Smaluk, V., Yu, L. H., Tian, Y. & Ha, K. (2017). Phys. Rev.
Accel. Beams, 20, 054001.

research papers

J. Synchrotron Rad. (2025). 32, 609–621 Simona Bettoni et al. � Machine learning for orbit steering 621

https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB6
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB23
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB1
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB22
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB5
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB9
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB25
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB17
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB16
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB10
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB7
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB24
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB11
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB13
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB26
https://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=art5002&bbid=BB26

	Abstract
	1. Introduction
	2. Swiss Light Source 2.0
	3. Orbit correction in synchrotrons
	3.1. Linear orbit response
	3.2. Effect of nonlinearities

	4. Machine learning: methodology
	5. Machine learning: application to orbit correction
	5.1. Dataset generation
	5.2. Neural network optimization and performance
	5.2.1. Network N1a
	5.2.2. Network N1b
	5.2.3. Extension to N2

	6. Machine learning: model robustness to hardware failures
	7. Conclusions
	Acknowledgements
	References

