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Abstract

Background: High-throughput methods for biological measurements generate vast amounts of quantitative data,
which necessitate the development of advanced approaches to data analysis to help understand the underlying
mechanisms and networks. Reconstruction of biological networks from measured data of different components
is a significant challenge in systems biology.

Results: We use an information theoretic approach to reconstruct phosphoprotein-cytokine networks in RAW 264.7
macrophage cells. Cytokines are secreted upon activation of a wide range of regulatory signals transduced by the
phosphoprotein network. Identifying these components can help identify regulatory modules responsible for the
inflammatory phenotype. The information theoretic approach is based on estimation of mutual information of
interactions by using kernel density estimators. Mutual information provides a measure of statistical dependencies
between interacting components. Using the topology of the network derived, we develop a data-driven
parsimonious input–output model of the phosphoprotein-cytokine network.

Conclusions: We demonstrate the applicability of our information theoretic approach to reconstruction of
biological networks. For the phosphoprotein-cytokine network, this approach not only captures most of the
known signaling components involved in cytokine release but also predicts new signaling components involved in
the release of cytokines. The results of this study are important for gaining a clear understanding of macrophage
activation during the inflammation process.

Keywords: Bioinformatics, Data mining, Network inference, Data-driven network reconstruction, Information theory,
Mutual information, Probabilistic algorithm, Statistical methods
Background
Cellular functions and biological processes are regulated
by complex biochemical reactions within and between the
cells [1,2]. Bimolecular techniques can be used to measure
concentrations of various molecular components, such
as proteins and metabolites, allowing a partial recon-
struction of the networks involving these components.
A goal of systems biology is to reconstruct these underlying
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networks and to infer associated biological phenomena
from large scale measurements [3]. More specifically, re-
construction of biological networks yields a framework for
understanding the relationship between molecular mea-
surements and higher-level phenotypes [4,5].
Analyses of diverse read-outs from cells allow one to

map an input onto responses associated with a given
phenotype, i.e., to reconstruct the underlying biological
network that results in the phenotype. Current computa-
tional approaches for network reconstruction include prin-
cipal component regression (PCR) [6], partial least squares
(PLS) regression [7], linear matrix inequalities (LMI) [8],
and Bayesian Networks (BNs) [9]. These approaches are
briefly described below.
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PCR is a regression procedure that uses a principal com-
ponent analysis to estimate regression coefficients [6].
Usually, principal components with the highest variance
are selected in three steps. First, a principal component
analysis is performed on the data matrix of explanatory
variables. Second, a least-squares regression is applied
between the selected components (latent variables) and
the output/response variables. Finally, the model’s param-
eters are calculated for the selected explanatory variables
by combining the two steps [10]. In contrast to PCR, PLS
regression captures the maximum variance in the output
variables while capturing sufficient variance in the input
variables [7,11]. PLS makes a linear model by projecting
the input and output variables onto a new space [12,13].
LMI converts nonlinear convex optimization problems
into linear optimization problems [14]. The basic idea of
the LMI is to approximate a given input/output modeling
problem posed as a quadratic optimization problem with
a linear objective and so-called LMI constraint [8]. Ap-
proaches such as PCR and PLS essentially work based on
a linear model template. Bayesian networks are graphical
models that describe causal or pseudo-causal interactions
between variables [9,15]. Nodes of a BN represent random
variables in the Bayesian sense and edges represent condi-
tional dependencies among the random variables [16].
BNs have a number of drawbacks related to the so-called
representation problem: they require one to choose
between discrete or continuous variables and parametric
or non-parametric forms of the conditional probability
distribution, and to decompose the joint probability distri-
bution into conditional probability distributions among
the relevant variables [17]. Information-theoretic approa-
ches provide a non-parametric alternative to Bayesian
networks. They construct parsimonious models of
biological networks by establishing statistical depend-
encies of interactions based on their uncertainty re-
ductions [18-20]. Unlike PCR/PLS, this approach does
not make any assumptions about the linearity of the
system and the functional form of the statistical dis-
tribution of the variables [21,22]. We describe our
information-theoretic approach to the reconstruction
of biological networks in the next section. Next, this
method is used to develop a parsimonious model of
phosphoprotein-cytokine network in RAW 264.7 macro-
phages. In the following sections, we compare the regula-
tory components captured by our approach with those
identified by previous approaches and the knowledge
available in scientific literature.

Shannon’s information theory
Building upon Hartley’s conceptual framework [23],
which relates the information of a random variable with
its probability, Shannon [24] defined “entropy” of a ran-
dom variable in terms of its probability distribution. For a
random variable X given a random sample {x1,…, xn} with
probabilities P(xi), entropy H is defined as

H Xð Þ ¼ −
Xn
i¼1

P xið Þlog P xið Þ½ � ð1Þ

Shannon’s information theory defines “mutual infor-
mation” as the amount of information about a random
variable X that can be obtained by observing another
random variable Y. This definition implies that the infor-
mation that Y provides about X reduces uncertainty
about X due to the knowledge of Y. Intuitively, mutual
information infers the information that Y and X share by
measuring how much knowing one of the variables can
reduce the uncertainty about the other [25]. Then, the
mutual information of Y relative to X, or X relative to Y,
is given by

I X;Yð Þ ¼ H Xð Þ þ H Yð Þ−H X;Yð Þ ¼ I Y ;Xð Þ ð2Þ

Mutual information provides a metric for measuring
statistical dependencies of interactions. It has several
advantages over other methods [18-20]: It does not make
any assumption about the functional form of the statistical
distribution of variables [22]; and, information theoretic
approaches are not dependent on the linearity assumption
of the model for the ease of computation [21].

Threshold selection on mutual information
A parsimonious model of a complex system has to capture
a necessary and sufficient model of the entire system,
while minimizing the number of interacting components,
from the measured data for the system. The ultimate goal
of data-driven network-reconstruction methods is to find
such a necessary and sufficient model. Information theor-
etic approaches analyze the statistical dependencies of
interacting components by measuring the mutual infor-
mation coefficients of interactions. A mutual information
network of a complex system is obtained by computing
the mutual information matrix (MIM) and selecting the
threshold of mutual information (TMI). MIM is a square
matrix, whose elements MIMij = I (Xi, Yj) are the mutual
information between the variables Xi and Yj. TMI defines
the threshold of statistical dependencies of interactions.
Choosing an appropriate TMI is a non-trivial problem. A
straightforward but computationally demanding approach
is to perform permutations of measurements several times
and to recalculate a distribution of the mutual information
for each permutation. Then permuted distributions are
averaged and the largest mutual information in the aver-
aged permuted distribution represents the threshold
[26]. Some of the algorithms for network reconstruction
and threshold selection in biological networks are dis-
cussed below.
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The Relevance Network (RelNet) constructs a network
in which a pair of random variables Xi and Yj is linked
by an edge if the mutual information I(Xi,Yj) is larger
than a given threshold [27]. The Context Likelihood of
Relatedness (CLR) algorithm derives a score from the
empirical distribution of the mutual information for
each pair of random variables Xi and Yj [28]. CLR
estimates a score

Wij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2i þ z2j

q
; zi ¼ max 0; I Xi;Xj

� �� �i
� �

=σ i
� �

where μi and σi are the mean and standard deviation of
the distribution of the mutual information of Xi and all
other variables Yj (j = 1,…,n). The Minimum Redundancy
Network (MRNet) relies on the conditional mutual infor-
mation to make inference. MRNet is applied to determine
regulatory targets and pathways. If two random variables
X and Y have a large mutual information but are condi-
tionally independent given a third random variable Z,
MRNet considers no statistical dependency between them
[29]. ARACNE (Algorithm for the Reconstruction of
Accurate Cellular NEtworks) assigns to each pair of
nodes a weight equal to their mutual information and
removes the weakest edges by applying a proper threshold
[30]. ARACNE applies Kernel Density Estimation (KDE)
approaches to measure mutual information between
nodes and selects the bandwidth of kernels by minimizing
the Kullback–Leibler distances between kernel density dis-
tributions of variables before and after removing the ith

observation. It also applies an information-theoretic
property called the Data Processing Inequality (DPI)
to remove statistically weak connections. DPI states
that, if Xi interacts with Xj through a random variable Xk

then I(Xi, Xj) <min{I(Xi, Xk), I(Xj, Xk)}.
We employ an information-theoretic approach both to

reconstruct complex biological networks and to establish
a parsimonious model of the entire system. Our strategy
is to determine mutual information of interactions using
kernel density estimators based on an unbiased cross-
validation [31-33] estimation of kernel bandwidths and
to analyze statistical dependencies of nodes by selecting
a threshold obtained by applying the large deviation the-
ory [18] employed by ARACNE [30].

Methods
Information theoretic approach for biological network
reconstruction
As mentioned before, MI measures the information that
X and Y share by measuring how much knowing one of
these variables will reduce the uncertainty of the other
and reflects the statistical dependencies of two variables.
Hence, higher MI between an input and an output in-
dicates a larger reduction in uncertainty and suggests
a stronger input–output connection. Small (statistically
zero) MI between two random variables indicates that
variables are independent.
Measuring mutual information with a kernel density

estimator (KDE)—a non-parametric method for estimat-
ing probability densities of variables—is more advanta-
geous than histogram-based methods in terms of a better
mean square error rate of convergence of the estimate to
the underlying density [32]. We note than ARACNE also
uses KDE [30] to estimate MI. A disadvantage of KDE is
the need to specify an optimal kernel bandwidth [33].
Once the optimal kernel bandwidth is obtained and the
MI coefficients of the network are measured using KDE,
the next step is to select a proper threshold to determine
the boundary of statistically significant connections and
the weak connections to be removed; similar concept of
statistical significance has been used by Pradervand et al.
[34] in a PCR-based approach to network reconstruc-
tion. Following these three steps, information theor-
etic model of the network is obtained. It provides a
parsimonious network in which the number of false
connections are reduced considerably. Our method of
MI-based network reconstruction is inspired by (and
borrows several components from) the ARACNE frame-
work [30]. However, we employ a different methodology
for the selection of optimal kernel bandwidth as described
below.
The following subsections present a description of the

above-mentioned steps to create a data-driven model of
complex networks. These steps are applied to decipher,
in a lumped manner, regulatory mechanisms involved
in the release of seven cytokines by activation of 22
signaling proteins in RAW 264.7 macrophage. The
Alliance for Cellular Signaling (AfCS) has generated a
systematic profiling of signaling responses and cyto-
kine release in RAW 264.7 macrophage [35,36]. This
dataset consists of data from stimulation of macro-
phages by both Toll and non-Toll receptor ligands.
The objective is to create an input–output model, in
which signaling responses (22 inputs) are used to predict
cytokine release (7 outputs).

Non-parametric estimations of mutual information
Kernel Density Estimation (KDE) is a non-parametric
method to determine the Probability Density Function
(PDF) of a random variable. Given a random sample
{x1,…, xn} for a univariate random variable X with an
unknown density f, a kernel density estimator (KDE)
estimates the shape of this function as [32]:

f xð Þ ¼ 1ffiffiffiffiffiffi
2π

p
nh

Xn
i¼1

exp −
x−xið Þ2
2h2

" #
ð3Þ

where, h is the kernel bandwidth. A bivariate kernel
density function of two random variables X and Y
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given two random samples {x1,…, xn} and {y1,…, yn} is
defined as:

f x; yð Þ ¼ 1

2πnh2
Xn
i¼1

exp −
x−xið Þ2 þ y−yið Þ2

2h2

" #
ð4Þ

The mutual information of X and Y is computed
as [37]:

I X;Yð Þ ¼ 1
n

Xn
j¼1

ln
f xj; yj
	 


f xj
� �

f yj
	 
 ð5Þ

where, n is the sample size, and h is the kernel width.

Selection of optimal kernel bandwidth
The use of KDEs to evaluate the MI coefficients requires
the optimal selection of the kernel bandwidth h. The
main criterion used to determine the optimal kernel
width is the minimization of the expected risk function,
defined as the mean integrated squared error (MISE)
between the computed and true (unknown) distribu-
tions [32,33],

MISE hð Þ ¼ E
Z

f h xð Þ−f xð Þ½ �2dx ð6Þ

where, fh(x) is the kernel density estimate of x for a
bandwidth of h. MISE cannot be used directly since it
involves the unknown density function f(x). To address
this issue, several algorithms have been developed to get
an estimate of the optimal bandwidth. One of the most
commonly used algorithms employs a cross-validation
type approach. Based on this approach, if fh(x) is the
kernel density estimation at x for a bandwidth of h
using all of the data to fit the KDE, then a cross-validated
estimate of the bandwidth is the value for h that mini-
mizes [31-33]:Z

f 2h xð Þdx− 2
n

Xn
i¼1

f −ið Þ;h xið Þ ð7Þ

where, f(−i),h(xi) is the kernel density estimator using the
bandwidth h at xi obtained after removing ith observa-
tion. For two vectors X and Y, the cross-validation
method determines the optimal kernel width for each
pair of randomly selected set of n pairs of variables and
the mean of optimal kernel widths for these n pairs is
used as an approximated kernel width for the entire
dataset [38].

Network reconstruction and threshold selection
Once the optimal kernel width has been selected and
the MI matrix has been computed, the next step is to
find an appropriate threshold of MI, I0. Based on large
deviation theory used by ARACNE algorithm [30], the
probability that an empirical value of mutual infor-
mation I is greater than I0, provided that its true value is
�I ¼ 0, is

PðI > I0 �I ¼ 0j Þe e−cNI0

ð8Þ
where, c is a constant. Taking the natural logarithm of
both sides yields

lnP ¼ aþ bI0 ð9Þ
where, b is proportional to the sample size N. Therefore,
lnP is a linear function of I0 with the slope b. Using
these results, for any dataset with sample size N and a
desired p-value, the corresponding threshold can be
obtained where a and b are fitted from the data. This
threshold is used to remove statistically weak edges.
Since each cytokine is explicitly an output we do not
employ any further analysis such as DPI [18] to identify
and remove indirect connections.
Using the network thus obtained, a predictive model

can be developed as described in Appendix A.

Application to phosphoprotein-cytokine signaling
network
We employ this information theoretic approach to
reconstruct the phosphoprotein-cytokine network in
RAW 264.7 macrophages. To achieve this goal, the first
step is the creation of the MI matrix (MIM) of interac-
tions for each Toll and non-Toll data set separately and
then finding a proper threshold for each network.
Macrophages play key roles in both innate and adaptive

immunity, regulating the immune responses and the de-
velopment of acute and chronic inflammations by produ-
cing a wide array of powerful chemical substances and
regulatory factors such as cytokines [39]. Cytokines are a
group of proteins and act as mediators between cells.
Cytokines locate and interact with the target immune
cells by binding to their receptor [40,41]. The release
of immune-regulatory cytokines is regulated by a complex
signaling network [34,42]. Multiple stimuli generate differ-
ent signals and these signals generate different cytokine
responses. Clear delineation of these signaling pathways is
a prerequisite for understanding the causes of cytokine
release.

Description of the data
In order to determine the signaling components involved
in the cytokine release, we used the AfCS data on the
phosphoproteins and cytokines under Toll and non-Toll
conditions in RAW 264.7 macrophages. The phospho-
protein/cytokine data set consists of 22 phosphoproteins
(inputs) and 7 cytokines (outputs). The cytokines (outputs)
include: Tumor Necrosis Factor alpha (TNFα), Interleukin-
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1α (IL-1α), Interleukin-6 (IL-6), Interleukin-10 (IL-10),
Granulocyte Macrophage Colony Stimulating Factor
(GM-CSF), Regulated on Activation, Normal T Expressed
and Secreted (RANTES) and Macrophage Inflammatory
Protein- 1alpha (MIP-1α). The phosphoproteins (inputs)
include: Signal Transducers and Activator of Trans-
cription (STAT) 1α (STAT1α), STAT1β, STAT3, STAT5,
Ribosomal Protein S6 (Rps6), Ribosomal S6 kinase (RSK),
Glycogen Synthase Kinase (GSK) 3A (GSK3A), GSK3B,
Extracellular-signal Regulated Kinases (ERK) 1 (ERK1),
ERK2, cyclic Adenosine Monophosphate (cAMP), c-Jun
N-terminal Kinases (JNK) long (JNK lg), JNK short
(JNK sh), AKT, p40 Phagocyte Oxidase (p40Phox),
Ezrin [Ezr]/Radixin [Rdx](Ezr/Rdx), Membrane-organizing
Extension Spike Protein (Moesin or MSN), P38, Sma and
Mad related proteins 2 (SMAD2), Nuclear Factor Kappa-
light-chain-enhancer of activated B cells p65 (NF-κB p65),
Protein Kinase C Delta (PKCD) and Protein kinase C
μ2 (PKCμ2).
Both the input data and output data are time-averaged

since the time-scales of the input data are in minutes
(measurements taken at 1, 3 and 10 minutes) whereas
that of the output (cytokines) data are in hours (measure-
ments taken at 2, 3 and 4 hrs). Phosphoproteins were mea-
sured using western blots (AfCS protocols #PP00000177
and #PP00000181) and cytokines were measured using
multiplex suspension arrays (AfCS protocols #PP00000209
and #PP00000223 [36]). More details about the expe-
riments can be found on the AfCS website [36] and the
procedure for pre-processing the data is explained by
Pradervand et al. [34]. In short, phosphoprotein data
corresponded to log(fold-change with respect to basal
level) and cytokine data corresponded to log(treat-
ment – control + 1).
The dataset used consists of Toll and non-Toll data.

RAW cells were stimulated with a panel of 22 ligands, in
single and double ligand combinations. The Toll data
sets refers to the collection of data in which one of the
ligands activates Toll-like receptors (TLRs) and results
in major inflammation [34]. These TLR-ligands include
lipopolysaccharide (LPS), Resiquimod (R-848), PAM2CSK4
(PAM 2) and PAM3CSK4 (PAM 3). The non-Toll
data refers to the collection in which the ligands do
not activate one or more of the TLRs. Due to the
substantial extent of response when TLRs are acti-
vated by TLR-ligands (relative to other ligands), the
important effect of other ligands gets masked if one
of the ligands is a TLR-ligand. Hence, in order to
identify the specific connections in the networks mediat-
ing information flow during stimulation by other ligands,
the data was separated in Toll and non-Toll sets. After
removal of rows with missing values across all inputs and
outputs, Toll and non-Toll data each consisted of 78 rows
or observations (78 × 22 input data matrix and 78 × 7
output data matrix), which were used to estimate MI in
each case.
A reduced model of each set was obtained by applying

the principles of information theory described above.
Combining these two models, we obtained the network
model based on the entire data set. The resulting net-
work provides a parsimonious phosphoprotein-cytokine
model, in which the number of signaling components in-
volved in cytokine release is minimized considerably. This
model not only successfully captures most of the known
signaling components involved in cytokine release, but
also predicts new signaling components involved in
release of cytokines.
Finally, while not the main objective of this work, we

also developed predictive models (albeit linear models
since log-transformation removed some of the nonline-
arity) using the significant inputs (MI > threshold). The
procedure to develop the linear models is presented in
Appendix A. We used the Toll dataset for developing
the linear models. With the intent to validate the predict-
ive linear models, the data set was partitioned in training
and test sets. Since different sets of input variables are sig-
nificant for different outputs, after eliminating the rows
with missing values, the effective number of observations
for each output was different, which ranged 89–115 for
the training set and 33–39 for the test set; about 3:1 ratio
for the number of training vs. test samples.

Results
The proper kernel bandwidth has been estimated by
applying the above-mentioned cross-validation approach
(equation (7)). For Toll data set, the selected bandwidth
(h) is 0.14 and for non-Toll data set, h is 0.17. Figure 1
shows the probability density functions of seven released
cytokines, as inferred by the KDE in equation (3) com-
puted through the MATLAB function ksdensity [43] using
the estimated value of h. All of the estimated densities are
highly non-Gaussian. In this figure, x-axis shows the mea-
sured values of cytokines after being normalized and the
y-axis demonstrates their densities by applying KDE.
Using these kernel density estimators, we used equation

(3) to compute the MI coefficients of all protein-cytokine
connections for the Toll and non-Toll datasets. Figure 2
shows these coefficients as a bar-graph, with the cor-
responding thresholds shown by the dashed lines for
a p-value = 0.005 (I0 = 0.19 for Toll data and I0 = 0.17
for non-Toll data). The MI coefficients below these
thresholds are considered to be statistically insignificant
and discarded without any significant impact. It can be in-
ferred from Figure 2 (both panels) that increase (decrease)
in the desired p-value (and hence decrease (increase) in
the MI threshold) will result in inclusion (exclusion) of
some connections. For example, for non-Toll data, a small
increase in MI threshold will make STAT1α and STAT5



Figure 1 Kernel density estimations (y-axis) of seven released cytokines (x-axis) in RAW264.7 macrophage cells upon stimulation with
ligands, using kernel bandwidth h = 0.14 (Toll data).
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insignificant for RANTES; connections to other cytokines
will be unaffected. For the Toll data, since the MI values
for the pairs cAMP – TNFα and AKT – MIP1α are close
to the threshold, a small increase in the threshold will ren-
der these connections insignificant. Conversely, a small
decrease in MI threshold will make the cAMP – MIP1α
connection significant and hence be included in the
network. Similar observations were made with the
Figure 2 Mutual information of all phosphoprotein-cytokine pairs fro
datasets. Thresholds (I0 = 0.19 for Toll data and I0 = 0.17 for non-Toll data)
PCR approach as well [34]. Overall, with changing thresh-
old, the network topology changes in a robust manner
where just one or two edges appear or disappear.
Figure 3 shows the reconstructed networks obtained

from the non-Toll (left panel and orange nodes) and Toll
(right panel and pink nodes) data for 22 signaling phos-
phoproteins and seven cytokines. These two networks are
combined to yield the network of the entire system, which
m Toll (the upper bar plot) and non-Toll (the lower bar plot)
for p-value = 0.005 are shown by dashed lines.



Figure 3 Reconstructed networks of signaling phosphoproteins-cytokines obtained from the non-Toll (left panel with orange nodes for
the phosphoproteins) and Toll (right panel with pink nodes for the phosphoproteins) data. White circles indicate cytokine outputs. h = 0.14
and I0 = 0.19 for Toll data and h = 0.17 and I0 = 0.17 for non-Toll data.
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is shown in Figure 4. Blue nodes in Figure 4 show phos-
phoproteins involved in both datasets. This network cap-
tures most of the known signaling components involved
in cytokine release and confirms the potentially important
novel signaling components that have been suggested
Figure 4 The reconstructed phosphoprotein-cytokine network
obtained by combining networks from non-Toll dataset
(orange nodes) and Toll dataset (pink nodes). Blue nodes are
phosphoproteins involved in both datasets and white nodes
represent the cytokines (outputs).
recently by other methods, such as PCR [34]. Our ap-
proach also identifies new signaling components in-
volved in the release of cytokines, including Ribosomal
S6 kinase on TNFα.
Since phosphoproteins may also have regulatory impacts

on other phosphoproteins, the above mentioned process
is applied again to capture all the significant phos-
phoprotein-phosphoprotein and phosphoprotein-cytokine
connections in one network. The mutual information
matrix of all interactions is built again and the proper
kernel bandwidth and threshold is selected (h = 0.14 and
I0 = 0.20 for Toll data and h = 0.17 and I0 = 0.17 for non-
Toll data). Figure 5 shows the reconstructed networks
obtained from the non-Toll (left panel and orange nodes)
and Toll (right panel and pink nodes) data and Figure 6
is the final network obtained by combining the two
networks in Figure 5 containing significant phospho-
protein-phosphoprotein and phosphoprotein-cytokine
connections in the entire system.
To demonstrate the robustness of our results, this net-

work is built again by capturing the networks of each
cytokine individually and combining the seven recon-
structed networks. Figure 7 shows the networks obtained
from node-by-node analysis for TNFα (left panel) and
IL-6 (right panel). In comparison with the network of
Figure 6, such a network doesn’t capture the regulatory
effect of PKCμ2 on G-CSF for Toll-data and cAMP on
IL-6 and AKT on TNFα from non-Toll data. As the
lower panel in Figure 2 shows, the mutual information of
these interactions are very close to the selected threshold.



Figure 5 Reconstructed networks of phosphoprotein-phosphoprotein/phosphoprotein-cytokine interactions obtained from the
non-Toll (left panel and orange nodes) and Toll (right panel and pink nodes) data. The white nodes represent the cytokines (h = 0.14 and
I0 = 0.20 for Toll data and h = 0.17 and I0 = 0.17 for non-Toll data).
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All other connections present in Figure 6 are also included
in such a network.
The scatter-plot in Figure 8 illustrates the predictive

power of the linear models made from the reconstructed
network from the Toll data (Figure 3, right panel) for
Figure 6 The reconstructed phosphoprotein-phosphoprotein/
cytokine network from combining networks from non-Toll
dataset (orange) and Toll dataset (pink). The white nodes
represent the cytokines, blue nodes are involved in cytokine
regulation from both datasets and green nodes are not directly
involved in cytokine regulation.
training (dots) and test (open circles) datasets on cyto-
kine release (see Methods). Most of the training and test
data points are inside within two root-mean-squared
errors of the training data (Appendix A). To provide a
measure of the predictive quality of these linear models,
we also computed the coefficient of determination R2 for
each cytokine as described in Appendix A. The R2 values
range from 0.32 to 0.62. TNFα and MIP-1α yield the
best fit (R2 > 0.6) and IL-6 and RANTES yield the lowest
coefficients of determination. Although the linear model
derived based on the significant components identified
through the information theoretic approach is in a good
agreement with the predictive models obtained with
other methods, such as PCR [34] and PLS [44], the low
coefficient of determination in these models, even with
log-transformation of the data, indicates the non-linear
nature of the phosphoprotein-cytokine signaling networks.

Discussion
The information theoretic approach accurately identifies
the main signaling phosphoproteins involved in cytokine
release (Figures 3 and 4). We analyzed both Toll and non-
Toll ligand response datasets. Non-Toll data is required
to identify the regulatory effects of STAT1α, STAT1β,
STAT3, STAT5 and cAMP (Figure 3, left panel) and
Toll-data provides information about PKCμ2, JNK lg,
JNK sh and NF-κB P65 and ERK2 (Figure 3, right panel).
ERK1, AKT, P38 and RSK are identified as significant in
both datasets. We provide a comparison of the regulatory
components necessary for cytokine release identified by



Figure 7 Node-by-node reconstructed networks for TNFα (left panel) and IL-6 (right panel) after combining non-Toll dataset (orange
nodes) and Toll dataset (pink nodes). Blue nodes are involved in cytokine regulation from both datasets and green nodes are not directly
involved in cytokine regulation.

Figure 8 Predicted (y-axis) vs. measured (x-axis) values of training (dots) and test (open circles) data for the seven cytokines.
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the information theoretic approach and other computa-
tional methods such as PCR with statistical significance
testing [34] and biochemical knowledge available in litera-
ture. The results of this comparison are summarized in
Table 1.
Activated macrophages secrete cytokines [86]. Various

pathways transmit the signals that initiate cytokine pro-
duction [87,88]. Cytokines are classified based on their
functions or their sources [86,89]. They can be grouped
into anti-inflammatory and pro-inflammatory cytokines
based on their functional role in inflammatory re-
sponses. Pro-inflammatory cytokines such as TNFα, IL-
1α and GM-CSF induce both acute and chronic inflam-
matory responses. Anti-inflammatory cytokines, such as
IL-10 limit the magnitude of inflammation and chemo-
kines, such as MIP and RANTES are involved in chemo-
taxis of leukocytes.

Pro-inflammatory cytokines
Granulocyte/macrophage Colony Stimulating Factor (G-
CSF) regulates the production of neutrophil G granulo-
cytes and stimulates the function of mature neutrophils
[90]. We identify the phosphoproteins PKCμ2 [49], NF-
κB p65 [44], JNK lg/sh [46], P38, RSK [53] and ERK1/2
[51] as the main regulators for the production and re-
lease of G-CSF. Tumor Necrosis Factor alpha (TNFα) is
involved in normal host defense in both mediating in-
flammatory and immune responses [91]. Our study cap-
tures the largest network of regulatory components for
TNFα which consists of twelve signaling phosphopro-
teins: RSK, AKT, RPS6, PKCμ2, GSK3A, cAMP, ERK1/2,
JNK sh/lg, NF-κB p65 and P38. Some studies suggest
the regulatory impact of STAT1α and STAT1β on TNFα
[92]. Both our network and the network from PCR min-
imal model [34] missed these connections. Interleukin-
1alpha (IL-1α) is produced by activated macrophages
and is responsible for inflammation [93]. The informa-
tion theoretic approach identifies cAMP, JNK lg/sh,
ERK1/2, P38 and NF-κB p65 as the main regulators of
production/release of IL-1α.
As Table 1 shows, this study identifies most of the sig-

naling components of pro-inflammatory cytokines cap-
tured by other computational methods and strongly
confirms the regulatory effect of P38 which has been
proposed by the PCR minimal model [34]. Unlike the
PCR minimal model [34], our approach successfully cap-
tures the regulatory effects of ERK1 and ERK2 on GCS-
F [51] and TNFα [66]. It confirms the regulatory effect
of GSK3A on TNFα [59] which have been suggested by
studies. NF-κB, ERK, JNK (targets c-Jun [63]) and Sp1
(trans-activating transcription factor 1) are the transcrip-
tional activators of TNFα [58,94]. In this light, our re-
sults show good agreement with other studies by
capturing all signaling components identified by the
PCR minimal model, in addition to predicting the
known regulatory effects of ERK1/2, GSK3A (regulated
by c-Jun which is affected by JNK) [44,59,94]. The infor-
mation theoretic approach also identifies RSK, a sub-
strate of ERK [95], as a potentially novel regulatory
component involved in the release of TNFα.
P38 (from Toll data) has the strongest and ERK1 (from

non-Toll data) has the weakest regulatory impact on
TNFα. As Figure 8 shows, TNFα yields the best linear fit
in terms of the coefficient of determination (R2 = 0.62),
which is in good agreement with other models obtained
by PCR [34,96] and PLS [44] methods. NF-κB p65 repre-
sents the highest statistical dependency while PKCμ2
has the lowest mutual information coefficient among the
captured regulatory network components of GCS-F.
JNK lg (from Toll data) shows the highest regulatory ef-
fect on IL-1α.

Anti-inflammatory cytokines
Interleukin-10 (IL-10) is an anti-inflammatory cytokine
that has important roles in immune regulation and in-
flammation [97]. Our approach shows the regulatory ef-
fects of PKCμ2 [65], P38 [56], RSK [67], ERK1/2 [61],
NF-κB p65 [64] and JNK sh/lg, on IL-10. Macrophage
Inflammatory Protein-1α (MIP-1α) belongs to the group
of CC chemokines that regulate several inflammatory re-
sponses including trafficking and activation of leuko-
cytes, as well as the fever response [98]. We capture the
regulatory effects of cAMP [72], AKT [79], RSK, ERK1/2
[74], P38 [57], JNK sh/lg [76] and NF-κB p65 [70] on
MIP-1α. One study suggests the regulatory effects of
STAT1α/β and STAT3 on MIP-1α [68]. The PCR min-
imal model [34] only identifies STAT1α as a significant
component of MIP-1α. Regulated on Activation, Normal T
Expressed and Secreted (RANTES), is a CC chemokine
and has a key role in recruiting leukocytes into inflam-
matory sites [99]. The information theoretic approach sug-
gests that STAT3, STAT5, STAT1α, NF-κB p65, PKCμ2,
P38 JNK lg/sh, ERK1/2 and RSK regulate RANTES and
unlike the PCR minimal model [34], it is in good agree-
ment with the cytokine literature.
As indicated in Table 1, the network identified by our

study includes most of the known signaling components
of anti-inflammatory cytokines described in the litera-
ture and unlike the PCR minimal model [34], captures
the regulatory effects of NF-κB p65 and ERK1/2 on
MIP-1α. Some studies suggest that the TLR ligand path-
ways that activate IL-10 are P38 dependent and NF-κB
signaling pathway has no contribution on the activation
of IL-10 [100,101]. However, our study and the PCR
model [34] identify the regulatory effects of JNK lg/sh
which are activated through NF-κB p65.
The information theoretic approach and PCR [34]

models both yield low coefficient of determination for



Table 1 Significant components of phosphoprotein-cytokine signaling network

Interactions MI PCR Lit. Comment Interactions MI PCR Lit. Comment

G-CSF NF-κB ✓ ✓ ✓[44] IL-6 RSK ✓ ✘ ✓[45] - IL-6 has the lowest R2-value. This may
be due to avoiding the linearity assumption
in computing the mutual information.(Pro-inflammatory) JNK lg ✓ ✓ ✓[46] (Anti-inflammatory

and pro-inflammatory)
JNK lg ✓ ✓ ✓[47]

JNK sh ✓ ✓ ✓[46] JNK sh ✓ ✓ ✓[47]

P38 ✓ ✓ ✘ P38 ✓ ✘ ✓[48]

PKCμ2 ✓ ✘ ✓[49] PKCμ2 ✓ ✘ ✓[50]

ERK1 ✓ ✘ ✓[51] NF-κB ✓ ✓ ✓[52]

ERK2 ✓ ✘ ✓[51] ERK1 ✓ ✘ ✓[45]

RSK ✓ ✘ ✓[53] ERK2 ✓ ✘ ✓[45]

Finding: Our model confirms the regulatory effect of P38, which has
been suggested by the PCR minimal model [34].

cAMP ✓ ✓ ✓[54]

TNFα RSK ✓ ✘ ✘ - TNFα has the largest network. This study
identifies the regulatory effect of 12
phosphoproteins on TNFα.

IL-10 JNK lg ✓ ✓ ✘

(Pro-inflammatory) AKT ✓ ✓ ✓[55] (Anti-inflammatory) P38 ✓ ✘ ✓[56]

P38 ✓ ✓ ✓[57]

RPS6 ✓ ✘ ✓[58]

GSK3A ✓ ✘ ✓[59] - TNFα yields the highest coefficient of
determination R2 = 0.62

GSK3B ✘ ✘ ✓[59]

PKCμ2 ✓ ✘ ✓[60] ERK1 ✓ ✘ ✓[61]

cAMP ✓ ✓ ✓[62] ERK2 ✓ ✘ ✓[61]

NF-κB ✓ ✓ ✓[58] JNK sh ✓ ✓ ✘

JNK lg ✓ ✓ ✓[63] NF-κB ✓ ✓ ✓[64]

JNK sh ✓ ✓ ✓[63] PKCμ2 ✓ ✘ ✓[65]

ERK2 ✓ ✘ ✓[66] RSK ✓ ✘ ✓[67]

ERK1 ✓ ✘ ✓[66] Finding: Our study confirms the regulatory effects
of JNK sh/ lg on IL-10.

Finding: Our study suggests the novel regulatory effect of RSK on TNFα.

MIP-1α P38 ✓ ✓ ✓[57] - This study doesn’t confirm the regulatory effects
of STAT1α/β/3 on MIP-1α suggested by one
study [68]. The PCR minimal model [34] identifies
the impact of STAT1α on MIP-1a.

RANTES STAT3 ✓ ✘ ✓[69] - Unlike the PCR minimal model [34], this
study successfully captures the regulatory
impacts of STAT1α/3/5 on RANTES.(Anti-inflammatory) NF-κB ✓ ✓ ✓[70] (Anti-inflammatory) STAT5 ✓ ✘ ✓[71]

cAMP ✓ ✓ ✓[72] STAT1α ✓ ✓ ✓[73]

RSK ✓ ✘ ✓[74] NF-κB ✓ ✓ ✓[75]

JNK lg ✓ ✓ ✓[76] P38 ✓ ✘ ✓[77]

JNK sh ✓ ✓ ✓[76] PKCμ2 ✓ ✘ ✓[78]

AKT ✓ ✘ ✓[79] JNK sh ✓ ✓ ✓[75]

ERK1 ✓ ✘ ✓[74] JNK lg ✓ ✓ ✓[75]

ERK2 ✓ ✘ ✓[74] RSK ✓ ✘ ✓[80]
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Table 1 Significant components of phosphoprotein-cytokine signaling network (Continued)

STAT1α ✘ ✓ ✓[68] ERK2 ✓ ✘ ✓[80]

STAT1β ✘ ✘ ✓[68] ERK1 ✓ ✘ ✓[80]

STAT3 ✘ ✘ ✓[68] IL-1α ERK2 ✓ ✘ ✓[81]

(Pro-inflammatory) ERK1 ✓ ✘ ✓[81]

RSK ✓ ✘ ✓[82]

P38 ✓ ✘ ✓[83]

JNK lg ✓ ✓ ✓[84]

JNK sh ✓ ✓ ✓[84]

NF-κB ✓ ✓ ✓[85]

A comparison of phosphoprotein-cytokine regulatory connections identified by information theoretic approach (‘MI’), PCR (‘PCR’) and the literature knowledge (‘Lit.’). Identified interactions are shown by ✓ and cells
marked by ✘ indicate missed interactions by a method.
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cytokines (R2 < 0.8) possibly due to their regulations by
unmeasured pathways and/or a nonlinear relationship
between the levels of cytokines and the phosphoproteins.
In comparison to the PCR approach, information theor-
etic approach shows a better agreement with known
regulatory components in the literature. The high vari-
ability of data (low coefficient of determination) might
explain this by considering the fact that when noise or
variability is high, the threshold used in the PCR ap-
proach is high so that it identifies a relatively lesser
number of components as being significant. The non-
linear nature of the biological processes might be an ex-
planation for the failure of PCR to identify the regulatory
effects of ERK1/2, cAMP and RSK on cytokines.
JNK lg (from Toll data) has the strongest effect and

AKT (from non-Toll data) has the weakest effect on
MIP-1α. Our network shows the highest mutual informa-
tion (from non-Toll data) for NF-κB and IL-10. PKCμ2
has the weakest regulatory effect on IL-10. JNK lg has the
strongest regulatory effect on RANTES and STAT3 shows
the lowest statistical dependencies to it.

Interleukin-6
Interleukin-6 (IL-6) is secreted by macrophages and T cells
and acts as both a pro-inflammatory and anti-inflamma-
tory cytokine [102]. Our model identifies the regulatory
effects of phosphoproteins RSK, PKCμ2, ERK1/2, JNK
sh/lg, P38, NF-κB and cAMP. The regulatory roles of
cAMP [54] and P38 [48] which could not be captured
by the PCR minimal model [34], are identified by the
information theoretic approach. JNK lg (from Toll data)
yields the strongest regulatory effect and cAMP (from
non-Toll data) yields the weakest regulatory effect on IL-6.
Overall, our network model and quantitative predic-

tions are in good agreement with other studies available
in literature and captures most of the known regulatory
components involved in cytokine release. Our model
confirms the regulatory effect of P38 on G-CSF that has
been suggested by the PCR minimal model several years
ago [34] and captures one potentially novel regulatory
effect of RSK on TNFα. The advantages of the information
theoretic method has been demonstrated by comparing
the accuracy of its parsimonious model to the models
obtained by other computational methods such as PCR
minimal models in predicting the regulatory components
for cytokines with high variability and low coefficient of
determination.

Conclusions
Identifying the regulatory components for cytokines is
critical for understanding the mechanisms that control
their production and release in immune cells. In recent
years, several computational methods have been applied to
develop signaling networks, involved in cytokine release,
which have led to an improved understanding of cytokine
release in macrophages. In this work, we developed a
parsimonious input–output model of regulatory phospho-
protein-cytokine network based on an information theor-
etic approach. Our model demonstrated the applicability
of this approach to the data-driven reconstruction of
biological networks. The data, which consisted of a sys-
tematic profiling of signaling responses in RAW 264.7
macrophage cells upon treatment with Toll- and non-Toll
receptor ligands, was provided by the Alliance for Cellular
Signaling (AfCS). Information theoretic approach as a
non-parametric method identified the regulatory com-
ponents (phosphoproteins) on which specific cytokines
showed significant statistical dependence (measured in
terms of mutual information). The reconstructed network
also was able to capture the regulatory network of
phosphoprotein interactions. We calculated mutual infor-
mation of interactions by using kernel density estimator
(KDE) and discarded weak connections using proper
thresholds. Using such a parsimonious list of significant
inputs, a predictive model was also developed for each of
the cytokines which predicted a separate test data well.
Most of the significant connections are validated against
the known literature. Some novel connections, such as
Ribosomal S6 kinase for Tumor Necrosis Factor alpha are
also identified by the mutual information approach, which
were not detected by the PCR approach. These novel
regulatory components serve as testable hypotheses.

Availability of supporting data
The data sets supporting the results of this article are
available at the UCSD Signaling Gateway web site [http://
www.signaling-gateway.org/data/Data.html].

Appendices
Appendix A - development of a predictive model
To develop a predictive model using the reconstructed
network, we build the following linear model between
the significant inputs (X) and a chosen output (Y):

Y ¼ X:bþ ε ð10Þ
where, ε represents white noise. Generally, one deals with
one output at a time because the set of significant inputs
differs for different outputs. X is mean-centered and
normalized by the standard deviation and Y is mean-
centered. The coefficient matrix, b, is estimated by least
square method [103] using “training dataset”:

b̂ ¼ XT :X
� �−1

: XT :Y
� � ð11Þ

Once b̂ is estimated, the model can be tested on a “test
dataset”. The test dataset generally has the same prob-
ability distribution as training dataset. Thus, given the
input test data Xtest (normalized by using the mean and

http://www.signaling-gateway.org/data/Data.html
http://www.signaling-gateway.org/data/Data.html


Farhangmehr et al. BMC Systems Biology 2014, 8:77 Page 14 of 16
http://www.biomedcentral.com/1752-0509/8/77
standard deviation parameters obtained for the training
set), the output test data Ytest (offset by the mean of Y) is
predicted as:

Y test;pred ¼ Xtest:b̂ ð12Þ

Two metrics used to measure the accuracy of the pre-
diction are Root Mean Square Error (RSME) and coeffi-
cient of determination (R2) calculated as [104]:

RMSEtest ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

ðY test;i−Y test;i;pred

s
Þ2 ð13Þ

R2 ¼ 1−

Xn
i¼1

Y test;i−Y test;i;pred
� �2

Xn
i¼1

Y test;i−Y test
� �2 ð14Þ

where, n is the number of data points. Y test is the mean
value of the n data points for the chosen output. R2 is a
good quantitative metric indicating the quality of predic-
tion by the linear model.
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