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ABSTRACT

ELAV is a neuron-specific RNA-binding protein in
Drosophila that is required for development and
maintenance of neurons. ELAV regulates alternative
splicing of Neuroglian and erect wing (ewg) tran-
scripts, and has been shown to form a multimeric
complex on the last ewg intron. The protein has
three RNA recognition motifs (RRM1, 2 and 3) with a
hinge region between RRM2 and 3. In this study, we
used the yeast two-hybrid system to determine the
multimerization domain of ELAV. Using deletion
constructs, we mapped an interaction activity to a
region containing most of RRM3. We found three
conserved short sequences in RRM3 that were
essential for the interaction, and also sufficient to
give the interaction activity to RRM2 when intro-
duced into it. In our in vivo functional assay, a
mutation in one of the three sequences showed
reduced activity in splicing regulation, underlining
the functional importance of multimerization.
However, RRM2 with the three RRMS3 interaction
sequences did not function as RRM3 in vivo, which
suggested that multimerization is not the only
function of RRMS3. Our results are consistent with
a model in which RRM3 serves as a bi-functional
domain that interacts with both RNA and protein.

INTRODUCTION

The RNA recognition motif (RRM) is the most common
RNA-binding domain, and also one of the most abundant
protein domains in eukaryotes (1-3). The RRM consists of
about 80-90 amino acids, and has the conserved structure
of two a-helices packed against four anti-parallel B-strands.
Structural studies have shown that it interacts with RNA
through amino acids located on the B-strands (4-9). In
addition to RNA-binding, it has been shown that RRMs
can also serve as the site of protein—protein interactions.

Such a case was initially reported for the interactions
between U2 small nuclear ribonucleoprotein particle
(snRNP) B” and A’ proteins (10-13), and later structural
studies, including that of other proteins, revealed that the
protein—protein interactions often, but not always, occur
through amino acids on the a-helices of the RRM (8,14—
21). This dual interacting capability of the RRM domain
might explain its prevalence.

The ELAV protein family is a conserved RNA-binding
protein family found in animals from Caenorhabditis to
humans. Its characteristic structure is the three RRMs
(RRMI1, 2 and 3) with a ‘hinge’ region of about 60-80
amino acids separating the second and third RRMs.
Mammals have four members of the family called Hu
proteins (HuR, HuB, HuC and HuD) that have been
implicated in stabilization and/or translation activation of
mRNAs containing AU-rich elements (AREs) (22-24).
Drosophila has three ELAV-family proteins (ELAV, Rbp9
and Fne). ELAYV is specifically expressed in all neurons in
Drosophila, and elav null mutants show embryonic lethal
phenotype with developmental defects in the nervous
system (25,26). It has been shown that ELAV regulates
alternative splicing of Neuroglian (Nrg) and erect wing
(ewg) transcripts, by binding to their introns to produce
neuron specific isoforms (27-30). Additionally, ELAV has
been shown to autoregulate its own message (31-33).

Recently, ELAV has been shown to form a multimeric
complex on the ewg intron RNA. It appears that ELAV in
solution is mainly in a tetramer-configuration without the
substrate RNA, and is assembled into a larger dodeca-
meric complex upon binding to the target RNA (34).
Mammalian ELAV family proteins have also been
shown to form multimers (35-37). Therefore, it is likely
that multimerization is a common feature shared by
the ELAV-family proteins, and an important part of the
mechanism by which they exert their effect on the
bound RNA.

In this study, we show that one of the major sites for
ELAV-ELAYV interaction activity is located in RRM3 and
a small adjacent region of the hinge. Three short sequences
in RRM3 are shown to be necessary for the interaction,
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and also sufficient to give the interaction activity to
RRM2 when introduced into it. However, RRM3 requires
more than the three short sequences to function in vivo,
suggesting that acting as a multimerization domain is not
the sole function of RRM3. Our data are consistent with a
model in which RRM3 acts as a bi-functional domain that
interacts with both RNA and protein.

MATERIALS AND METHODS
Plasmid construction

To construct plasmids for the yeast two-hybrid assay,
we used pGBKT7 and pGADT7 vectors (Clontech) for
the GAL4 DNA-binding-, and transcription-activation-
domain fusions, respectively. Both fusions were
N-terminal fusions; i.e. the DNA-binding, or activation
domain was fused to the N-terminus of the protein to be
tested. The full-length and truncated elav coding sequences
were amplified by PCR from an elav cDNA clone, digested
with EcoRI and Bglll, and subcloned between EcoRI and
BamHI sites of pGBKT7 and pGADT7 vectors.

For construction of hinge-RRM1 (eHI) and hinge-
RRM?2 (eH2) cDNAs, the elav RRM1 and 2 coding
sequences were PCR-amplified with primers that have the
3’ end sequence of the hinge region fused to the 5 region
of the RRM1 or 2 coding sequence. The fused hinge
sequence would anneal to the corresponding site of the
hinge region during the next round of PCR. The
secondary PCRs were performed in which eHI or eH2
were amplified from mixed templates of the first PCR
product and pGADT7-eH. The resulting PCR fragments
were digested with EcoRI and Bglll, and subcloned into
EcoRI/BamHI sites of pGADT7.

The mutant hinge-RRM3 constructs (eH3mul-7) were
generated by site-directed PCR mutagenesis. For each
mutation, a complimentary pair of primers was designed
at the target site to replace a certain RRM3 sequence
with the corresponding sequence from RRM2. In the
primary PCRs, the 5 and 3 parts were amplified
separately using one of the complimentary mutagenic
primers at one end. The PCRs produced the 5" and 3’ parts
of the constructs overlapping with each other for the
length of the mutagenic primers. The 5" and 3’ parts were
joined together by the secondary PCRs in which a mixture
of the two primary PCR products was used as a template.
The secondary PCR fragments were digested with EcoRI
and Bglll, and subcloned into EcoRI/BamHI sites of
pGADTY7.

The eH3mu8 was constructed in a similar way as the
other mutant hinge-RRM3 constructs were made, but
with three separate primary PCRs; from the 5" end of the
hinge to the first two mutations (ETEE and W), from the
first two mutations to the third mutation site (MTNY),
and from the third mutation to the 3’ end of RRM2. The
three primary PCR fragments were joined together by
the secondary PCR with the primers at both ends of the
eH3mu8. The secondary PCR fragment was digested with
EcoRI and BgllIl, and subcloned into EcoRI/BamHI sites
of pGADT7.
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For Rbp9 and fne constructs, the coding sequences
of Rbp9 and fne were amplified by PCR from cDNA
prepared from adult Drosophila RNA. The amplified Rbp9
coding sequence was digested with BglIl and Xhol, and
subcloned into BamHI/Sall and BamHI/Xhol sites of
pGBKT7 and pGADT7, respectively. The fne coding
sequence was digested with EcoRI and Bglll, and
subcloned into EcoRI/BamHI sites of pGBKT7 and
pGADTY7.

For the upstream activating sequence (UAS) constructs,
PCRs were performed to put a mutant RRM in place of
RRM3 in the full length elav cDNA. The pGADT7 with a
mutant hinge-RRM insert (eH3mu4, eH3muS8, or eH?2)
was digested with Hpal, and used as a template together
with pGBKT7-eQ12H. With the primers at the 5 end of
elav coding sequence and downstream to the cloning site
of pGADT?7, the full length elav coding sequences with a
mutant RRM3 were amplified. The PCR fragments were
digested with EcoRI and Xhol, and subcloned first into
EcoRI/Xhol sites of pGADT7, then cut out by Bglll and
Xhol digestion, and subcloned into Bglll/Xhol sites of the
pUAST vector (38). Likewise, the control elav coding
sequence was excised from the pGADT7-eQ12H3 con-
struct with BglIl and Xhol digestion, and subcloned into
Bglll/Xhol sites of pUAST. All the UAS-elav constructs
have hemagglutinin (HA) epitope tag sequence at the
N-terminus that is derived from pGADT7.

All the subcloned PCR fragments were fully sequenced
to confirm the absence of inadvertent mutations intro-
duced during PCR. See Supplementary Data for all the
primer sets used for the PCRs (Table S1) and their
sequences (Table S2).

Yeast two-hybrid assay

The Matchmaker Two-Hybrid System 3 (Clontech) was
used for the two-hybrid interaction assays. The
Saccharomyces cerevisiae Y187 and AHI109 strains
(Clontech) were transformed with the pGBKT7 and
pGADT7 constructs, respectively. To test two-hybrid
interactions, Y187 with a pGBKT?7 construct and AH109
with a pGADT?7 construct were mated, and the resulting
diploids were tested for two-hybrid reporter gene activa-
tion. Each mating culture was plated on a SD/-Ade/-His/-
Leu/-Trp testing plate to examine the activation of both
ADE?2 and HIS3 reporter genes, as well as on a SD/-Leu/-
Trp plate to confirm mating success. Colony formation on
the SD/-Ade/-His/-Leu/-Trp plate was scored after 6 days
of incubation at 30°C. In all figures, ‘+’ means yeast
colony formation indicating interaction between the two
proteins, and ‘—’ means no or very few colony formations
indicating no or very weak interaction (see Figure 3B for
examples of ‘+’ and ‘=’ results). All the constructs were
tested to confirm that they did not activate the reporter
gene expressions by themselves.

Immunoprecipitation

For co-immunoprecipitation (co-IP), adult flies of the
following genotypes were prepared: elav®’; elav?*ORF)
Cy0, elav?”; elav”ORE)+: elav=)+, elav; elav=")
TM3 Ser, UAS-eQI2H3/+; Hsp70-GAL4/+ and
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Hsp70-GAL4/+ . The elav®’ (26) is a null allele of elav,
elav®"OR" (39) and elav—"> (40) are elav transgenes, UAS-
eQ12H3 is HA-tagged elav under the control of UAS, and
Hsp70-GAL4 (P{GAL4-Hsp70.PBy}; Bloomington
Drosophila Stock Center) is GAL4 driven by the Heat
shock protein 70 (Hsp70) promoter. A 37°C heat-shock
was applied for 30 min to UAS-eQI12H3/+; Hsp70-GAL4/
+ and Hsp70-GAL4/+ flies 3h and 30 min before head-
collection. Eighty heads were collected for each genotype
and homogenized in 250 pl of immunoprecipitation buffer
[IPB; 50 mM Tris—HCI pH 7.5, 50 mM NaCl, 0.1% Triton
X-100, Complete Mini Protease Inhibitor Cocktail Tablet
(Roche)]. The homogenate was centrifuged, the super-
natant was divided into two equal volumes of 110 pl, and
the RNase Cocktail (Ambion; 0.1 U RNase A and 4U
RNase T1) was added to one (RNase +). Both RNase +
and — homogenates were incubated at room temperature
(RT) for 30min. After the incubation, the homogenate
was centrifuged again and 100pl of the supernatant
was recovered. The Immobilized Protein A (Pierce
Biotechnology) was pre-washed with IPB, then incubated
with either the mouse anti-ELAV monoclonal antibody
(mAb) 7D (for ELAVPYORF) or the mouse anti-HA mAb
F-7 (Santa Cruz Biotechnology; for HA-tagged ELAV) in
IPB at 4°C for several hours. About 10 pl of the beads were
added to the homogenate after being washed with IPB. The
mixture was incubated at 4°C for 1 h and 30 min with gentle
rotation. The beads were washed with IPB. Then 10 pl of
2 x SDS sample buffer [100mM Tris-HCI pH 6.8, 4%
sodium dodecyl sulfate (SDS), 2% 2-mercaptoethanol,
20% glycerol, 0.001% bromophenol blue] was added to the
beads, and incubated at 95°C for 8 min. The precipitated
proteins were separated by SDS polyacrylamide gel
electrophoresis and western blotting was probed by the
rat anti-ELAV anti-serum.

Germline transformation

Df(1)w; Ki p” A2-3]/+ embryos were injected with the
pUAST constructs (41,42). The germline transformants
were recovered based on [w '] eye color, and transgenic
lines were established by standard procedures.

Immunostaining

The y w; UnGA; dpp-GAL4 (P{GAL4-dpp.blkl})
(43)/TM6B Tbh females were crossed with males of one
of the UAS-elav lines. The [Th "] wandering third instar
larvae in the next generation were used for dissection.
Wing discs were dissected in phosphate-buffered saline
(PBS) and fixed in 4% paraformaldehyde in PBS for
30 min at RT. The wing discs were washed in 0.3% Triton
X-100 in PBS (PBT), blocked in 5% normal goat serum in
PBT for 2h and 30min at RT, and incubated with
primary antibodies of the mouse anti-ELAV mAb 7D and
the rabbit anti-GFP polyclonal antibody (Torrey Pines
Biolabs) at the dilutions of 1:100 and 1:200, respectively,
in PBT for overnight at 4°C. The secondary antibody
incubation was carried out with the Cy5-conjugated
donkey anti-mouse immunoglobulin antibody (Jackson
ImmunoResearch Laboratories) and the fluorescein-
conjugated goat anti-rabbit immunoglobulin antibody

(Jackson ImmunoResearch Laboratories) at the dilution
of 1:200 each in PBT for 2h and 30 min at RT. The wing
discs were mounted with 70% glycerol in PBS after
washing with PBT.

Confocal microscopy and image analysis

Immunofluorescent images were acquired by Leica TCS
SP2 mounted on Leica DM IRE2 inverted microscope.
Intensities of fluorescence were measured by Imagel
software (National Institutes of Health) from average
Z-series projection images of the wing discs. The ELAV
(Cy5) and GFP (fluorescein) signals in the dpp expression
pattern as well as in the background were measured for
eight wing discs for each genotype. The background signal
was subtracted from the signal in the dpp-pattern to obtain
the compensated signal intensity for each disc. The
compensated GFP signal was normalized by the compen-
sated ELAYV signal for each disc, and the average and
confidence interval of the normalized GFP signal was
calculated for eight wing discs of each genotype.

RESULTS

All Drosophila ELAV-family proteins interact
with each other

It has been shown that ELAV forms multimeric complexes
in the presence or absence of substrate RNA (34),
and mammalian Hu proteins form homo- and hetero-
multimers (35-37). In our yeast two-hybrid screening
of a Drosophila embryonic cDNA library for ELAV-
interacting proteins, we identified ELAV itself and Fne,
another ELAV-family protein in Drosophila, as the
strongest ELAV-interacting proteins (Toba and White,
our unpublished data). This suggests that Drosophila
ELAV-family proteins also interact with each other as Hu
proteins do. To examine interactions among all three
Drosophila ELAV-family proteins, we cloned the cDNA
of elav, Rbp9 and fne into yeast two-hybrid vectors. The
interactions between the proteins in yeast were assessed by
looking at colony formation on the testing plate that
requires activation of both of the two reporter genes
(sece Materials and Methods section for details).
Interactions were positive in all the combinations
(Figure 1A), which suggests that Drosophila ELAV-
family proteins may form homo- and hetero-multimers
under these conditions.

ELAV-ELAY interaction requires RNA

To examine ELAV multimerization in the in vivo environ-
ment, we conducted co-IP from Drosophila extracts in
two different ways: (i) A protein extract was prepared
from flies expressing both the elav”"?*" (39) and elav—"*
(40) transgenes over the elav’ (null) background. The
elav”"OR®" expresses ELAV of D. viliris that has a larger
molecular weight than D. melanogaster ELAV. The
ELAV~" protein has a 13 amino acid deletion in
the first RRM that includes the epitope recognized b};
the monoclonal anti-ELAV antibody. The ELAVPYOR
was IP-ed with the monoclonal antibody to see if the
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Figure 1. (A) Yeast two-hybrid interactions between Drosophila ELAV-
family proteins. In the matrix, ‘+’ and ‘-’ indicate positive and
negative interactions in the yeast two-hybrid assay, respectively. The
results show that all Drosophila ELAV-family proteins, ELAV, Rbp9
and Fne, interact with themselves as well as each other. ‘Vector only’
means empty pGBKT7 and pGADT7 vectors for the DNA biding and
activation domain fusions, respectively. ND, not determined. (B and C)
ELAV-ELAV interaction is sensitive to RNase treatment. (B) Both
ELAVPYORF and ELAV™"3 were expressed in the e/av null mutant flies.
Immunoprecipitation (IP) was performed with the anti-ELAV mAb 7D
which does not recognize ELAV™"?, and western blot was probed with
the anti-ELAV polyclonal antiserum. ELAV™'" was co-IPed with
ELAVPYORE (lane 6), and the co-IPed ELAV™"® became undetectable
with RNase treatment (lane 7). The elav®’; elav®*°*)CyO (lanes 1, 4
and 5) and elav®; elav™"3/TM3 Ser (lanes 3, 8 and 9) are negative
controls in which ELAVPYORF and ELAV~" were solely expressed,
respectively. (C) HA-tagged ELAV was expressed in the flies with
Hsp70-GAL4 driver, and an anti-HA mAb was used for IP. Western
blot was probed with the anti-ELAV polyclonal antiserum. The
endogenous ELAV was co-IPed with HA-ELAV (lane 3), and the
interaction was disrupted by RNase treatment (lane 4). The Hsp70-
GAL4 (lanes 2, 5 and 6) is a negative control that does not have the
HA-tagged ELAV (UAS-eQ12H3) transgene.

ELAV~" would be co-IP-ed; (ii) The HA-tagged ELAV
was expressed in adult Drosophila using the GAL4-UAS
system (38), and the HA-ELAYV was IP-ed with an anti-
HA antibody to examine if the endogenous ELAV would
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be co-IP-ed with it. In both cases, ELAV protein that was
not recognized by the antibody was co-IP-ed with the
other form of the protein (Figure 1B lane 6 and Figure 1C
lane 3). However, the interactions seemed RNase sensitive
since RNase treatment of the protein extract made co-IP-
ed proteins undetectable in both cases (Figure 1B lane 7
and Figure 1C lane 4). This result suggests that either the
interaction is mediated by RNA, or binding of the RNA
allows a conformational change in ELAV that facilitates
the protein—protein interaction.

Mapping of ELAYV multimerization domains

ELAYV consists of three RRMs, an N-terminal alanine/
glutamine (AQ)-rich region, and a hinge region between
the RRM2 and 3 (Figure 2A). To map the region that is
responsible for the ELAV-ELAYV interaction, we made a
series of deletion constructs and tested interactions using
the yeast two-hybrid system. Interaction activity required
the presence of both the hinge region and RRM3 in all
cases but of eQ12 and ¢Q12H constructs in Figure 2B. The
eH3 fragment interacted with itself (Figure 2B). In
addition to the hinge-RRM3 region, the N-terminal
AQ-rich region seemed to contribute to the interaction
since the constructs that lack RRM3 or both hinge and
RRM3 (eQ12 and eQ12H in Figure 2B) still retained some
interaction activity as long as they had the AQ-rich region
(compare eQ12 with el12, eQ12H with ¢12H in Figure 2B).
Our results suggest the involvement of both the AQ-rich
and hinge-RRM3 regions in the interaction. We resolved
to pursue the activity of the hinge-RRM3 region since it is
likely to be a general property of ELAV-family proteins,
as the AQ-rich region is not present in any other ELAV-
family protein. Additionally, the AQ-rich region is not
essential to the vital function of ELAV (44).

We narrowed down the activity within the hinge-RRM3
region with deletion constructs of the hinge-RRM3
fragment. The result suggests that N-terminal two thirds
of the hinge region and the C-terminal 18 amino acids of
RRM3 are dispensable for the interaction (Figure 2C).
The break point of the eSH3 in Figure 2C is the
C-terminal end of the sequence required for nuclear
localization of the protein (45). The construct eSHbabba
in Figure 2C that consists of most of the RRM3 and a
C-terminal part of the hinge was the smallest fragment
that showed the same interaction activity as the original
eH3 fragment.

Three conserved short sequences in RRM3 play a critical
role in ELAV-ELAY interaction

To identify amino acids responsible for the interaction in
the hinge-RRM3 region, we looked for evolutionary
conservation within the region where we mapped the
interaction activity. While we found conserved sequences
in the RRM3, the sequence in the hinge region was very
divergent and we hardly found any conservation within
the region where interaction activity was mapped (data
not shown). Although it is still possible that the region has
important structures for the interaction without apparent
sequence conservation, we focused our investigation on
the RRM3.
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Figure 2. Mapping of ELAV-ELAYV interaction activity by the yeast two-hybrid assay. (A) Schematic representation of ELAV structure with the
N-terminus to the left. ELAV consists of three RNA recognition motifs (RRMs), the N-terminal AQ-rich region, and a hinge region between the
RRM2 and 3. (B and C) Yeast two-hybrid interactions among deletion mutants of ELAV. In the matrices, ‘+’ and ‘—’ indicate positive and negative
interactions in the yeast two-hybrid assay, respectively. Schematics of the deletion mutants are shown upper and left sides of each matrix.
Boxes labeled with 1, 2 and 3 represent RRM1, 2 and 3, respectively. The bars next to the RRM1 and between RRM?2 and 3 represent the AQ-rich

and hinge regions, respectively.

Before proceeding to the analysis of the sequence, we
wanted to make sure that it is the amino acid sequence of
RRM3 that determines the interaction activity, not just
the presence of any RRM after the hinge. The latter could
be the case since the general structure of the RRM is quite
well conserved. To test the possibility, ELAV RRMI1 or 2
were fused to the C-terminus of the hinge, and checked for
the interaction by the two-hybrid assay. Our results
showed that RRM1 or 2 do not substitute for RRM3,
indicating that amino acids unique to the RRM3 are
responsible for the interaction (Figure 3B column 10, data
not shown).

To find the amino acids responsible for the interaction,
we looked for RRM3-specifically conserved residues.
Figure 3A shows an amino acid sequence alignment of
RRMs from three Drosophila, and four human ELAV-
family proteins. RRM3-specific conservations are indi-
cated by magenta, which are defined as the amino acids
conserved among RRM3s, but not in RRMI1 or 2.
Conserved amino acids among the RRM3s that are not
specific to RRM3 are indicated by blue. We chose the

underlined sequences (numbers 1-7) as the targets for the
mutational analysis. The sequence number 5 is not an
RRM3-specific conservation, and was chosen as a
negative control.

The eH3 construct was mutated by replacing one of the
underlined sequences in Figure 3A with the corresponding
sequence of ELAV RRM2. The interaction with eH3 was
tested by the two-hybrid assay. While mutation in
sequences 1, 2, 5 and 7 did not affect the interaction
(Figure 3B columns 2, 3, 6 and 8), mutations in sequences
3, 4 and 6 caused loss of interaction (Figure 3B columns 4,
5 and 7), which indicated that the mutated amino acids
were essential for the interaction. The three essential
sequences 3, 4 and 6 are the ‘ETEE’ sequence adjacent
to the putative a-helix 1, the single tryptophan on the
a-helix 1, and ‘MTNY” close to the putative o-helix 2,
respectively. Next, we asked if the three sequences are
sufficient to provide interaction activity to RRM2 when
introduced into the eH2 construct at the corresponding
sites. The hinge-RRM2 construct with the RRM3
sequences 3, 4 and 6 (eH3mu8) interacted with eH3
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seven underlined sequences with the corresponding sequence of RRM2. The interactions between the mutants and the wild-type hinge-RRM3 were
tested by the two-hybrid assay. In the figure, the constructs above the “+’ or ‘—’ box are activation-domain fusions, and the eH3 ‘bait’ construct on
the left is a DNA-binding-domain fusion. The loss of interaction activity of the mutants eH3mu3, 4 and 6 (columns 4, 5 and 7) suggests that the
mutated amino acids are essential for the interaction. Introduction of the three sequences, 3, 4 and 6, to RRM2 (eH3mu8 construct, column 9) was
sufficient to give the interaction activity to the hinge-RRM2. Photographs of representative testing and control plates are shown below.

(Figure 3B column 9), demonstrating that the sequences
play a critical role in ELAV-ELAYV interaction. The
examination of expected positions of the identified amino
acids in relation to the tertiary structure of the RRM
revealed that most of them are exposed to the outside, and
thus qualified as candidates for the amino acids that
mediate the interaction (Figure 4).

The three sequences are not sufficient for RRM3
to function in vivo

Given that our results indicate RRM3 has a critical role in
ELAV-ELAYV interaction, it is possible that RRM3 serves

mainly as a protein—protein interaction domain, not as an
RNA-binding domain. To test the possibility, we exam-
ined the in vivo function of ELAV with mutant RRM3 by
expressing them using the GAL4-UAS system. We made
four UAS-elav constructs: (i) the wild-type control
(eQ12H3); (ii)) the W419E mutant (eQI12H3mu4) that is
presumably interaction defective; (iii) a mutant in which
RRM2 replaces RRM3 except for the sequences 3, 4 and 6
(eQ12H3musg) and (iv) a mutant in which RRM2 replaces
RRM3 completely (eQ12H2) (see Figure 5C for sche-
matics). To evaluate the in vivo function of the mutant
proteins, we employed a GFP reporter gene (UnGA)
whose expression is dependent upon ELAV-regulated
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Figure 4. Expected positions of the three sequences in relation to the
tertiary structure of the RRM. The RRM2 part of the crystal structure
of HuD associated with c-fos ARE (9; Protein Data Bank ID 1FXL) is
shown. The RRM1, linker region between RRMI and 2, and c-fos
ARE RNA are omitted. The corresponding amino acid residues of the
three interaction sequences of ELAV RRM3 are shown in orange
(sequence 3), yellow (sequence 4) and purple (sequence 6). The labels
indicate the identity of the shown residues of HuD RRM2 and that of
the corresponding residues of ELAV RRM3 in the parentheses. All the
residues are exposed to the solvent except the phenylalanine in the
sequence 6. Columnar and flat arrows represent o-helix and B-strand,
respectively. The a-helices 1 and 2 are labeled. The image is created by
the Cn3D software (National Center for Biotechnology Information).

alternative splicing of the Nrg alternative intron (46).
Although the reporter is transcribed ubiquitously, GFP is
expressed only when ELAV promotes the neural splicing
of the intron (Figure 5A). GFP expression from UnGA is
limited to neurons in the wild-type animals, but when
ELAYV is ectopically expressed, GFP is also expressed
where ectopic ELAV is expressed (46; Figure 5B). We
ectopically expressed ELAYV in the wing discs of the third
instar larvae using the dpp-GAL4 driver (43), and
measured the GFP expression level relative to the ectopic
ELAV level (see Materials and methods section for
details). The right panel of Figure 5C shows induced
GFP reporter expression levels by two independent
insertion lines of each UAS-elav construct, as fractions
of the mean value of the wild-type controls. The W419E
mutant showed a reduced level of GFP expression
compared to the wild-type construct, suggesting the
importance of multimerization for the alternative-splicing
regulation (Figure 5C). The mutant in which RRM3 was
replaced by RRM2 except for the sequences 3, 4 and 6
functioned no better than the RRM3/2 total replacement
mutant (Figure 5C). The result indicates that RRM3
requires more than the three sequences to function in vivo,
and implies that multimerization is not the only function
RRM3 performs.

DISCUSSION

Previous studies have suggested that the RRM3 of ELAV-
family proteins has a less important role in specific
RNA-binding than the other two RRMs. For example,
experiments using deletion constructs of Hu proteins

have shown that mutant proteins lacking RRM3 still bind
ARE efficiently (37,47,48). Yet, evolutionary conservation
of the RRM3 sequence is the strongest among the three
RRMs, which indicates an important function for RRM3.
In this study, we showed that ELAV RRM3 has a central
role in multimerization of the protein, and we believe that
the multifunctional aspect of RRM3 makes it the most
conserved RRM of the protein. It is noteworthy that
RRM3 of HuC and HuB has been shown to have a
dominant negative effect on neural-phenotype-inducing
activity of the proteins (49). An explanation for this effect
is competition between the full-length protein and the
RRM3 fragment for binding to the RNA substrates, as
shown by Gao and Keene (36). Considering our results,
however, one can conceive another possible mechanism
that the over-expression of the RRM3 fragment interferes
with multimerization of the full-length proteins.

Kasashima et al. (35) studied multimerization of Hu
proteins. They found that RRM3 of HuC showed the
strongest interaction activity in the yeast two-hybrid
system when full length HuB was used as bait, basically
agreeing with our result. However, when HuC RRM3 was
used as bait, a fragment containing both RRM1 and 2 also
showed strong interaction activity (35). In our yeast two-
hybrid experiment, similar constructs (el2 construct in
Figure 2B) did not show interaction with either the full
length ELAV or hinge-RRM3 fragment. This discrepancy
may come from the presence of an arbitrary threshold in
our system; i.e. we evaluate interaction by scoring colony
formation of the yeast, and weak interactions may fail to
be scored in principle. Therefore, it is possible that RRM1
and 2 also contribute to multimerization. In fact, we found
that the RRM1 + 2 fragment showed limited interaction
activity when the N-terminal AQ-rich region was added to
it (eQ12 construct in Figure 2B). Nonetheless, our results
suggest that the interaction activity of RRM3 is at least
stronger than that of RRMI1 or 2. The three sequence
elements in the RRM3 we identified in this study are likely
to be important for multimerization of all ELAV-family
proteins, since they were identified as conserved sequences
among the family.

Structural studies have shown that the RRMs have a
well conserved general structure; i.e. four anti-parallel
B-strands form a PB-sheet, and two a-helices are packed
against the B-sheet (6; Figure 4). Studies on RNA-bound
forms of RRMs have demonstrated that RRMs interacts
with RNA through the amino acids located on the -sheet,
including those in the conserved short consensus
sequences ribonucleoprotein (RNP) 1 and 2 by which
RRM was initially defined (4,5,7-9). It has been shown
that RRMs are also involved in protein—protein interac-
tions. In some cases, the RRM interacts with another
RRM (17,19,21), while in other cases, the RRM interacts
with non-RRM proteins (8,10-16,18,20). Amino acids on
the o-helices are involved in most interactions although
detailed mode of interaction varies from one case to
another. We identified three sequence clements that are
essential for ELAV-ELAY interaction, and also sufficient
to give the interaction activity to RRM?2 when all of them
are introduced into it. All the three elements are estimated
to be located on or adjacent to the a-helices when we look
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Figure 5. In vivo functional analysis of the RRM3 mutants. (A) Schematic representation of the UnG A reporter gene. The UnG A has the alternatively
spliced intron from Nrg whose splicing is regulated by ELAV. It is transcribed ubiquitously, but GFP is expressed only when ELAV promotes the
neural splicing of the intron. (B) Ectopic expression of ELAV in the wing disc by the dpp-GAL4 driver leads to the GFP expression from UnGA.
Anti-ELAV (left panel) and anti-GFP (right panel) staining of a UnGA/+; dpp-GAL4/UAS-eQ12H3 wing disc are shown. The outline of the disc is
shown with a white line. (C) The wild-type control and three mutant forms of ELAV were expressed by the dpp-GAL4 driver. Two independent
insertion lines were used for each UAS construct. GFP expression levels in the wing disc were quantified, and normalized by ELAV expression levels.
The bars on the right panel show the averaged values of eight wing discs for each genotype, as fractions of the mean value of the wild-type controls.
The error bars show the 95% confidence intervals. Bars labeled with different letters (a—e) are significantly different at P <0.01 in the r-test.

at the positions of the corresponding amino acids in
other RRMs for which the tertiary structures have been
determined (Figure 4). This suggests a model in which
the ELAV RRM3 interacts with another RRM3 through
the surface opposite to the RNA-binding surface of the
domain.

In our co-IP experiment, ELAV-ELAYV interaction
required the presence of RNA. This observation raises the
question as to whether the interaction is based on protein—
protein interaction or is mediated by RNA. Although the
RNA-mediated interaction model could not be excluded
completely, the protein—protein interaction model 1is
preferred for the following reasons: (i) the three identified
important sequence elements for the interaction are all
located away from the putative RNA binding surface;
(ii) the mutations on the putative RNA binding surface
(mutants eH3mu2 and 5 in Figure 3B) that potentially
alter the binding specificity did not interfere with the

interaction. It has also been shown that HuD-HuD
interaction is greatly reduced with RNase treatment
although not completely abolished (35). We hypothesize
that a conformational change of the RRM upon RNA
binding ensures efficient protein-protein interaction in
both ELAV and HuD cases. Interestingly, a recent study
on ARE-binding of HuR has revealed that RRM3 is
required for cooperative assembly of HuR oligomers on
RNA (37). The observation fits the idea that the initial
binding of an ELAV-family protein on a target RNA
facilitates the protein-protein interaction between
RRM3s.

We find that RRM2 with the three critical sequences
allows ELAYV interaction in the yeast two-hybrid system,
but still fails to support the in vivo function. Thus,
additional sequences in RRM3 are also necessary for
ELAY function. This is consistent with the previous study
that suggests that the RNA binding ability of each RRM,
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including RRM3, is essential, as transgenes that carry
mutations that individually disrupt the RNA binding
ability of individual RRMs were unable to provide ELAV
function (40). Therefore, it is suggested that ELAV RRM3
is a bi-functional domain that interacts with both RNA
and protein.

One of the three critical sequence elements for ELAV—
ELAYV interaction was the single tryptophan at the
position 419 (W419). Coincidentally, two independent
temperature-sensitive alleles of elav, elav™®! and elav™”?,
have TAG and TGA stop codons at the site of W419,
respectively (50). In these two mutants, ELAV protein
with an apparent normal size is produced, along with a
truncated form. It is hypothesized that some form of
nonsense suppression occurs in these mutants, and
probably a different amino acid substitutes the original
W419 (50). Further, it is suggested that the temperature
sensitivity of the mutants is due to impaired function of
the protein, rather than the thermolability of the protein,
because the amounts of either forms of ELAV are
unaffected by temperature (50). Since W419E substitution
strongly reduced multimerization activity in our yeast
two-hybrid experiment, we hypothesize that the amino
acid substitution resulted from the nonsense suppression
compromise multimerization of the protein, which leads to
the temperature sensitive phenotype of the mutants.

ELAV-family proteins have been shown to form multi-
meric complexes on their target RNA (34-37). It is likely
that multimerization is an integral part of the mechanism
by which ELAV-family proteins carry out their functions.
However, the structural basis of the multimer formation
remains unknown. In this study, we showed the impor-
tance of RRM3 for ELAV multimerization, and identified
three sequence elements that are essential for the interac-
tion. Our results suggest a rough model for a ELAV
multimer in which ELAV molecules interact with each
other by their RRM3s. Further structural and biochemical
studies are required to draw the complete picture of the
multimeric complex, and understand the physical mechan-
isms of RNA processing/stabilization by ELAV-family
proteins.
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ACKNOWLEDGEMENTS

We thank M. Zhadina for help with the two-hybrid assay,
P. Parmenter and E. Dougherty for technical assistance.
We thank the Bloomington Drosophila Stock Center
at Indiana University for providing fly stocks. The
project described was supported by Grant Numbers
POINS044232 and P30 NS045713 from the National
Institutes of Neurological Disorders and Stroke and
Grant Number S10 RR16780 from the WNational
Institute of Health. The content is solely the responsibility
of the authors and does not necessarily represent the
official views of the National Institute of Neurological
Disorders and Stroke or the National Institute of Health.

The Open Access funding charges for this paper were
waived.

Conflict of interest statement. None declared.

REFERENCES

. Burd,C.G. and Dreyfuss,G. (1994) Conserved structures and
diversity of functions of RNA-binding proteins. Science, 265,
615-621.

2. Dreyfuss,G., Swanson,M.S. and Pinol-Roma,S. (1988)
Heterogeneous nuclear ribonucleoprotein particles and the pathway
of mRNA formation. Trends Biochem. Sci., 13, 86-91.

. Maris,C., Dominguez,C. and Allain,F.H. (2005) The RNA recog-
nition motif, a plastic RNA-binding platform to regulate post-
transcriptional gene expression. Febs J., 272, 2118-2131.

4. Deo,R.C., Bonanno,J.B., Sonenberg,N. and Burley,S.K. (1999)
Recognition of polyadenylate RNA by the poly(A)-binding protein.
Cell, 98, 835-845.

. Handa,N., Nureki,O., Kurimoto,K., Kim,I., Sakamoto,H.,
Shimura,Y., Muto,Y. and Yokoyama,S. (1999) Structural basis for
recognition of the /ra mRNA precursor by the Sex-lethal protein.
Nature, 398, 579-585.

. Nagai, K., Oubridge,C., Jessen,T.H., Li,J. and Evans,P.R. (1990)
Crystal structure of the RNA-binding domain of the Ul small
nuclear ribonucleoprotein A. Nature, 348, 515-520.

. Oubridge,C., Ito,N., Evans,P.R., Teo,C.H. and Nagai, K. (1994)
Crystal structure at 1.92 A resolution of the RNA-binding domain
of the UIA spliceosomal protein complexed with an RNA hairpin.
Nature, 372, 432-438.

. Price,S.R., Evans,P.R. and Nagai,K. (1998) Crystal structure of the
spliceosomal U2B”-U2A’ protein complex bound to a fragment of
U2 small nuclear RNA. Nature, 394, 645-650.

9. Wang,X. and Tanaka Hall,T.M. (2001) Structural basis for
recognition of AU-rich element RNA by the HuD protein.
Nat. Struct. Biol., 8, 141-145.

10. Bentley,R.C. and Keene,J.D. (1991) Recognition of Ul and U2
small nuclear RNAs can be altered by a S-amino-acid segment in
the U2 small nuclear ribonucleoprotein particle (snRNP) B” protein
and through interactions with U2 snRNP-A’ protein. Mol. Cell
Biol., 11, 1829-1839.

11. Fresco,L.D., Harper,D.S. and Keene,J.D. (1991) Leucine periodicity
of U2 small nuclear ribonucleoprotein particle (snRNP) A’ protein
is implicated in snRNP assembly via protein-protein interactions.
Mol. Cell Biol., 11, 1578-1589.

12. Scherly,D., Boelens,W., Dathan,N.A., van Venrooij,W.J. and
Mattaj,I.W. (1990) Major determinants of the specificity of
interaction between small nuclear ribonucleoproteins UlA and
U2B” and their cognate RNAs. Nature, 345, 502-506.

13. Scherly,D., Dathan,N.A., Boelens,W., van Venrooij,W.J. and
Mattaj,I.W. (1990) The U2B” RNP motif as a site of protein-
protein interaction. EMBO J., 9, 3675-3681.

14. Fribourg,S., Gatfield,D., Izaurralde,E. and Conti,E. (2003) A novel
mode of RBD-protein recognition in the Y14-Mago complex.

Nat. Struct. Biol., 10, 433-439.

15. Kielkopf,C.L., Rodionova,N.A., Green,M.R. and Burley,S.K.
(2001) A novel peptide recognition mode revealed by the X-ray
structure of a core U2AF35/U2AF65 heterodimer. Cell, 106,
595-605.

16. Mazza,C., Ohno,M., Segref,A., Mattaj,I.W. and Cusack.S. (2001)
Crystal structure of the human nuclear cap binding complex.

Mol. Cell, 8, 383-396.

17. Oberstrass,F.C., Auweter,S.D., Erat,M., Hargous,Y., Henning,A.,
Wenter,P., Reymond,L., Amir-Ahmady,B., Pitsch,S., Black,D.L.
et al. (2005) Structure of PTB bound to RNA: specific binding and
implications for splicing regulation. Science, 309, 2054-2057.

18. Selenko,P., Gregorovic,G., Sprangers,R., Stier,G., Rhani,Z.,
Kramer,A. and Sattler,M. (2003) Structural basis for the molecular
recognition between human splicing factors U2AF65 and SF1/
mBBP. Mol. Cell, 11, 965-976.

19. Shamoo,Y., Krueger,U., Rice,L.M., Williams,K.R. and Steitz, T.A.

(1997) Crystal structure of the two RNA binding domains of

(58}

W

N

~

oo



20.

21.

22.

23.

24.

25.

26.

27.

28

29.

30.

31.

32.

33.

34.

3s.

36.

human hnRNP Al at 1.75A resolution. Nat. Struct. Biol., 4,
215-222.

Shi,H. and Xu,R.M. (2003) Crystal structure of the Drosophila
Mago nashi-Y 14 complex. Genes Dev., 17, 971-976.

Xu,R.M., Jokhan,L., Cheng,X., Mayeda,A. and Krainer,A.R.
(1997) Crystal structure of human UPI, the domain of hnRNP Al
that contains two RNA-recognition motifs. Structure, S, 559-570.
Antic,D. and Keene,J.D. (1997) Embryonic lethal abnormal visual
RNA-binding proteins involved in growth, differentiation, and
posttranscriptional gene expression. Am. J. Hum. Genet., 61, 273-278.
Brennan,C.M. and Steitz,J.A. (2001) HuR and mRNA stability.
Cell Mol. Life Sci., 58, 266-277.

Keene,J.D. (1999) Why is Hu where? Shuttling of early-response-
gene messenger RNA subsets. Proc. Natl Acad. Sci. USA, 96, 5-7.
Campos,A.R., Grossman,D. and White,K. (1985) Mutant alleles at
the locus elav in Drosophila melanogaster lead to nervous system
defects. A developmental-genetic analysis. J. Neurogenet., 2,
197-218.

Robinow,S. and White,K. (1991) Characterization and spatial
distribution of the ELAV protein during Drosophila melanogaster
development. J. Neurobiol., 22, 443-461.

Koushika,S.P., Lisbin,M.J. and White,K. (1996) ELAV, a
Drosophila neuron-specific protein, mediates the generation of an
alternatively spliced neural protein isoform. Curr. Biol., 6,
1634-1641.

. Koushika,S.P., Soller,M. and White,K. (2000) The neuron-enriched

splicing pattern of Drosophila erect wing is dependent on the
presence of ELAV protein. Mol. Cell Biol., 20, 1836-1845.
Lisbin,M.J., Qiu,J. and White,K. (2001) The neuron-specific RNA-
binding protein ELAV regulates neuroglian alternative splicing in
neurons and binds directly to its pre-mRNA. Genes Dev., 15,
2546-2561.

Soller,M. and White,K. (2003) ELAV inhibits 3’-end processing to
promote neural splicing of ewg pre-mRNA. Genes Dev., 17,
2526-2538.

Borgeson,C.D. and Samson,M.L. (2005) Shared RNA-binding sites
for interacting members of the Drosophila ELAV family of neuronal
proteins. Nucleic Acids Res., 33, 6372—6383.

Samson,M.L. (1998) Evidence for 3” untranslated region-dependent
autoregulation of the Drosophila gene encoding the neuronal
nuclear RNA-binding protein ELAV. Genetics, 150, 723-733.
Samson,M.L. and Chalvet,F. (2003) found in neurons, a third
member of the Drosophila elav gene family, encodes a neuronal
protein and interacts with elav. Mech. Dev., 120, 373-383.
Soller,M. and White,K. (2005) ELAV multimerizes on conserved
AU4-6 motifs important for ewg splicing regulation. Mol. Cell Biol.,
25, 7580-7591.

Kasashima,K., Sakashita,E., Saito,K. and Sakamoto,H. (2002)
Complex formation of the neuron-specific ELAV-like Hu
RNA-binding proteins. Nucleic Acids Res., 30, 4519-4526.
Gao,F.B. and Keene,J.D. (1996) Hel-N1/Hel-N2 proteins are
bound to poly(A)+ mRNA in granular RNP structures and are
implicated in neuronal differentiation. J. Cell Sci., 109(Pt 3),
579-589.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

Nucleic Acids Research, 2008, Vol. 36, No.4 1399

Fialcowitz-White,E.J., Brewer,B.Y., Ballin,J.D., Willis,C.D.,
Toth,E.A. and Wilson,G.M. (2007) Specific protein domains
mediate cooperative assembly of HuR oligomers on AU-rich
mRNA-destabilizing sequences. J. Biol. Chem., 282, 20948-20959.
Brand,A.H. and Perrimon,N. (1993) Targeted gene expression as a
means of altering cell fates and generating dominant phenotypes.
Development, 118, 401-415.

Yao,K.M. and White,K. (1991) Organizational analysis

of elav gene and functional analysis of ELAV protein of
Drosophila melanogaster and Drosophila virilis. Mol. Cell Biol., 11,
2994-3000.

Lisbin,M.J., Gordon,M., Yannoni,Y.M. and White,K. (2000)
Function of RRM domains of Drosophila melanogaster ELAV:
Rnpl mutations and rrm domain replacements with ELAV family
proteins and SXL. Genetics, 155, 1789-1798.

Robertson,H.M., Preston,C.R., Phillis,R.W., Johnson-Schlitz,D.M.,
Benz,W.K. and Engels,W.R. (1988) A stable genomic source of P
element transposase in Drosophila melanogaster. Genetics, 118,
461-470.

Rubin,G.M. and Spradling,A.C. (1982) Genetic transformation of
Drosophila with transposable element vectors. Science, 218,
348-353.

Stachling-Hampton,K., Jackson,P.D., Clark,M.J., Brand,A.H. and
Hoffmann,F.M. (1994) Specificity of bone morphogenetic protein-
related factors: cell fate and gene expression changes in Drosophila
embryos induced by decapentaplegic but not 60A4. Cell Growth
Differ., 5, 585-593.

Yao,K.M., Samson,M.L., Reeves,R. and White,K. (1993) Gene elav
of Drosophila melanogaster: a prototype for neuronal-specific RNA
binding protein gene family that is conserved in flies and humans.
J Neurobiol., 24, 723-739.

Yannoni,Y.M. and White,K. (1999) Domain necessary for
Drosophila ELAV nuclear localization: function requires nuclear
ELAV. J. Cell Sci., 112(Pt 24), 4501-4512.

Toba,G., Qui,J., Koushika,S.P. and White,K. (2002) Ectopic
expression of Drosophila ELAV and human HuD in Drosophila
wing disc cells reveals functional distinctions and similarities.

J. Cell Sci., 115, 2413-2421.

Abe,R., Sakashita,E., Yamamoto,K. and Sakamoto,H. (1996) Two
different RNA binding activities for the AU-rich element and the
poly(A) sequence of the mouse neuronal protein mHuC. Nucleic
Acids Res., 24, 4895-4901.

Chung,S., Jiang,L., Cheng,S. and Furneaux,H. (1996) Purification
and properties of HuD, a neuronal RNA-binding protein. J. Biol.
Chem., 271, 11518-11524.

Akamatsu,W., Okano,H.J., Osumi,N., Inoue,T., Nakamura,S.,
Sakakibara,S., Miura,M., Matsuo,N., Darnell,R.B. and Okano,H.
(1999) Mammalian ELAV-like neuronal RNA-binding proteins
HuB and HuC promote neuronal development in both the central
and the peripheral nervous systems. Proc. Natl Acad. Sci. USA, 96,
9885-9890.

Samson,M.L., Lisbin,M.J. and White,K. (1995) Two distinct
temperature-sensitive alleles at the elav locus of Drosophila are
suppressed nonsense mutations of the same tryptophan codon.
Genetics, 141, 1101-1111.



