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The interfrontal bone (IF) is a minor skeletal trait residing between the frontal bones.
IF is considered a quasi-continuous trait. Genetic and environmental factors appear to
play roles in its development. The mechanism(s) underlying IF bone development are
poorly understood. We sought to survey inbred strains of mice for the prevalence of IF
and to perform QTL mapping studies. Archived mouse skulls from a mouse phenome
project (MPP) were available for this study. 27 inbred strains were investigated with
6–20 mice examined for each strain. Skulls were viewed dorsally and the IF measured
using a zoom stereomicroscope equipped with a calibrated reticle. A two generation
cross between C3H/HeJ and C57BL/6J mice was performed to generate a panel of
468 F2 mice. F2 mice were phenotyped for presence or absence of IF bone and among
mice with the IF bone maximum widths and lengths were measured. F2 mice were
genotyped for 573 SNP markers informative between the two strains and subjected
to linkage map construction and interval QTL mapping. Results: Strain dependent
differences in the prevalence of IF bones were observed. Overall, 77.8% or 21/27, of the
inbred strains examined had IF bones. Six strains (C3H/HeJ, MOLF/EiJ, NZW/LacJ,
SPRET/EiJ, SWR/J, and WSB/EiJ) lack IF bones. Among the strains with IF bones,
the prevalence ranged from 100% for C57BL/6J, C57/LJ, CBA/J, and NZB/B1NJ and
down to 5% for strains such as CAST/Ei. QTL mapping for IF bone length and widths
identifies for each trait one strong QTL detected on chromosome 14 along with several
other significant QTLs on chromosomes 3, 4, 7, and 11. Strain dependent differences
in IF will facilitate investigation of genetic factors contributing to IF development. IF bone
formation may be a model to understand intrasutural bone formation.

Keywords: inbred mouse strains, interfrontal bone, wormian bone, QTL, quantitative trait, skeletal variant

INTRODUCTION

Variations of minor skeletal traits among mice have been reported (Grüneberg, 1952, 1955; Searle,
1954; Deol, 1958). These variant skeletal traits may involve the axial or appendicular skeleton as
well as the craniofacial region. Regarding the latter, the interfrontal bone (IF) has been a described
skeletal variant (Keeler, 1933; Truslove, 1952; Johnson, 1976). The IF when present resides within
the interfrontal (metopic) suture, often in the anterior region near the nasal bones. The IF bone
is described as a quasi-continuous trait in that it is either present or not (dichotomous) and when
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present exhibits morphological variability. Crosses between
inbred strains suggest that the basis of the IF to be as a complex
trait involving multiple genes (Grüneberg, 1955). Among inbred
strains studied earlier C57BL6 and CBA consistently exhibit the
IF bone (Truslove, 1952). Abnormal IF bone morphology is
present in a number of classical mouse mutants including brain
hernia (bh/bh), fidget (fi/fi), short face (PfasSofa), and short head
(sho/sho) as examples (Fitch, 1961; Johnson, 1976; Palmer et al.,
2016). Development of the IF bone can be also influenced by
mutations affecting neural tube development, i.e., Gli3 (Xtbph)
and Zic3 (Zic3Bn) (Johnson, 1969, 1976; Carrel et al., 2000).
More recently KO of fibulin-1 leads to reduction in both frontal
and IFs (Cooley et al., 2014). Also, perturbation of interfontal
suture closure through an Ambn-Msx2 axis leads to thinning and
widening of IF bones in mice (Atsawasuwan et al., 2013). The aim
of this study is to survey inbred strains of mice for the prevalence
of IF and to perform QTL mapping studies with the goal to
later understand the genetic factors that determine IF bone for-
mation. To that end a better understanding of IF bone formation
may lead to understanding more about other intrasutural
bone formation, e.g., wormian bones, as well as aspects of
cranial suture biology.

MATERIALS AND METHODS

Mice
The survey of the prevalence of the IF bone across inbred strains
utilized archived skulls from the Mouse Phenome Project (MPP):
Collaborations Program sponsored by The Jackson Laboratory to
ETE. Strain selection was based upon criteria for participation
in the MPP Collaborations Program. All mice were provided by
The Jackson Laboratory (Bar Harbor, ME, United States). A total
27 inbred strains were investigated and included: 129S1/SvImJ,
A/J, AKR/J, BALB/cByJ, C3H/HeJ, C57BL/10J, C57BL/6J, C57/LJ,
C58/J, CAST/Ei, CBA/J, DBA/1J, DBA/2J, DBA/LacJ, FVB/NJ,
LP/J, MOLF/EiJ, NOD/LtJ, NZB/B1NJ, NZW/LacJ, PERA/EiJ,
PL/J, SJL/J, SM/J, SPRET/Ei, SWR/J, and WSB/Ei. For strains
DBA/1J, LP/J, NZW/LacJ, and WSB/EiJ only male skulls were
available for phenotyping and for strains SPRET/EI, and
DBA/Lac only female skulls were available for phenotyping.
Three to ten male and female mice for each strain were examined.
Mice were 48–64 days of age (57 + 4 days) accessioned and
assigned a unique randomized identification numbers. There was
no period of acclimatization. Upon receipt or within 24 h each
mouse was euthanized using CO2 gas and weighed (+0.1 g).
Body weights along with date of birth and age (days) at the time
of euthanasia were recorded. All animal work for the survey
of strains was performed under Indiana University School of
Dentistry Animal Care and Use Committee (IACUC) approval.

For the QTL mapping, F2 were generated from crosses
performed between parental strains (B6C3HF1/J; Stock No.
100010) The Jackson Laboratory. A panel of 468 mice was
generated. Mice were euthanized for IF bone measurements at
50–52 days of age. All animal work for the QTL mapping was
performed under University of North Carolina at Chapel Hill
Animal Care and Use Committee (IACUC) approval.

Preparation of Skulls
Following euthanasia, the heads are removed, cleaned of skin,
fur, loose musculature, and the tongue is removed. The head
is then soaked in 1–2% sodium hypochlorite (5.25% sodium
hypochlorite diluted in 0.9% NaCl) for 14–16 h at room
temperature. The cleaned skulls are thoroughly rinsed in fresh
0.9% NaCl and allowed to air dry (2–3 days) prior to varnishing
with a clear polyurethane spray.

IF Bone Measurements
Skulls were viewed dorsally and the IF measured using a zoom
stereomicroscope equipped with a calibrated reticle. Triplicate
direct measurements of maximum IF widths and lengths were
made on each animal.

Histology
A head from an adult C57BL/6J mouse was fixed in 10% NBF.
A portion of the head was dissected and embedded in paraffin for
sectioning. Slides were stained with haematoxylin and eosin using
standard methods.

Genomic DNA Preparation
For each F2 animal the liver and spleen were snap frozen in liquid
N2 and stored in a 3.6 ml cryovial at −80◦C. Genomic DNA
was prepared using the Gentra Puregene Tissue Kit (QIAGEN,
Germantown, MD, United States) and stored in ddH2O. Each F2
genomic DNA was quantitated by nano-drop and then 1 mcg of
genomic DNA was run on a 0.8% TAE agarose gel and stained to
assess possible degradation. 4 µg of DNA was diluted to 100 ng/ul
in water and frozen was submitted for genotyping.

Genotyping
A total of 468 F2 samples were genotyped on the mapping and
developmental analysis panel (MMDAP; Partners HealthCare
Center for Personalized Genetic Medicine, Cambridge, MA,
United States). The MMDAP contained 748 SNP markers of
which 573 SNP markers were informative between the B6 and
C3H strains and passed our quality control check with <20%
missing genotypes. The genotype QC process involved merging
datasets and recoding alleles into the special formats for QTL
mapping using R/qtl. In addition non-informative parental alleles
were not considered and would include SNPs with missing rate
>20%. A few markers, found on chromosomes 4, 5, 7, and
10 showed unusual patterns where the genetic distances among
markers are too large to be proper. Typically the middle marker
will cause such problems. This could be due to genotyping error,
or data entry error or transmission distortion, etc. We further
examined those markers SNP 6245715 (chr5), SNP 3703981
(chr4), SNP 07-074-764 (chr7), and SNP 6394370 (chr10) with
phenotype variables using Fisher’s exact test and ANOVA. Those
few markers were not considered in the QTL mapping.

QTL Mapping
Linkage map construction and interval QTL mapping were
performed using R/QTL1 (Broman et al., 2003). For phenotype

1http://www.rqtl.org
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variables “ave_length” and “ave_width” there were many zeros
(absence of IF bones). The two part model in R/qtl was
applied and is more appropriate in modeling such zero inflated
traits (Boyartchuk et al., 2001; Broman et al., 2003). Statistical
significance was evaluated by the empirical permutation
procedure (Churchill and Doerge, 1994) and for each trait,
total 1000 permutation was performed to estimate the 95 and
90% thresholds.

Statistics
For phenotyping descriptive statistics (mean and standard
deviation) were calculated from triplicate measurements of the
IF bones from individual animals. The strain/sex group means,
standard deviations, and medians were calculated using PASW
Statistics version 18.0.0 (SPSS Inc., Chicago, IL, United States).
One-way analysis of variance (ANOVA) was performed when
comparing the means between males and females within strains.
Differences were considered significant when p < 0.05.

RESULTS

Survey of Interfrontal Bones Among
Inbred Mouse Strains
Stereozoom images of a CAST/EiJ mouse (Figure 1A) and a
CBA/J mouse (Figure 1B) skulls showing represented absence
and presence of the IF bone. Representative IF histology
(Figure 2) shows a coronal section from an adult C57BL/6J
mouse. The IF bone resides as a well demarcated bone
surrounded by fibrous connective tissue within the interfrontal
suture. Also shown is a hematopoietic island within the IF bone.

Strain dependent differences in the prevalence of IF bones
were observed (Table 1). Overall, 77.8% or 21/27, of the inbred
strains examined had IF bones. Six strains of mice (C3H/HeJ,
MOLF/EiJ, NZW/LacJ, SPRET/EiJ, SWR/J, and WSB/EiJ) lack
IF bones. Among the strains that possessed IF bones, the
prevalence ranged from 100% for strains such as C57BL/6J,
C57/LJ, CBA/J, and NZB/B1NJ down to 5% for strains such
as CAST/Ei. For each mouse strain, the mean, median, and
standard deviation was calculated for the IF bone width and

FIGURE 1 | Stereozoom images of a CAST/EiJ mouse (A) and a CBA/J
mouse (B) skulls showing represented absence and presence of the IF bone.
P, parietal bone; F, frontal bone; N, nasal bone; MS, metopic/interfrontal
suture; IF, interfrontal bone.

FIGURE 2 | H&E of a coronal section from a C57BL/6J mouse showing IF
(arrow).

TABLE 1 | Survey of Interfrontal bones (IFs) among inbred mouse strainsa.

No. of mice No. of mice

with IF/total with IF/total

No of mice % Mice No. of mice % Mice

Strain examinedb with IF Strain examined with IF

129S1/SvImJ 17/20 80 DBA/LacJ 3/6 50

A/J 2/20 10 FVB/NJ 12/20 60

AKR/J 8/30 27 LP/J 9/14 64

BALB/cByJ 9/20 45 MOLF/Ei 0/20 0

C3H/HeJ 0/20 0 NOD/LtJ 3/23 13

C57BL/6J 20/20 100 NZB/B1NJ 20/20 100

C57BL/10J 14/20 70 NZW/LacJ 0/14 0

C57/LJ 20/20 100 PERA/Ei 7/20 35

C58/J 4/20 20 PL/J 19/20 95

CAST/Ei 1/20 5 SJL/J 19/20 95

CBA/J 20/20 100 SM/J 19/20 95

DBA/2J 12/20 60 SPRET/Ei 0/8 0

DBA/1J 1/6 17 SWR/J 0/20 0

WSB/EiJ 0/10 0

aDried skulls from inbred mouse strains used in the study. All mice were
originally obtained from The Jackson Laboratory (Bar Harbor, ME, United States)
and then dried skulls prepared by bleaching. Strain selection was based upon
criteria for participation in the Mouse Phenome Project Collaborations Program;
bMale and female mice combined, strains NOD, SPRET/EI, and DBA/Lac had
only female skulls.

length. The mean IF bone widths and lengths for each strain
is shown in Figures 3A,B, respectively. Across all strains there
were no significant differences in IF bone length (p = 0.970) or
width (p = 0.498) between males and females. After comparing
males and females within each strain, three strains (129S1/SvImJ,
C58/J, and PL/J) demonstrated significant differences in IF bone
lengths between males and females (p = 0.011, p = 0.045, and
p = 0.021, respectively) and in two strains (CBA/J and C58/J) IF
bone widths differed between males and females (p = 0.022 and
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FIGURE 3 | Mean IF bone lengths and widths across all strains. (A) IF bone lengths and (B) IF bone widths. Male, blue boxes and females green boxes.

0.040, respectively). We considered differences to be significant
when p < 0.05. IF bone lengths and widths appear as correlated
traits (Figure 3).

Phenotyping of the B6xC3H F2 Panel
Two breeding pairs (B6C3HF1 mice, N = 4) that were retired
were examined. All had IF bones and the mean IF bone length
1.03 + 0.74 mm and width 0.48 + 0.16 mm and were generally
smaller than that seen in the parental C57BL/6J animals, mean IF
bone length 3.42+ 0.81 and width 0.44+ 0.13 mm.

When examining the entire F2 panel (N = 468) male and
female F2 mice were considered together. 35.3% of all F2s
lacked an IF. The remaining F2s showed variability for IF bone
lengths and widths. Separating F2s based upon sex, 21.3% F2
males lacked IF bones, whereas 49.9% F2 females lacked IF
bones. Sex differences for IF bone was significant (p < 0.001)
for IF bone mean length (2.01 ±1.39 mm) and mean width
(0.30 ±0.23 mm) which are greater in male F2 mice than female
F2 mice 1.09±1.29 mm and 0.13±0.16 mm, respectively.

QTL Mapping
For IF bone length and width, one strong QTL is detected on
Chromosome 14 along with several other significant QTLs on
Chromosomes 3, 4, 7, and 11 (Figure 4). The LOD score curves
for IF bone width and length are very similar. The two traits
appear highly correlated and are likely affected by some common
genes. Summary of the peak LOD scores and marker locations are
shown in Table 2.

DISCUSSION

This study sought to determine among different inbred strains
of mice the presence of IF bones. The selection of inbred strains
was to represent genetic diversity and to mirror those strains
commonly used in the MPP (Paigen and Eppig, 2000; Grubb
et al., 2014). Among the inbred strains examined, the presence
of the IF bone is consistent with being a quasi-continuous trait in
that it is either present or not (dichotomous) and when present
exhibits phenotypic variability. The presence of the IF bone
among the strains examined can loosely fall into three groups,
strains that either do not demonstrate the IF bone or show the
IF bone as an infrequent trait (0–20%); strains that demonstrate

FIGURE 4 | Genomewide scan for IF bone phenotypes. Two part single QTL
model was used. LOD score curves for IF bone length (A) and width (B).
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TABLE 2 | QTL mapping of IF.

Marker Chromosome Marker position (cM) Marker position (bp)a Peak LOD scoreb

Average length c3.loc75 3 75.0 4.20

gnf04.119.329 (rs27567417) 4 68.5 123501395/123999192 5.82

rs6322316 7 61.9 120484415/120693266 5.78

rs6346368 11 99.4 119851494/120035454 4.57

rs3699179 14 38.2 60723374/61769264 7.21

Average width gnf04.119.329 (rs27567417) 4 68.5 123501395/123999192 6.95

rs6322316 7 61.9 120484415/120693266 5.18

rs6346368 11 99.4 119851494/120035454 5.44

rs3699179 14 38.2 60723374/61769264 9.03

aBuild 36 position/Ensembl Mus musculus version 93.38 (GRCm38.p6) position; bMaximum LOD scores for peaks above the 5% threshold for phenotypes.

a wide variation in the prevalence of IF bones (20–80%); and
strains that typically have high occurrence of IF bones (80–100%).
Acknowledging that mouse strains can change over several
decades, we found the high IF bone frequency among CBA/J,
C57BL were somewhat consistent with historical observations
(Truslove, 1952; Johnson, 1976; Fukuta et al., 1988). Similarly
for BALB/cByJ as a strain with less frequent presentation of IF
bones (Fukuta et al., 1988). The survey of strains was somewhat
limited in representing both sexes in that for three strains (NOD,
SPRET/EI, and DBA/Lac) we had access to only female skulls.
Sexual dimorphism for size of the IF bone was observed for a
few inbred strains. However, it remains unclear whether sexual
dimorphism in the size of the IF could simply reflect sexual
dimorphism in overall size, since overall size was not reported.

The selection of the C57BL/6J and C3H/HeJ strains for QTL
mapping was based upon each strain falling within the extreme
state of having or not having IF bones. We found that IF bone
lengths and widths were highly correlated traits. Such that IF
bones with greater lengths tended to have greater widths. This
observation of IF bone lengths and widths being highly correlated
traits was also evident in the peak LOD values being associated
with the same markers on chromosomes 3, 4, 7, and 11.

The origin of IF bones remains obscure. However, IF bones
may resemble other intrasutural bones such as wormian bones.
As such, a better understanding of the genetic and environmental
factors that influence IF bone development may be relevant to
understanding wormian bone formation. Wormian bones (also
known as sutural bones or ossicles) are small irregular bones
that are present within sutures or fontanelles. Wormian bones
can be idiopathic, present as a minor skeletal variant or can
occur with numerous recognized syndromes (Gorlin et al., 2001).
Wormian bones are often found in osteogenesis imperfectas
(Cremin et al., 1982; Semler et al., 2010), cleidocranial dysplasia
(Mundlos, 1999) as well as other bone dysplasias (Langer et al.,
1991; Horovitz et al., 1995; Santolaya et al., 1998; Garavelli
et al., 2009; Megarbane et al., 2014; Palav et al., 2014). The
occurrence of wormian bones is thought to be the result of
disturbed osteogenesis/ossification or as a response to mechanical
forces affecting sutures (Sanchez-Lara et al., 2007; Bellary et al.,
2013). The bregmatic bone, a type of wormian bone, occupying
the anterior fontanelle, has been reported in at least one case
where metopic synostosis was presented (Stotland et al., 2012).

Wormian bones are also associated with metopism, (Cirpan et al.,
2016). The occurence of wormian bones in the normal population
has not been clearly defined. However, they remain a recognized
skeletal variant that may be present more often than thought
(Hauser and De Stefano, 1989; Marti et al., 2013).

The IF bone as a minor skeletal trait stimulates interest
that may be broader in significance relating to metopic suture
biology. In humans and other mammals the metopic suture
fuses early, typically in the posterior region near the junction
of the coronal sutures. Disturbances in this process can lead
to premature fusion (trigonalcephaly), which is associated with
numerous recognized syndromes or with persistent metopism.
Gli3 loss of function leads to premature closure of the interfrontal
suture in mice (Veistinen et al., 2012). Perturbation of interfontal
suture closure through the Ambn-Msx2 axis leads to thinning
and widening of IF bones in mice (Atsawasuwan et al., 2013).
In mice, the region where the IF bone forms corresponds to
the glabella in humans. Disturbances in the glabella can lead to
encephaloceles and other nasio-cranial problems. Anatomically,
the location of IF bones may have bearing on a number of
conditions affecting humans. A better understanding of IF
bone formation may lead to understanding more about other
intrasutural bone formation, e.g., wormian bones, as well as
aspects of cranial suture biology.
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