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ABSTRACT

Synthetic biology offers great promise to a variety
of applications through the forward engineering of
biological function. Most efforts in this field have
focused on employing living cells, yet cell-free
approaches offer simpler and more flexible
contexts. Here, we evaluate cell-free regulatory
systems based on T7 promoter-driven expression
by characterizing variants of TetR and Lacl
repressible T7 promoters in a cell-free context and
examining sequence elements that determine
expression efficiency. Using the resulting con-
structs, we then explore different approaches for
composing regulatory systems, leading to the
implementation of inducible negative feedback in
Escherichia coli extracts and in the minimal PURE
system, which consists of purified proteins neces-
sary for transcription and translation. Despite the
fact that negative feedback motifs are common
and essential to many natural and engineered
systems, this simple building block has not pre-
viously been implemented in a cell-free context.
As a final step, we then demonstrate that the
feedback systems developed using our cell-free
approach can be implemented in live E. coli as
well, illustrating the potential for using cell-free
expression to fast track the development of live
cell systems in synthetic biology. Our quantitative
cell-free component characterizations and demon-
stration of negative feedback embody important
steps on the path to harnessing biological function
in a bottom-up fashion.

INTRODUCTION

The field of synthetic biology, which aims to forward
engineer biological functionality, has made rapid
progress (1-4). A variety of synthetic systems have been
implemented in living organisms, including oscillators
(5,6), bistable switches (7), digital logic (8), counters (9)
and even simple ecological systems (10,11). The ability to
engineer biological function holds great promise for appli-
cations such as bioenergy production (12), drug synthesis
(13), bioremediation (14) and biosensor development (15).
However, for the most part, synthetic biology is still tied
to the living cell. While live cells offer the remarkable cap-
ability of self-replication, a key disadvantage of using
natural cells is the complexity of the cellular context.
Interactions between synthetic components and the host
cell’s endogenous pathways pose a major challenge to en-
gineering complex systems (1), and many of the cell’s
pathways are often extraneous to the desired application.
For example, whole-cell biosensors are widely useful for
environmental monitoring, but quite often only one
pathway of the cell is actually needed to detect the
chemical of interest (16—18).

In contrast, cell-free systems offer the potential of
simpler and better defined contexts for engineering
(19-21). In addition to simplicity, another key advantage
is flexibility. A wider range of components, including
novel amino acids, synthetic nucleotides and proteins
toxic to living cells, can be incorporated and utilized in a
cell-free context. As a result, cell-free systems facilitate
bottom-up approaches to understanding and engineering
biological networks and pathways. Initial demonstrations
of synthetic cell-free systems include switches (22) and a
predator—prey system (23) implemented using DNA and
RNA interactions coupled with transcription. Systems
that additionally incorporate translation have been made
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by cascading different polymerases and repressors (24,25),
and a system for emulating embryonic pattern formation
has been developed by interfacing different zinc-finger re-
pressible T7 and SP6 promoters (26). Still, efforts in the
area of developing well-characterized components for
cell-free contexts and assembling these components to
form regulatory networks lag behind similar efforts in
live cells.

In this article, we focus on developing a toolkit for im-
plementing cell-free regulatory systems as outlined in
Figure 1. We first build and characterize genetic compo-
nents. These components are assembled into desired
systems, which are then characterized and optimized in
an iterative fashion. While most synthetic biology efforts
have focused on implementing systems in live cells, the
process of engineering cell-free regulatory systems can
not only advance applications of cell-free gene expression
(27) but also serve as an aid for fast-tracking the deploy-
ment of live cell systems. Although live cell systems will
require additional testing and optimization in the cell, an
initial stage of cell-free system development offers many
benefits. These include fast screening due to omission of a
transformation step, the ease of direct quantification of
devices by addition of purified regulatory proteins and
an overall simplified context.

The task of engineering complex synthetic gene
networks, either in vivo or in vitro, is facilitated by the
availability of a library of well-characterized genetic
parts suited to the desired context of operation (28,29).
Inducible promoters are a useful starting point, as the
ability to add different inducer concentrations provides a
simple means of altering system parameters through
non-genetic means (30-32). Consequently, we first build
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and characterize different T7 promoters for cell-free
function. For cell-free applications, T7 promoters are
commonly chosen due to their high processivity, their
high specificity (33,34), and the simplicity of T7 polymer-
ase (a monomer of approximately 100kDa) (35).
Previously, TetR repressible T7 promoters (T7tet) have
been employed in a few systems for inducible expression
in live protozoans (36—41) but have not been employed in
bacterial- or cell-free systems. On the other hand, several
studies have examined Lacl repressible T7 promoters
(42-45); however, like T7tet promoters, T7lac promoters
have not been well characterized in cell-free expression
contexts. For the Tet system (Figure 1A), we insert the
TetR-binding domain, TetO, in different locations down-
stream of the T7 promoter, allowing repression of target
genes such as GFP, which we use here to quantify expres-
sion. Similarly, for the Lac system (Figure 1B), we insert
the Lacl-binding domain LacO downstream of the T7
promoter allowing repression of GFP by Lacl.

In addition to the availability of well-characterized
genetic components, the assembly of functional gene
networks requires a working knowledge of how to tune
system parameters to achieve the desired behavior. This
includes altering transcription and translation rates, deg-
radation rates and the concentrations of activators/repres-
sors required for response. Accordingly, using the
expression systems described in Table 1, we explore the
genetic determinants of cell-free expression efficiency,
including the ribosome-binding sites, the plasmid
backbone and transcriptional terminator sequences. We
then examine different approaches for assembling regula-
tory networks and compare multi-cistronic systems to
multi-plasmid systems.

live cell system

system transfer

cell-free system

Figure 1. Genetic components characterized and role of cell-free systems in synthetic biology. (A) T7 Tet system. The repressor TetR binds the
operator TetO and represses GFP expression. The inducer aTc may be added to relieve repression. (B) T7 Lac system. The repressor Lacl binds the
operator LacO and represses GFP expression. The inducer IPTG may be added to relieve repression. (C) Tet negative feedback system. A TetR
repressible T7 promoter expresses TetR and GFP. A similar system can be assembled using a Lacl repressible T7 promoter. (D) Most efforts in
synthetic biology have focused on assembling biological components to form systems that are introduced into living cells for applications such as
chemical synthesis, drug production, biosensors and energy production. This procedure of engineering biological systems can also be carried out in a
cell-free context. Cell-free systems may be directly used in applications. Alternatively, initial deployment of synthetic systems in a cell-free context can

help to fast track the development of live cell synthetic systems.
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Table 1. Plasmids used for characterizing repression and for optimizing expression

Plasmid Promoter RBS Reporter Backbone Terminator
pT7 T7 ZE21 GFPmut3.1(ASV) pZE21-MSC-2 Tl
pT7tet T7tetl3 ZE21 GFPmut3.1(ASV) pZE21-MSC-2 Tl
pT7tet2 T7tet19 ZE21 GFPmut3.1(ASV) pZE21-MSC-2 Tl
pT7tet-RBSII T7tetl3 RBSII GFPmut3.1(ASV) pZE21-MSC-2 Tl
pT7tet-RBSgl10 T7tetl3 gl0 GFPmut3.1(ASV) pZE21-MSC-2 Tl
pT7tet-RBS35 T7tetl3 BBa_B0035 GFPmut3.1(ASV) pZE21-MSC-2 Tl
pT7tet-RBSA T7tetl3 A GFPmut3.1(ASV) pZE21-MSC-2 Tl
pUC-TTtet T7tetl3 gl0 EGFP pUC-19 VsV
pUC-T7tet-T7term T7tetl3 gl10 EGFP pUC-19 T7
pT7tetKS T7tetl3 gl0 EGFP pBluescript-KS T7
pT7tetKS-SF T7tetl3 gl0 EGFP pBluescript-KS T7
pKSGFP T7 gl0 EGFP pBluescript-KS T7
pLacOIDGFP T7lacO1 gl0 EGFP pBluescript-KS T7
pLacOGFP T7lacOID gl0 EGFP pBluescript-KS T7
pDEST17-EGFP T7 gl0 EGFP pDEST-17 T7

Finally, to demonstrate our procedure for the develop-
ment of cell-free systems, we build aTc inducible negative
feedback systems, whereby TetR represses its own produc-
tion as shown in Figure 1C. Negative feedback is a
common motif in natural genetic control systems, can
speed response times (46), can minimize gene expression
noise (47-49) and is critical to the function of many en-
gineered systems such as genetic oscillators (5,6). These
important aspects of negative feedback, coupled with the
fact that even simple feedback systems have not been
demonstrated in cell-free protein expression systems,
make it a logical starting point towards the future con-
struction of more complex cell-free networks. We demon-
strate our negative feedback systems in cell extracts, in the
PURE system and in live cells and compare functionality
in each context.

MATERIALS AND METHODS
Plasmids and strains

All plasmids used in this study were constructed using
standard methods. These plasmids are described in
Supplementary Tables S1-S6. DNA wused in cell-free
experiments was prepared using Qiagen Plasmid Midi or
Maxi prep Kkits. Escherichia coli strain BL21-Al
(Invitrogen Inc., WI, USA) was used for protein purifica-
tion and for live cell expression experiments. LB media
with 100 pg/ml ampicillin was used to culture cells for
protein purification, and cells were initially grown at
37°C shaking at 250 rpm. For live cell expression experi-
ments, M9 media prepared as follows was used: M9 salts
with Casamino acids (Amresco), 2mM MgSOy,, 0.5%
glycerol, 300 uM thiamine and 100 pg/ml ampicillin. As
later described, cells for these experiments were initially
grown at 37°C shaking at 250 rpm.

Purification of TetR

Escherichia coli (Invitrogen Inc.) expressing TetR-His6
from pET-TetRHis were grown in 250 ml LB media with
100 pg/ml ampicillin at 37°C with shaking at 250 rpm.

After reaching 0.4 ODggp, the cells were induced using
0.2% vr-arabinose (Sigma) and cultured for 2.5h at 30°C.
The induced cells were then pelleted and frozen. The cells
were resuspended in 8 ml binding buffer (50 mM sodium
phosphate buffer pH 8.0, 300 mM NaCl, 10 mM imidzole)
and lysed using sonication. The lysate was centrifuged at
10000 rpm in a Sorvall SS-34 rotor (12000 g) for 15 min
and supernatant was applied to a Ni-NTA column
(Sigma) that had been equilibrated with the binding
buffer. The column was subsequently washed with buffer
(50 mM sodium phosphate buffer pH 8.0, 300 mM NaCl,
50 mM imidazole). TetR-His6 was then eluted with elution
buffer (50 mM sodium phosphate buffer pH 8.0, 300 mM
NaCl, 500 mM imidazole). The protein was concentrated
and buffer exchanged into 20 mM sodium phosphate pH
7.2 and 50 mM NacCl by ultrafiltration (Vivaspin 500, GE
healthcare). The purified protein was analyzed using
sodium dodecyl sulfate—polyacrylamide gel electrophor-
esis (SDS-PAGE) and protein was subsequently stored
in —80°C till further use.

Cell-free expression experiments

The Promega S30 T7 High-Yield Expression System kit
(Promega TM306) was used for the experiments depicted
in Figures 24 and 5B and C, and the PURExpress
In Vitro Protein Synthesis kit (New England Biolabs)
was used for the experiment in Figure 5D. Reactions
were set up following manufacturer’s instructions
(Supplementary Figure S3), except that the final reaction
volume was 15uL, and 15puL mineral oil was added to
prevent drying. For induction experiments, aTc (Acros
Organics) was added in the denoted concentrations, and
we verified that the fluorescence of aTc was negligible
compared to GFP fluorescence from our constructs
(Supplementary Figure S8). Reactions were set up in
Corning CLS3820 plates. Samples were incubated at
30°C (Supplementary Figure S1) with shaking and
measured every 6 min in a Biotek Synergy 2 plate reader.
For the measurements, excitation was 485/20 nm, emission
was 528/20 nm, the optics position was set at “Top 510,
and the sensitivity was set at 40. For each experiment,
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Figure 2. Promoter sequences and dosage responses. (A) Sequences of TetR repressible promoters T7tetl13 and T7tetl9 and Lacl repressible pro-
moters T7lacO1 and T7lacOID, (B) Fluorescence after 10 h of expression from the T7, T7tet13 and T7tet19 promoters using constructs pT7, pT7tet
and pT7tet2. (C) Dosage responses of T7, T7tet13 and T7tetl9 constructs to purified TetR. (D) Fluorescence after 10 h of expression from the T7,
T7lacO1 and T7lacOID promoters using constructs pKSGFP, pT7lacO1 and pT7lacOID. Error bars in (B) and (D) depict standard deviation of
triplicate measurements. Note that the T7 controls in (B) and (D) correspond to plasmids (pT7 and pKSGFP, respectively) with different backbones,
ribosome binding sites, GFP variants and terminators as described in Table 1.

samples consisting of reaction mix with no DNA were
assayed to quantify background fluorescence of the
reaction mix, and samples with pDEST17-EGFP (50)
were assayed for the purpose of normalizing fluorescence
values. ‘Normalized fluorescence’ (NFU) for a given
sample was calculated by subtracting background fluores-
cence of the reaction mix from that sample’s fluorescence
value and then dividing by the background corrected
fluorescence of the benchmark construct
pDEST17-EGFP. Results depicting final yield (Figures
2-4 and 5B) are the normalized fluorescence values after
10 h of expression. For the dynamics shown in Figure 5C,
fluorescence values at all time points were normalized
using the fluorescence of pDEST17-EGFP after 10h of
expression. Error bars in all figures represent standard
deviation of at least three replicates.

Live E. coli experiments

The negative feedback plasmid pNFBtetKS was trans-
formed into chemically competent E. coli. A single
colony from the transformation plate was inoculated
into 2ml LB with 100 pg/ml ampicillin and grown at
37°C with shaking at 250 rpm. This starter culture was
then diluted 1:100 into 2ml M9 media prepared as
follows: M9 salts with Casamino acids (Amresco), 2mM
MgSOy, 0.5% glycerol, 300 uM thiamine and 100 pg/ml
ampicillin. This culture was incubated at 37°C with

shaking at 250 rpm until log phase was reached. Then,
the culture was diluted to an OD of ~0.01, and 10 mM
L-arabinose was added to induce the expression of T7
polymerase. Aliquots (200 ul) were dispensed into the
wells of a 96-well plate (Corning 3370). The inducer aTc
(Agros Scientific) was added as indicated in Figure SE.
About 50 pl of mineral oil was added to prevent evapor-
ation. Samples were incubated at 37°C with shaking in a
Biotek Synergy 2 plate reader, and both fluorescence and
absorbance at a 600 nm wavelength were measured. For
the fluorescence measurements, excitation was 485/20 nm,
emission was 528/20nm, the optics position was set at
‘Top 510° and the sensitivity was set at 60. The measure-
ments reported in Figure 5E were taken after 4h of
growth. Fluorescence values were corrected for back-
ground fluorescence, and absorbance readings at 600 nm
were used to normalize for cell density.

RESULTS
Control elements

A key issue associated with developing tightly repressible
T7 promoters for operation in cell-free contexts is
operator placement, and we characterized variants of dif-
ferent Tet and Lac promoters. First, we characterized two
different TetR repressible T7 promoters shown in
Figure 2A. The T7tetl3 promoter has the TetO operator
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Figure 3. Optimization results. (A) Upstream sequences. Underlined
base pairs are ribosome binding sites, and start codons are shown in
italics. The 3" end of the 16S rRNA sequence is shown above each
ribosome binding site. (B) Effect of these different RBS sequences on
EGFP production as measured by fluorescence after 10 h of expression.
(C) Effect of transcriptional terminator on EGFP yield using plasmids
pUCT7tet and pUCT7tet-T7term. pUCT7tet has the vsv terminator,
while pUCT7tet-T7term has a T7 terminator. These plasmids are other-
wise identical. (D) Comparison of T7 and T7tetl3 promoter expression
after incorporation of glORBS and the T7 terminator into a pBluescript
backbone. Error bars depict standard deviation of triplicate
measurements.

centered at +13, and the T7tetl9 promoter has TetO
centered at +19. We first compared the expression of
these two promoters using the plasmids pT7tet for the
T7tetl3 promoter and pT7tet2 for the T7tet19 promoter.
For comparison, we also quantified expression from the
constitutive T7 promoter using plasmid pT7. These three
plasmids differ only in the promoter regions (Table 1). As
shown in Figure 2B, fluorescence resulting from expres-
sion of the T7tetl3 construct (pT7tet) after 10h of
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incubation at 30°C was ~3-fold lower than that from
the T7tetl9 construct (pT7tet2). This is likely due to a
reduced transcriptional efficiency of the T7tetl3
promoter, as later discussed. Fluorescence from the
T7tetl9 construct was similar to that of the constitutive
T7 promoter construct (pT7).

Figure 2C shows the dosage responses of the T7tetl3
and T7tetl9 constructs to purified TetR. Though its
maximal response is weaker, the T7tetl3 promoter
exhibits tight repression, as exhibited by the fact that the
fluorescence at high TetR concentrations is indistinguish-
able from the background fluorescence of the cell extract.
In addition, expression is cooperative, since the average
Hill coefficient determined from fits of three TetR dosage
experiments is 2.2 with a standard deviation of 0.68. The
concentration of TetR required for half maximal repres-
sion is 73nM, with a standard deviation of 24nM. In
contrast, the T7tet19 promoter does not exhibit tight re-
pression for the range of TetR concentrations explored,
and higher concentrations of TetR (3000 nM) are required
for half-maximal repression.

Although the effects of operator placement for lac
repressible T7 promoters have been characterized in vitro
(42-44), we examined two different lac repressible pro-
moters, T7lacOID and T7lacOl1, for completeness. The
operator of the T7lacOID promoter is centered 13.5bp
downstream of the transcription start site, and the
operator sequence begins at +4bp, just as with the
T7tetl3 promoter. The operator of the T7lacOl
promoter is centered 15bp downstream of the transcrip-
tion start site. We compared the expression of the
T7lacOID, T7lacOl and T7 promoters using the
plasmids pLacOIDGFP, pLacOGFP and pKSGFP,
respectively. These three plasmids differ only in the
promoter regions (Table 1). As observed with the T7tet
promoters, closer placement of the operator to the tran-
scription start site resulted in a decreased yield
(Figure 2D). Note that the yield from the T7 expression
construct in Figure 2B (pT7) differs considerably from the
yield of the T7 expression construct in Figure 2D
(pKSGFP). Given these differences, we next examined
the determinants of expression efficiency.

Optimization of cell-free protein expression

To develop a deeper understanding of how to tune expres-
sion efficiency, we quantified the effect of different
ribosome binding sites (RBSs), plasmid backbones
and terminators on cell-free protein expression. We
characterized five purportedly efficient RBSs: the ZE21
RBS (51), RBSII (52), the Biobrick BBa_B0035, g10
RBS from T7 phage (53) and the E. coli consensus RBS
A (7). Upstream sequences containing these RBS’s are
shown in Figure 3A, and the RBS regions, as determined
by minimum energy alignment to the last 9bp of E. coli
16S rRNA (54), are underlined. As shown in Figure 3B,
the strongest RBS’s are BBa_B0035 and g10 RBS from T7
phage.

Next, we examined the influence of the plasmid
backbone on gene expression. The backbone could poten-
tially affect transcription by altering the degree of
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Figure 4. Plasmids and results for exploring different system composition approaches. (A) Constitutive T7 construct pKSGFP, and bicistronic
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pKSGFP and pT7lacl for different percentages of pKSGFP by molar concentration. Error bars depict standard deviation of triplicate measurements.

supercoiling, the amount of non-coding DNA and the ef-
ficiency of transcriptional termination. We constructed a
minimal backbone based on a reduced pUC-19 vector
with the vsv terminator inserted (55). We then inserted
the T7tetl3 promoter, the strong gl0 RBS and EGFP
(Supplementary Figure S2). Expression was weaker than
expected, as shown in Figure 3C. We hypothesized that
this was due to inefficient transcriptional termination.
Indeed, exchanging the vsv terminator in pUC-T7tet for
a T7 terminator (pUCT7tet-T7term in Figure 3C)
improved yield to match that of the benchmark construct.

For comparison purposes, we then inserted each of
the sequences T7-gl0 RBS-EGFP-T7terminator and
T7tet13-gl0 RBS-EGFP-T7terminator into a pBluescript
backbone to create the plasmids pKSGFP and pT7tetKS
(Table 1). These two constructs exhibited similar yields,
which were only slightly lower than those realized with the
minimal backbone.

System composition

As a step towards creating a negative feedback system and
ultimately larger and more complex synthetic systems, we
explored the effect of different system composition
approaches on expression efficiency. One system compos-
ition approach, which is commonly employed in living
cells, involves the use of multi-cistronic sequences for
co-regulating subsets of genes in the system. As a simple
investigation into expression efficiency in multi-cistronic
sequences, we constructed three bicistronic sequences.
The first, pCtltetKS, consists of zetR inserted into

the control construct pKSGFP upstream of GFP (Figure
4A). The second, placl-GFP, consists of /acl inserted
upstream of GFP, and the third, pGFP-lacl, consists of
lacI inserted downstream of GFP. As expected, fluores-
cence measurements for all of the bicistronic sequences
were significantly lower than for the pKSGFP control.
Fluorescence of the tetR-GFP construct pCtltetKS was
slightly less than half that of the pKSGFP control
(Figure 4B), while fluorescence of the lacl bicistronic con-
structs was ~25% lower than pKSGFP. No significant
difference was observed between the insertions of lacl
upstream versus downstream of GFP.

An alternative to multi-cistronic sequences is to use a
separate plasmid for each gene in the system. As later
discussed, this approach is particularly amenable to
cell-free systems. However, it is important to understand
the effect of altering the concentrations of the different
plasmids on expression. To this end, we combined a
plasmid expressing only GFP (pKSGFP) and a plasmid
expressing only Lacl (pT7lacl) in different molar ratios,
while keeping the sum of the molar concentrations fixed at
8nM. The resulting GFP fluorescence exhibited a
non-linear increase as a function of the percentage of the
GFP plasmid. Specifically, the effect of increasing the per-
centage of pKSGFP grew more pronounced at higher
pKSGFP percentages.

To compare GFP expression for the two different
system composition approaches, we expressed the
bicistronic constructs pLacl-GFP and pGFP-Lacl at the
concentrations shown in Supplementary Figure S4, and
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pNFBtetKS with no aTc (open green squares), pNFBtetKS with
3300ng/ml aTc (closed green squares). (D) Response dynamics
of pNFBtetKS to different aTc concentrations in the PURE
system. (E) Responses of E. coli BL21-Al harboring pNFBtetKS to
inducer aTc.
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we also co-expressed pKSGFP and pLacl such that the
molar concentrations of each plasmid were also as shown
in the figure. Thus each concentration on the x-axis cor-
responds to the same number of copies of the EGFP and
lacI genes for each approach. Lower EGFP expression, as
measured by fluorescence after 10h of expression, was
realized with the two-plasmid approach.

Negative feedback

We compared two different T7-driven TetR negative
feedback systems. In these systems, shown in Figure 1C,
a TetR repressible promoter expresses TetR and GFP.
The inducer aTc can be added to bind and inactivate
TetR repression. In the feedback construct pNFB-T7tet
(Figure 5A), the T7tetl3 promoter drives expression of
tetR and GFP, each of which has the ZE21 RBS. The
T1 terminator was used in this construct. The other
feedback construct pNFBtetKS also drives expression
from the T7tetl3 promoter but utilizes the strong gl0
RBS for TetR and EGFP along with the T7 terminator.

With the pNFB-T7tet feedback construct, an over
5-fold difference between uninduced and induced
expression was observed (Figure 5B), although the max-
imally induced normalized fluorescence was ~0.1.
Incorporating the gl0 RBS and T7 terminator to form
pNFBtetKS resulted in a significantly higher fully
induced yield, showing the benefit of using the optimal
RBS and terminator. However, fluorescence in the
uninduced state increased as well. Dynamics are shown
in Figure 5C for the uninduced and the maximally
induced cases. The pNFB-T7tet construct exhibits slower
kinetics in the induced case than pNFBtetKS does with or
without induction. For the pNFBtetKS construct, fluor-
escence initially rises rapidly regardless of the inducer con-
centration. However, without the aTc inducer, the rate of
fluorescence increase eventually decreases more rapidly
than with the inducer after ~2h.

We also characterized pNFBtetKS in the minimal
PURE system (Figure 5D). Fluorescence values here
were normalized to pDEST17-EGFP expressed in the
PURE system. An over 2-fold difference was observed
between uninduced and induced conditions. In addition,
for comparison purposes (Figure 5E), we also
demonstrated the in vivo function of pNFBtetKS in
E. coli BL21-Al cells. As expected, a much wider range
of expression was realized.

DISCUSSION

While the field of synthetic biology has enjoyed rapid
growth in recent years, the complexity of regulatory
networks implemented has plateaued (3). Efforts to
engineer complex systems would greatly benefit from
both simpler contexts and new bottom-up approaches.
Towards this end, our results serve as groundwork for
the process of cell-free system development shown in
Figure 1D.

The first step in this process consists of characterizing
basic genetic components such as the different repressible
T7 promoters, RBSs and terminators characterized here in
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cell extract. Next, these components are assembled into
regulatory systems, and multi-cistronic and multi-plasmid
approaches are compared in Figure 4 and Supplementary
Figure S4. Finally, we demonstrate inducible, negative
feedback in cell extracts, in the PURE system and in live
E. coli. More complex systems will likely require iterative
rounds of system characterization and optimization.
However, inducible feedback systems offer an important
step. Even simple feedback constructs have not been pre-
viously demonstrated in cell-free protein expression
systems, despite their functional importance and wide-
spread utilization in live cell gene networks. Also,
whereas addition of T7 lysozyme has been used to tune
T7 transcription in the past (56), our system is
autoregulatory and will be useful in applications such as
cell-free biosensors (57).

Beyond offering a simplified context, several features of
cell-free synthetic biology are appealing for direct applica-
tions and also for the initial prototyping of both genetic
devices and assembled systems in live cells. Our charac-
terization of the repressible T7 promoter variants in
Figure 2 highlights one of the ultimate benefits of
forward engineering biological functionality in cell-free
contexts. Specifically, direct quantitative characterization
of transcriptional regulation is greatly facilitated. In
contrast, in live cells, such dosage responses must be
inferred indirectly through careful analysis of single cell
responses with consideration of the significant amounts of
noise in gene expression (58). Another advantage of
cell-free systems is that they enable fast screening of con-
struct libraries, as transformation is not required. Also, as
shown in Figure 4, multi-plasmid systems may be imple-
mented without regard to backbone compatibility, and
DNA concentration is easily tunable, unlike in cells.
Finally, testing regulatory systems in a context free of
mutation and recombination can simplify initial system
development and can aid troubleshooting efforts in live
cells systems.

We first constructed and characterized different repress-
ible T7 promoters with the aim of achieving tight regula-
tion. Figure 2 reveals that a key issue in achieving tight
repression is operator placement. With E. coli promoters,
repressors placed close to the promoter region can inter-
fere with RNA polymerase binding and transcription ini-
tiation, and operators placed hundreds of base pairs
downstream of the transcription start site have been
shown to terminate transcription (59,60). However, T7
promoters exhibit high processivity compared to E. coli
promoters and, as a result, often require different
strategies for achieving efficient repression. For example,
several studies have examined Lacl repression of T7 pro-
moters by insertion of Lacl operators in different loca-
tions with respect to the promoter (42—44). These studies
have demonstrated the requirement for much closer place-
ment of the operator to the transcriptional start site of the
T7 promoter than is necessary when using E. coli pro-
moters (42-44).

With the T7tetl3 promoter, strong repression is
achieved at the cost of a reduced rate of transcription in
the absence of a repressor (Figure 2B and C). In particu-
lar, we note that the sequences of natural T7 promoters

are highly conserved between base pairs —17 and +6
relative to the transcriptional start site (61), and the
T7tetl3 promoter does not preserve base pairs +4
through +6, while the T7tetl9 promoter does
(Figure 2A). Interestingly, previous studies characterizing
different TetR repressible T7 promoters in protozoans
observed either leaky repression or a reduction of fully
induced expression (38-40). These findings, as well as
the results in Figure 2, portray a tradeoff between expres-
sion efficiency and controllability.

In addition to tight repression with the T7tetl3
promoter, high sensitivity of repression is also observed
in cell extract, as indicated by the Hill coefficient of ap-
proximately two. Sensitivity is important for the engineer-
ing of a wide variety of systems, including oscillators (5,6),
bistable switches (7,62) and digital logic cascades (63,64).
Ultimately, development of repressible T7 promoters by
optimized placement of binding domains downstream of
the T7 transcription initiation site could be extended to
other DNA-binding proteins to construct a diverse library
of repressible T7 promoters.

Assembling functional complex gene networks using
components such as these inducible T7 promoters
requires an understanding of how to tune network param-
eters. An appealing characteristic of using T7 transcrip-
tion is that promoter mutants with a broad range of
transcriptional efficiencies have been characterized, and
polymerase mutants with different processivities have
also been characterized (65,66). To optimize transcription-
al efficiency, we examined the potential importance of the
plasmid backbone and transcriptional termination.
Initially, we created a minimal backbone and explored
the use of the vsv terminator in this backbone (55).
Previous results in E. coli extract showed a slightly
decreased protein yield when the vsv terminator was
used instead of the T7 terminator (55). Our results in
Figure 3C show a more significant (3-fold) decrease in
yield with the vsv terminator. This decrease in yield is
partially explained by a decrease in mRNA stability
associated with the vsv terminator (Supplementary
Figure S6c¢), and also by gene-dependent termination effi-
ciency (55). These results highlight the importance of effi-
cient transcriptional termination. Further research into
the specific requirements for achieving efficient termin-
ation of T7 transcription with the vsv or other terminators
would benefit efforts to engineer complex, multi-gene and
multi-promoter systems (55).

Besides the ability to tune transcription rates, it is also
important to control translation rates. Thus, we aimed to
find the most efficient RBS, as measured by GFP yield.
Out of the five candidates that we characterized in cell
extract (Figure 3A), the gl0 RBS and BBa_B0035 were
the strongest (Figure 3B). These RBS’s combined
with mutants that knock down efficiency (7,64) can be
used to achieve a wide range of translation rates. It
should be noted that for some genes, problematic RNA
structures can form that obscure the RBS and inhibit
translation. The fact that two different sequences, gl0
RBS and BBa_B0035, result in efficient translation can
be helpful for achieving strong expression when one of
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these normally strong RBS’s does not perform well
(67,68).

When an optimal RBS and the T7 terminator are
used in conjunction with the T7tetl3 promoter, little
or no decrease in yield is observed in comparison to
constructs with the constitutive wild-type T7 promoters.
Specifically, pUC-T7tet-T7term (Figure 3C) and
pT7tetKS (Figure 3D) have normalized fluorescence
yields of close to 1. This indicates that their yields are
essentially the same as the benchmark construct. These
high yields despite potentially lowered transcription rates
are likely explained by saturation of translational machin-
ery. Such saturation of translational machinery has been
previously observed in T7 expression systems both in vivo
(33) and in cell-free expression systems (25).

Having characterized repressible T7 promoters as well
as investigated the genetic determinants of cell-free expres-
sion efficiency, we sought to examine different approaches
for assembling regulatory networks in cell-free systems.
When implementing large gene networks in live E. coli,
one option is to integrate the genetic components into
the chromosome. However, with this approach, it is cum-
bersome to explore a large number of combinations of
different network variants. Thus, most live E. coli
systems in synthetic biology have relied on the use of
plasmids, but at most two or three different plasmid
types can be used. On the other hand, with cell-free
systems, the same backbone can be used for different
system components. This enables an approach for con-
structing large synthetic gene networks, whereby each
component is encoded on a separate plasmid, and differ-
ent plasmids are combined in cell-free extract to form the
final system. The DNA copy number of each network
component can be easily and precisely tuned, whereas in
live cells, copy number can only be coarsely tuned for each
plasmid by using different origins of replication. Thus,
with this multi-plasmid approach, a large number of
network variants can be quantified without the need for
chromosomal integrations or transformations.

As expected, when either tetR or lacl was inserted in a
bicistronic sequence with GFP, fluorescence decreased due
to sharing of expression capacity between the repressor
and GFP (Figure 4B). Insertion of tetR reduced expres-
sion by approximately half, while insertion of lacl reduced
expression by approximately a quarter. This difference in
the effects of inserting tetR vs. lacl implies that inserting a
gene in a bicistronic sequence impacts relative expression
in a manner that is dependent on the particular gene
inserted. Trading the order of GFP and lacl had no
impact on fluorescence.

By comparison to the multi-cistronic approach, when
each gene is expressed on a separate plasmid, normalized
fluorescence is reduced by half even when the EGFP ex-
pressing plasmid comprises 80% of the total plasmid con-
centration (Figure 4D). In general, one tradeoff with this
approach is that the flexibility of easily tuning relative
gene copy numbers can potentially come at the cost of
weaker expression, as shown in Supplementary Figure
S4. For example, due to the higher ratio of promoters to
genes, the effects of inefficiency in transcriptional termin-
ation may be more pronounced. Nonetheless, it has
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previously been shown that, with the multiple plasmid
approach, properly tuning the ratio of plasmids, along
with the use of common downstream box sequences, can
help to achieve efficient expression of all genes in the
system (69). Interestingly, we observed a non-linear rela-
tionship between relative plasmid ratio and expression
(Figure 4D). This is potentially due to a competition
between the constructs for translational resources (69).
Future experiments to quantify the yield of both
proteins will help to elucidate further the cause of this
non-linearity.

To demonstrate simple cell-free gene networks, we
implemented different TetR-negative feedback systems.
In these systems (Figure 5A), TetR repressible promoters
express TetR and GFP, and the inducer aTc can be added
to relieve repression. Our initial T7-driven feedback
system, pNFB-T7tet, exhibited an over 5-fold response
to aTc, but the normalized fluorescence was ~0.1 when
maximally induced. When the strong gl0 RBS was used
for EGFP and TetR in conjunction with a T7 terminator
in pNFBtetKS, significantly higher fluorescent levels were
observed under full induction. However, yield was also
much higher in the uninduced case. This is due to over-
shoot, whereby a burst of transcripts is initially produced
before enough functional TetR dimers have been formed
to repress the T7tet13 promoter. These initially produced
transcripts decay slowly in the cell extract (Supplementary
Figures S5 and S6c¢), and since EGFP also has a long
half-life, fluorescence even after 10 h appears high when
no initial inducer is added. The wider range of expression
realized with pNFBtetKS in live cells in Figure S5E
supports this hypothesis. The turnover rates of mRNA
and proteins are higher in live cells due to active degrad-
ation of mRNA and dilution via growth. In addition, from
the start of the experiment, the cells have TetR, unlike the
cell-free experiments. This prevents the previously
described initial burst of transcripts that occurred in the
cell-free reaction.

All cell-free reactions were performed in batch mode,
which prevents the influx of nutrients and the efflux of
waste products and consequently limits the reaction
dynamics (70-75). Extension to a continuous flow
system would help to harness the advantages of repressible
T7 promoter variants (21,76). As exemplified by the
dynamics shown in Figure 5C, the T7 promoters exhibit
strong expression in the first few hours, followed by a
decrease in the rate of expression. The flow of fresh nutri-
ents and removal of waste products would help to preserve
the initially strong rate of expression. The additional in-
corporation of mechanisms to actively degrade mRNA
and EGFP (77) would mitigate the previously described
overshoot problem with pNFBtetKS and would reduce
the high yield in the absence of inducer.

Accordingly, when implemented in a growing popula-
tion of live E. coli cells, this optimized negative feedback
system does in fact exhibit a greater range of fluorescence
in non-induced vs. fully induced conditions (Figure 5E). In
general, the tighter repression of the improved repressible
T7 promoters is likely also useful in live cell applications
which require stringent control of target gene expression
to prevent toxic effects or inclusion bodies. In addition,
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our development of a regulatory system using cell-free ex-
pression followed by successful demonstration in live cells
exemplifies the future applicability of using cell-free char-
acterization to fast track the deployment of live cell
systems.

Our development and use of repressible T7 constructs
facilitated characterization in the minimal PURE system
(78). We demonstrated feedback with pNFBtetKS in the
PURE system in Figure 5D. Performance in the PURE
system clearly differs from cell extracts, although the
system works in both contexts. The response to aTc in
the PURE system was over 2-fold, yielding a greater
dynamic range than in cell extracts. A lower yield of
EGFP was realized for the control construct pDEST17-
EGFP in the PURE system than in the cell extracts (not
shown due to normalization). However, in the PURE
system, unlike in cell extracts, fluorescence of the fully
induced feedback construct was close to that of the
control.

Alternative approaches to engineering regulation in
cell-free contexts avoid the use of translational machinery,
thus further simplifying the engineering of fast, complex
systems (79,80). At the same time, protein expression
is clearly useful for a number of applications such as
production of protein-based therapeutics and chemical
sensors. Ultimately, the expression components and
simple feedback systems that we present can be interfaced
to more complex regulatory networks based on a
simplified set of mechanisms (81).

Our results contribute to bottom-up approaches to en-
gineering biological function (82). The simplified context
and the facilitation of direct, quantitative component
characterization offered by cell-free systems will aid
efforts to transcend the complexity of systems currently
engineered in living cells (3). Our characterization of the
tightly and cooperatively repressible T7tet13 promoter in
Figure 2C exemplifies the ability to quantify directly the
performance of genetic components in cell-free systems.
The library of RBS’s along with additional mutants can
be used to finely tune translational efficiency, which is
important in interfacing components of larger regulatory
systems (64,83). For assembling regulatory systems in
cell-free contexts, both the traditional multi-cistronic
approach and an approach whereby a separate plasmid
is used for each gene appear to be viable. Furthermore,
the successful demonstration of inducible negative
feedback embodies an initial step towards more complex
regulatory systems. In the future, coupling the ability to
forward engineer cell-free genetic regulation with efforts
to compartmentalize reaction components in small lipo-
somes (84—86) or nanofabricated wells (50,87,88) will help
to close the gap between harnessing the unique capabilities
of living cells and capitalizing on the comparative ease of
engineering in simpler contexts.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables 1-6, Supplementary Figures 1-8
and Supplementary References [89-93].
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