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Abstract

Background—In premature infants, we investigated whether the duration of extra-uterine 

development influenced autonomic nervous system (ANS) maturation.

Methods—We performed a longitudinal cohort study of ANS maturation in preterm infants. 

Eligibility included birth gestational age (GA) <37 weeks, NICU admission, and expected 

survival. The cohort was divided into three birth GA groups: Group 1 (≤29 weeks), Group 2 (30–

33 weeks), and Group 3 (≥34 weeks). ECG data were recorded weekly and analyzed for 

sympathetic and parasympathetic tone using heart rate variability (HRV). Quantile regression 

modeled the slope of ANS maturation among the groups by postnatal age to term equivalent age 

(TEA) (≥37weeks).

Results—100 infants, median (Q1-Q3) birth GA of 31.9 (28.7–33.9) weeks, were enrolled: 

Group 1 (n=35); Group 2 (n=40); and Group 3 (n=25). Earlier birth GA was associated with lower 

sympathetic and parasympathetic tone. However, the rate of autonomic maturation was similar, 

and at TEA there was no difference in HRV metrics across the three groups. The majority of 

infants (91%) did not experience significant neonatal morbidities.

Conclusion—Premature infants with low prematurity-related systemic morbidity have 

maturational trajectories of ANS development that are comparable across a wide range of ex-utero 

durations regardless of birth GA.

Introduction

At birth the autonomic nervous system (ANS) plays a major role in the successful transition 

from the fetal to the extra-uterine environment (1). The latter half of gestation and early 

neonatal periods are critical periods for maturation of the ANS (2). Consequently, premature 

birth has two important consequences for the developing ANS. First, autonomic maturation 

in the premature infant may be underdeveloped and ill-prepared to support the profound 

physiological changes at birth. Second, subsequent developmental changes occur in a vastly 

different and ‘unnatural’ extra-uterine milieu (1). Heart rate variability (HRV) has become a 

powerful tool for studying ANS tone and provides a measure of sympathetic and 

parasympathetic function and therefore ANS maturation (3–5).

A number of studies have suggested that ANS development may be altered in a premature 

extra-uterine environment (6,7). In addition, altered autonomic balance has been reported in 

infants with conditions including hypoxic-ischemic encephalopathy, intraventricular 

hemorrhage (IVH), sepsis, and necrotizing enterocolitis (NEC) (8–11). We have described 

an aberrant autonomic profile in prematurely born infants who experience apparent life-

threatening events (or brief resolved unexplained events) after discharge from the neonatal 

intensive care unit (NICU) (12). Importantly, impaired early-life ANS development has been 

implicated in chronic cardiovascular and neuropsychiatric outcomes of later onset (13,14).

Earlier reports of autonomic dysmaturation in premature infants, including ours, have come 

from high-morbidity referral NICUs (6,15,16). In recent decades, there have been significant 

advances in neonatal critical care support with a decrease in the intensity of systemic 

morbidity (17). The primary objective of this study was to evaluate the trajectories of 
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sympathetic and parasympathetic maturation (using HRV metrics) in premature infants over 

a wide range of birth gestational age (GA), cared for in a large, community NICU. We 

hypothesized that infants born at younger GA would have a slower ANS maturation and 

lower autonomic tone at term-equivalent age (TEA) compared to infants with older birth 

GA.

Methods

Participants

We performed a prospective longitudinal study of ANS maturation in preterm infants born at 

a large suburban community mother-baby hospital (Inova Women and Children’s Hospital, 

Fairfax, VA) from May 2017 to May 2019. The hospital delivers around 10,000 infants a 

year and has a 108-bed level IV NICU. Informed consent was obtained and the study was 

approved by the Children’s National Hospital and Inova Hospital Institutional Review 

Boards. Infants were inborn and either enrolled before birth or within 96 hours of birth. 

Eligibility criteria included infants with a birth GA of 23 1/7 to 36 6/7 weeks, requiring 

NICU admission, without a suspected genetic or syndromic condition, and expected to 

survive to NICU discharge. We recorded pregnancy findings of twin gestation, fetal growth 

restriction, pre-eclampsia, and pregnancy-induced hypertension and all significant postnatal 

medical complications, including grade III or IV IVH, NEC requiring surgery, patent ductus 

arteriosus (PDA) requiring surgical ligation, culture positive sepsis, or death.

Physiologic Signal Collection

After birth, up to 96 hours of continuous electrocardiogram (ECG) was collected directly 

from the infants’ bedside monitor using custom software developed in MATLAB 

(Mathworks, Inc, Natick, MA, USA) and installed in a laptop. The hour of age of the infant 

at the beginning and end of the ECG data collection period varied based upon the time of 

infant arrival to the NICU and time of study consent. Following the infants first ECG data 

collection period, the laptop was used to collect bedside physiologic signals during the 

daytime for up to 7 hours per session at weekly intervals until NICU discharge. 

Simultaneous video was acquired during laptop sessions to identify patient care artifacts and 

movements.

Heart Rate Variability (HRV) Spectral Analysis

Autonomic function was measured by HRV analysis in time and frequency domains using 

the serial ECG data collection. From the ECG, beat-to-beat intervals between successive R-

waves (RRi) were derived using a combination of Hilbert transform and adaptive threshold 

detection approach and RRi was calculated (4,18). Each weekly ECG recording session was 

partitioned into 10-minute epochs, for which the HRV metrics were measured and assigned 

the average HRV metrics for the session.

The ANS influences HRV at two frequencies; low frequency (LF) and high frequency (HF). 

The LF spectral division (0.04–0.15 Hz) reflects sympathetic and parasympathetic activity 

and is influenced by the baroreflex system, while the HF spectral division (0.4–1.5 Hz) 

reflects parasympathetic activity and is influenced by the respiratory system (4,19). LF (dB) 
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and HF (dB) powers were calculated using the Welch periodogram approach with a 

frequency resolution of 0.016Hz. Next we determined the spectral powers in LF (dB) and 

HF (dB) as the median of the logarithm of the power in 0.05–0.25 Hz and 0.3–1 Hz 

frequency bands, respectively. We performed normalization of LF and HF frequencies to 

yield nHF and nLF, respectively. nLF power was calculated as the ratio of the sum of the 

powers in the 0.05–0.25 Hz band to the total power and nHF power as the ratio of the 

powers in 0.3–1 Hz band to the total power. We defined total power as the sum of the powers 

from 0.05–2 Hz. The normalization shows the balance in the LF and HF frequencies since 

together the normalized values are close to 1.

Time Domain Characterization

Detrended fluctuation analysis (DFA) is a modified root mean square (RMS) analysis 

approach that enables analysis of non-stationary signals (20,21), that can be caused by infant 

movement. Using the DFA fluctuation function we calculated RMS1 (sec) as the maximum 

value of the DFA fluctuation function for ‘s’ between 15–50 beats and RMS2 (sec) as the 

maximum of the DFA fluctuation function for ‘s’ between 100–150 beats (22). We also 

calculated the alpha (α) exponent from the slope of the DFA fluctuation function versus ‘s’ 

in double logarithmic representation. Alpha 1 (α1) was obtained from the region 15–30 beats 

(short term scale) and alpha 2 (α2) was obtained from the region 35–150 beats (long-term 

scale/ ultralow frequency) (22). The RMS (sec) characterizes the variability in the RRi 

whereas the metrics characterize α the autocorrelation in the RRi.

Statistical Analysis

The cohort was divided into three birth GA categories: Group 1 (≤29 weeks), Group 2 (30–

33 weeks), and Group 3 (≥34 weeks). Descriptive statistics are presented, with categorical 

variables assessed using chi-square tests and continuous variables analyzed using either 

Kruskall-Wallis test or ANOVA depending on whether the data was normally distributed or 

not. Quantile regression was conducted to compare the post-natal age ANS metric 

trajectories of the three groups using the QREG2 procedure in STATA to account for 

repeated patient measures. An interaction term between group and post-natal age was 

included in the analysis to evaluate differences in ANS slopes over time. Non-significant 

interaction terms were removed from models prior to plotting trajectories. Correlations 

between spectral and time domain ANS metrics were assessed by Pearson correlation 

coefficient. Analysis was completed using SAS 9.4 and STATA SE version 16; a two-sided 

p-value of 0.05 was considered significant for all analyses.

Results

ANS tone and maturational trajectory was evaluated in 100 infants with median (Q1-Q3) 

birth GA of 31.9 (28.7–33.9) weeks over duration of 33.5 (18.5–60.0) NICU days. Thirty-

five infants were in Group 1, 40 infants were in Group 2, and 25 infants were in Group 3. 

The clinical and demographic characteristics of the infants are reported in Table 1. All 

significant differences between the three groups were expected based on difference in birth 

GA (Table 1).
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The first measurement of HRV metrics in the infants occurred at a mean (SD) of 44.2 (27.8) 

hours of age (Table 1). At the first recording, alpha 1, RMS1, RMS 2, nLF, LF, and HF were 

lowest in Group 1 and highest in Group 3 and alpha 2 and nHF were highest in Group 1 and 

lowest in Group 3. The maturational trajectories of the ANS metrics were assessed over time 

by postnatal age (Figure 1, Figure 2). Owing to a higher median (Q1-Q3) birth GA (34.7 

[34.3–35.1] weeks), Group 3 had the shortest duration in the NICU (11.9 [10.1–19.5] days) 

during which to establish a clear trajectory/slope, compared to Groups 1 and 2 (Table 1). 

HRV metrics were assessed a mean (SD) of 10.1 (4.5) time-points per infant in Group 1, 4.2 

(1.9) time-points per infant in Group 2, and 1.8 (0.9) time-points per infant in Group 3. The 

developmental trajectory/slope of the HRV metrics increased in all three groups over 

postnatal age, except alpha 2 and nHF which decreased over postnatal age (Figure 1, Figure 

2). For each metric, there was no difference in slope over post-natal days for the three birth 

GA groups. At term equivalent age (TEA) (≥37 weeks), there was no significant difference 

in autonomic tone across the three birth GA groups. The ANS metrics of nLF, nHF, LF, HF, 

HR, alpha 1, RMS 1, RMS 2 showed significant correlation between each other (Table 2). 

Alpha 2 showed correlation with LF, HF, HR and alpha 1, but not with nLF and nHF.

The majority of infants (91%) did not have a major medical complication of prematurity. 

Three infants had grade III or IV IVH. Four infants had a PDA requiring surgical ligation. 

No infants were transferred to another NICU for a higher level of care; one infant was 

transferred to another NICU due to parental preference. Ninety-eight infants survived to 

NICU discharge; one infant died due to NEC and sepsis and one due to severe sepsis.

Discussion

In our cohort of infants undergoing extra-uterine development after premature birth, we 

found that maturational trajectories in autonomic tone were comparable across a broad range 

of birth GA. We found that both sympathetic and parasympathetic tone were lowest among 

the most prematurely born infants, as expected. However, by the time of NICU discharge 

there were no significant differences in ANS tone among the different birth GA groups. 

Unlike previous reports (6,7,15), the findings in our cohort suggest that the duration of ANS 

maturation in an extra-uterine environment after premature birth may not by itself influence 

ANS development to term.

Maturation of sympathetic function starts earlier in gestation than that of the 

parasympathetic system. Normal parasympathetic maturation accelerates between 25–30 

weeks’ gestation, when many premature newborns are undergoing transition (2,23). By 37–

38 weeks there is an increase in vagal tone, as evidenced by increased high-frequency HRV 

(24). Although HRV metrics for both sympathetic tone (LF, nLF, alpha 1, RMS1, and 

RMS2) and parasympathetic tone (HF) increased with increasing postnatal age, the more 

rapid maturation of the sympathetic function translated into a negative slope for nHF.

We showed strong correlation between spectral and time domain metrics of ANS tone. Since 

nLF and nHF represent the relative power of the spectral frequencies, we see opposite 

direction of correlation between nLF and nHF, respectively for each of the ANS metrics, 

except with alpha 2. Alpha 2 is a measure of long-term fluctuations in HR. Alpha 2 
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correlates with the absolute value of HF and LF, and negatively correlates with increasing 

HRV, but does not correlate with the normalized metrics likely because normalized metrics 

do not represent absolute HRV. Alpha 1, a measure of short-term heart rate fluctuation 

influenced by sympathetic activity showed correlation with all metrics (25).

Prematurity exposes infants to a broad spectrum of systemic morbidities, including 

cardiorespiratory, neurologic, and infectious complications (1). In an earlier study of 26 

preterm infants born ≤28 weeks gestation, we found that the preterm infants had 

significantly lower ANS tone at TEA compared to low-risk term control infants (6). 

Different from the current study, our earlier study was performed in infants admitted to our 

regional referral NICU for high acuity prematurity-related complications. Furthermore, in 

the previous study (6), we compared autonomic tone at term between infants born ≤28 

weeks GA and normal term-born infants. Our findings also differ from those of Patural et 

al., who found no significant longitudinal increase in the autonomic tone by TEA among 39 

preterm infants (mean birth GA 28 weeks) (15). Infants in that study had a high degree of 

prematurity-related risk factors which may have impacted ANS development (15). 

Autonomic tone at birth was also not different by birth GA, which may have been due to 

prenatal factors (21). Another study of ex-premature infants described impaired autonomic 

maturation among those with abnormal neurodevelopmental outcomes (16). Infection-

inflammation is another common complication of prematurity and is known to have an effect 

on the nucleus tractus solitarius, a primary sensory autonomic center (16). Conditions such 

as early neonatal sepsis and NEC have been associated with short-term depression of 

autonomic tone, although the long-term effects are less well-described (11,26). Other 

prematurity-related complications such as PDA can alter ANS tone in premature newborns 

(27). In our current study, the prevalence of these prematurity-related complications was 

relatively low (9% with a complication), which might explain the lack of an association 

between duration of premature extra-uterine life and autonomic maturation.

The infants in our cohort were cared for in a NICU in which many of the more recent 

advances toward a “kinder, gentler” practice of NICU care are routine, including quiet 

single-bed rooms, minimal early medical handling, avoidance of prolonged intubation and 

less invasive ventilation, and early skin-to-skin contact (17,28). In premature newborns, the 

prone body position may be more comforting as it is associated with higher parasympathetic 

tone (29). Early skin-to-skin maternal care in premature newborns has been shown to 

improve vagal tone and autonomic functioning into childhood (28,30). Based on the current 

findings, we speculate that this type of practice promotes autonomic maturation in the extra-

uterine environment.

While spectral analysis is one of the commonly recommended analysis approaches to 

characterize HRV, DFA used in this study is a newer approach with advantages for analyzing 

infant HRV data (4). The principles behind DFA stem from statistical physics, and they 

allow us to address non-stationary components in the RRi and quantify HRV in a more 

reliable way (20). Kubios is open source software for HRV analysis and has an 

implementation of DFA in its package (31).
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There are a number of strengths to our data, including the relatively large cohort, as well as 

the longitudinal HRV recordings. However, this study also has some limitations. The effects 

of birth GA and duration of extra-uterine development prior to NICU discharge are of 

course, inextricably (and inversely) linked. We reported the data by postnatal age as opposed 

to postmenstrual age to show ANS developmental trajectories for the infants originating at 

the same time point of birth. This enabled us to evaluate the impact of postnatal extra-uterine 

duration in the NICU on ANS development. Since we did not perform follow-up HRV 

studies after NICU discharge, we cannot comment on the enduring nature of these 

autonomic trajectories. A term newborn reference of HRV metrics to which to compare our 

preterm infant data at TEA was not available. HRV metrics change during the first hours 

after birth during fetal-neonatal transition complicating any comparison between HRV data 

in term newborns and preterm cohorts at TEA (32). Our current studies aim to develop a 

normative set of HRV metrics in uncomplicated term infants beyond the birth transitional 

period to serve as a reference dataset. Furthermore, most infants in our cohort were born by 

cesarean section; we cannot address the role of delivery mode on autonomic development 

(33). It is standard protocol at the NICU from which our cohort was recruited that infants 

born <29 weeks GA, spend the first 72 hours after birth with limited touch, bundled care, 

after which a cranial ultrasound is routinely performed. Infants above 28 weeks birth GA, 

only undergo cranial ultrasound if there is clinical suspicion of a brain lesion. It is therefore 

possible that some infants had unrecognized, sub-clinical brain injury which could have 

affected ANS maturation. Since pregnancy complications such as pre-eclampsia and fetal 

growth restriction were similar among the birth GA groups, we did not evaluate for a 

difference in HRV trajectory in those with these complications, however based on a study by 

Aye and colleagues these factors do not seem to affect HRV metrics at birth (34). Long-term 

follow-up of preterm infants born to pregnant women with these specific complications may 

warrant further study in a larger cohort.

Conclusions

We report here the autonomic developmental trajectories as studied by HRV metrics in a 

cohort of premature infants born over a broad range of gestational ages. We found that the 

duration of preterm ex-utero development (i.e., between birth and TEA) did not significantly 

influence the rate of autonomic maturation. We speculate that the current findings differ 

from those in previous publications (6,7,15,16,30), because the source population of 

premature infants in the current study differs from populations previously reported. 

Specifically, the present study occurred in a large community-based inborn NICU, with a 

relatively low level of prematurity-related systemic morbidity rather than a high-morbidity 

premature population in a referral NICU. In addition, and in part because of the above, 

gentler, less intense transitional support (for example ventilatory support) was required. This 

question is currently under investigation.
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Impact

• Heart rate variability can evaluate the maturation of the autonomic nervous 

system

• Metrics of both the sympathetic and parasympathetic nervous system show 

maturation in the premature extrauterine milieu

• The autonomic nervous system in preterm infants shows comparable 

maturation across a wide range of birth gestational ages

• Preterm newborns with low medical morbidity have maturation of their 

autonomic nervous system while in the NICU

• Modern NICU advances appear to support autonomic development in the 

preterm infant
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Figure 1: 
ANS Spectral Metrics Over Time in Preterm Newborn Cohort

Abbreviations: nLF = normalized low frequency; nHF = normalized high frequency; LF = 

low frequency; HF = high frequency

Infant ANS metrics of nLF (A), nHF (B), LF (C), and HF (D), at each measurement session 

are shown as a colored dot. Red dots are for infants in group 1 with birth GA ≤29 weeks, 

blue dots are for infants in group 2 with birth GA of 30–33 weeks, and green dots are for 

infants in group 3 with birth GA ≥34 weeks. The solid colored lines represent the modeled 

ANS metric trajectory over time in postnatal age in days for each birth GA group.
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Figure 2: 
ANS Time Domain Metrics Over Time in Preterm Newborn Cohort

Abbreviations: alpha 1= alpha short; alpha 2 = alpha long; RMS 1 = root mean square 1; 

RMS 2 = root mean square 2

Infant ANS metrics of alpha 1 (A), alpha 2 (B), RMS 1 (C), and RNS 2 (D), at each 

measurement session are shown as a colored dot. Red dots are for infants in group 1 with 

birth GA ≤29 weeks, blue dots are for infants in group 2 with birth GA of 30–33 weeks, and 

green dots are for infants in group 3 with birth GA ≥34 weeks. The solid colored lines 

represent the modeled ANS metric trajectory over time in postnatal age in days for each 

birth GA group.
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Table 1:

Clinical and Demographic Characteristics of the Preterm Infant Cohort

Characteristic Group 1 (n = 35) Group 2 (n = 40) Group 3 (n = 25) Total cohort (n = 100) P

Birth GA (week) 28.0 (25.7–28.86) 32.1 (31.5–33.4) 34.7 (34.3–35.1) 31.9 (28.7–33.9) <0.0001

Male gender 17 (49) 24 (60) 12 (48) 53 (53) 0.52

Maternal age (years) 32.9 (5.5) 33.7 (4.8) 33.7 (5.8) 33.4 (5.3) 0.76

Maternal parity ≥1 15 (44) 10 (27) 11 (55) 36 (40) 0.09

Twin gestation 6 (17) 10 (25) 8 (32) 24 (24) 0.41

FGR 2 (6) 6 (15) 4 (16) 12 (12) 0.36

Pre-eclampsia 7 (20) 9 (23) 2 (8) 18 (18) 0.31

PIH 2 (6) 2 (5) 2 (8) 6 (6) 0.88

Antenatal betamethasone 32 (91) 32 (80) 17 (68) 81 (81) 0.07

Birth via CS 33 (94) 34 (85) 19 (76) 86 (86) 0.13

Birth weight (grams) 1006.1 (283.9) 1728.9 (325.9) 2223.6 (315.7) 1599.6 (568.6) <0.0001

Head circumference (cm) 25.6 (3.1) 29.9 (1.9) 31.8 (1.6) 28.9 (3.4) <0.0001

Apgar score (5-minute) 8 (6–8) 9 (8–9) 9 (8–9) 8 (7–9) 0.0006

Maximal respiratory support:

mechanical 19 (54) 4 (10) 1 (4) 24 (24) <0.0001

ventilation 16 (46) 31 (78) 11 (44) 58 (58)

CPAP 0 (0) 1 (3) 0 (0) 1 (1)

nasal cannula room air 0 (0) 4 (10) 13 (52) 17 (17)

cGA when on room air (weeks) 39.6 (37.4–40.9) 36.6 (35.7–37.3) 36.6 (35.9–37.1) 36.9 (36.0–38.1) <0.0001

IVH bundle 32 (91) 3 (8) 0 (0) 35 (35) <0.0001

Caffeine exposure 35 (100) 18 (45) 0 (0) 53 (53) <0.0001

Age of first recording (hours) 47.5 (24.8) 43.4 (28.5) 40.9 (31.2) 44.2 (27.8) 0.66

Number of ANS recordings 10.1 (4.5) 4.2 (1.9) 1.8 (0.9) 5.7 (4.5) <0.0001

NICU duration (days) 86.6 (63.1–106.6) 28.8 (22.7–44.8) 11.9 (10.1–19.5) 33.5 (18.5–60.0) <0.0001

cGA at discharge (weeks) 39.4 (3.2) 36.8 (1.3) 37.0 (1.4) 37.7 (2.4) <0.0001

Categorical data is reported as N(%) and continuous data is reported as median (Q1-Q3) or as mean (SD)

Abbreviations: cGA = corrected gestational age, CPAP = continuous positive airway pressure, FGR = fetal growth restriction, CS = cesarean 
section, GA = gestational age, Group 1 = birth GA ≤29 weeks, Group 2 = birth GA 30–33 weeks, Group 3 = birth GA ≥34 weeks, PIH = 
pregnancy-induced hypertension
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Table 2:

Correlation of Spectral and Time Domain Metrics of ANS Tone

nLF nHF LF HF HR Alpha 1 Alpha 2 RMS 1 RMS 2

nLF

nHF −0.95*

LF 0.37* −0.25*

HF −0.02 0.15* 0.90*

HR −0.15† −0.03 −0.50* −0.52*

Alpha 1 0.71* −0.63* 0.77* 0.49* −0.37*

Alpha 2 −0.05 −0.05 −0.79* −0.80* 0.44* −0.54*

RMS 1 0.23* −0.11‡ 0.90* 0.87* −0.58* 0.61* −0.76*

RMS 2 0.39* −0.29* 0.91* 0.82* −0.56* 0.70* −0.62* 0.94*

‡
P < 0.05

†
P < 0.01

*
P < 0.001

Abbreviations: nLF = normalized low frequency; nHF = normalized high frequency; LF = low frequency; HF = high frequency; HR = mean heart 
rate; alpha 1= alpha short; alpha 2 = alpha long; RMS 1 = root mean square 1; RMS 2 = root mean square 2
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