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Abstract: In this work we aim at identifying combinations of technological advancements that reveal
the presence of local capabilities for a given industrial production. To this end, we generated
a multilayer network using country-level patent and trade data, and performed motif-based
analysis on this network using a statistical-validation approach derived from maximum-entropy
arguments. We show that in many cases the signal far exceeds the noise, providing robust evidence of
synergies between different technologies that can lead to a competitive advantage in specific markets.
Our results can be highly useful for policymakers to inform industrial and innovation policies.

Keywords: innovation system; economic complexity; multilayer networks; network motifs;
maximum-entropy models; statistical validation

1. Introduction

Technological innovation is the main driver of modern economic growth [1,2]. It is therefore
not surprising that measuring and predicting the potential impact of technological innovations on
export competitiveness has been the central issue of many studies in the last forty years [3–6], as well
as the focus of general interest in the field of innovation systems [7]. Several empirical studies that
tried to measure such effects of national innovativeness on productivity and trade were also carried
out, with mixed results [8,9]. Overall, such academic efforts provided a theoretical framework and
empirical stylized facts that helped to understand the aggregate effect of innovation in determining the
competitive advantage of countries in different markets. Policymakers are, however, more interested
in identifying specific technologies that are relevant for specific markets [10,11], a task that is much
harder to deal with in an organic and objective fashion. Indeed, the scientific effort addressing the
impact of specific technologies on specific markets has been limited to ad hoc case studies that are
difficult to compare [12,13].

A recent paper of ours [14] deals with this issue using a multilayer-network characterization
of the innovation system. Specifically, a three-layered network of innovation activities is derived,
starting from three bipartite networks describing the scientific, technological, and production activities
of countries; the connections of the multilayer network represent the conditional probability that
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the information produced by an innovation activity (e.g., a technological sector) is used in another
innovation activity (e.g., an industrial-product category) after a given time. Grounded on previous
fundamental studies of economic complexity [15–18], this is the first attempt to build a representation
of the innovation system as a complex multilayer network.

In this paper, we generalize this approach by measuring the potential influence that a pair of
activities has on another activity. That is, we go beyond single-link analysis and consider the motifs of
the multilayer network [19,20]. For simplicity, we limited our analysis to the relationships between
(pairs of) technologies and products, which however represent a crucial aspect of the innovation system
since the interaction between different technologies is often a driver of innovation and progress [21].
As in Reference [14], we carry out statistical validation of our results against null network models
derived from maximum-entropy principles.

2. Materials and Methods

In order to build the bilayered network of technologies and products that is used in our analysis,
we started from the following popular databases.

PATSTAT (www.epo.org/searching-for-patents/business/patstat) collects all patents from
different Patent Offices around the world. The basic unit of observation in the dataset is a patent family
(i.e., the set of patents with common priorities, that is, referred to the same innovation). Each family is
related to the countries of origin of the applicants, and to a (set of) technological code(s) defined by the
International Patent Classification (IPC). We define Wct(y) as the number of patent families associated
to IPC code t applied by firms located in country c on year y.

BACI export data, recorded by UN COMTRADE (https://comtrade.un.org/), collects the
import–export flows (quantified in thousands of current U.S. dollars) between countries in the
world, related to production as classified using the Harmonized System 2007 of the World Customs
Organization. We define Wcp(y) as the monetary value of the overall export of country c for product
p during year y. Note that we use export data as proxies of (competitive) industrial production, as
typically done in the economic complexity literature.

In this work, we consider a data timespan ranging from 1995 to 2012, for which we have a reliable
coverage for both patent and export data. For technologies, we use a 4-digit resolution of IPC codes,
resulting in a number of technological sectors Nt ranging between 629 and 636. For products, we again
use a 4-digit resolution of the harmonized system, resulting in a number of product categories Np

ranging between 1140 and 1176. Finally, the number of considered countries Nc varies between 66 and
72. The slight variations of these numbers depend on the particular year considered, and are due to
geopolitical changes and periodical recategorization of technologies and products.

Using these basic data, we can define the Revealed Comparative Advantage (RCA) [22] of a
country c on an activity a (which is either a technological sector t or a product category p) in a given
year y:

RCAca =
Wca(y)

∑Na
a′=1 Wca′(y)

/
∑Nc

c′=1 Wc′a(y)

∑Nc
c′=1 ∑Na

a′=1 Wc′a′(y)
(1)

Thanks to the RCA, we can further define, for each year y, the binary bipartite networks
countries–technologies and countries–products. These are, respectively, represented by binary
biadjacency matrices MC,T (y) and MC,P (y) whose elements Mct(y) and Mcp(y) are:

Mca(y) =

{
1 if RCAca(y) ≥ 1

0 otherwise
(2)

(where, again, a refers to technological sector t in the case of the bipartite countries–technologies
network, and to product category p in the countries–product case).

www.epo.org/searching-for-patents/business/patstat
https://comtrade.un.org/
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Once we have matrices MC,T (y1) for year y1 and MC,P (y2) for the year y2, in analogy with
References [14,18], we can construct the assist matrix BT →P (y1, y2), whose generic element is
defined as:

Btp(y1, y2) =
Nc

∑
c=1

Mct(y1)

kt(y1)

Mcp(y2)

k(p)
c (y2)

. (3)

In the above expression, kt(y1) = ∑Nc
c=1 Mct(y1) is the number of countries having technology

t in their technological portfolio at year y1, and k(p)
c (y2) = ∑

Np
p=1 Mcp(y2) is the cardinality of the

product basket of country c in year y2. As explained in Reference [14], Btp(y1, y2) with y1 ≤ y2 give
the conditional probability that a bit of information produced in technological sector t in year y1

arrives (via a random walk on the coupled bipartite network) at product category p in year y2, through
one of the countries having t in its technological basket at y1 as well as p in its product basket at
y2. Elements Btp(y1, y2) then represent the weighted links of the bilayered (or bipartite) network
technologies–products, with the former at year y1 and the latter at year y2. These links are extensively
studied in Reference [14].

Here, we move forward and consider the Λ motifs of the bipartite technologies–products network:

Λp
tt′(y1, y2) = Btp(y1, y2)Bt′p(y1, y2). (4)

Λp
tt′(y1, y2) gives the conditional probability that two bits of information originally located on

technologies t and t′, respectively, at year y1 both reach product p at year y2. In other words, this motif
quantifies the joint probability for co-occurrence in a single country of pair technology t and product
p, and of pair technology t′ and product p, where the two events are considered as independent.
Note that, while this interpretation of the Λ motifs cannot be directly related to “impact” or “causality”,
it does go beyond a simpler measure of a (time-dependent) correlation. Note also that the name Λ
motif comes from the fact that, in the bipartite technologies–products network, this quantity gives the
weight of a Λ-shaped set of two links having different origins in the technology layer and the same
end in the product layer [20]. In principle, it is possible to generalize this approach by considering
higher-order motifs by, e.g., assessing the influence of a wider group of technologies on a single
product. For the sake of simplicity and due to limits of statistical significance, here we focus on the
simple Λ motif.

After obtaining the empirical values of the Λ motifs from the data, we statistically validate them
using their probability distribution derived from an appropriate null model, which is schematically
defined as follows (see the appendix for a thorough presentation). For each year y, we build
two statistical ensembles of biadjacency matrices M̃C,T (y) and M̃C,P (y), respectively, for the
countries–technologies and countries–products bipartite networks. These networks are built to be
maximally random, apart from having the ensemble average of node degrees equal to the observed
values in the empirical networks. For node degrees, we mean both technological diversification of
countries k̃(t)c (y) = ∑t M̃y

ct and technology ubiquities k̃t(y) = ∑c M̃y
ct for the countries–technologies

network, and analogously both product diversification of countries k̃(p)
c (y) = ∑p M̃y

cp and product
ubiquities k̃p(y) = ∑c M̃y

cp for the countries–products network. We chose these quantities as constraints
as we wanted our null model to only bear the information contained in the diversification of countries
and the ubiquity of activities without taking into account the specific pattern of co-occurrences
found in the empirical networks. In the spirit of information-theory interpretation of statistical
mechanics [23–25], the probability measure defining both statistical ensembles of binary bipartite
networks is obtained using a constrained entropy maximization approach. The resulting ensembles are
known in the literature as Bipartite Configuration Models (BiCM) [20]. Finally, given BiCM ensembles
for bipartite networks M̃C,T (y1) and M̃C,P (y2), we can use Equations (3) and (4) appropriately applied
to BiCM quantities to derive the probability distribution for value Λ̃p

tt′(y1, y2) in the null model [26,27].
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Numerically, we populate the BiCM ensembles by generating 103 matrices M̃C,T (y1) and M̃C,P (y2),
and then contract each pair to generate a final ensemble of 103 null matrices B̃T →P (y1, y2).

In the following, we focus on Λp
tt′(∆y), that is, the average value of Λp

tt′(y1, y2) over all pairs of
years giving the same difference y2 − y1 = ∆y. This represents the conditional probability that two bits
of information, produced in the same year for a pair of technologies t and t′ reach product p after ∆y
years. We define signal φ(∆y) as the fraction of significant Λp

tt′(∆y) (at the α = 0.01 significance level,
according to the probability distribution of the null model) for combinations of t, t′, and p chosen for
selected matrix regions. In general, we consider a population of motifs equal to 5500 units (see below).

3. Results

As a first test, we report mean signal φ, that is, the signal averaged over all combinations of t,
t′, and p. Since the total number of such motifs is extremely large, we chose 5500 motifs at random
and took their mean signal as representative of the global average. Figure 1 shows that φ basically
remains within one standard deviation from noise level α, indicating that the mean signal within the
data is negligible.

0 1 2 3 4 5 6 7 8 9 10

∆y

0

0,004

0,008

0,012

0,016

0,02

φ

Figure 1. Mean signal φ computed over 5500 combinations of t, t′, and p chosen at random, for different
values of time lag ∆y. Error bars represent the standard deviation over year pairs giving the same time
lag, whereas the dotted line is significance level α.

We then report the signal relative to motifs within selected regions of the assist matrix (Figure 2).
Specifically, we chose subregions of 11 technologies and 100 products (related to specific technological
sectors and product categories), whose total number of Λ motifs was 5500 (since Λp

tt′ = Λp
t′t).

From Figure 2 we see that, by selecting coherent sets of technologies and products, the signal is
well-enhanced: the presence of a pair of technologies in the capability basket of a country can predict
whether that country can successfully export a product, and this happens almost independently on
time lag ∆y.

As consistency checks, we made two exercises, both reported in Figure 3. Firstly, we show that
the results we have just presented do not depend on the particular resolution used to choose the
motifs. Secondly, we show that, for incoherent technologies and products, we indeed get a much lower
signal—even lower than the significance level. In this latter case, a significant development of specific
technologies corresponds to a low export level for a given product.
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∆y
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0,08

φ
G09F-G11B / 8401-8518
F22G-F23N / 8401-8518
C09H-C10L / 2706-3104

Figure 2. Mean signal φ computed over 5500 combinations of t, t′, and p, chosen for specific regions
of the assist matrix. Red circles: technological codes in the G09F-G11B region—related to sector
“physics: instruments of communications, acoustics, optics”, and products in the region 8401–8518
“machinery and metals”. Green squares: technological codes in the F22G-F23N region—related to
sector “engineering: various types of machines including steam and combustion”, and products in
the 8401–8518 region “machinery and metals”. Blue diamonds: technological codes in the C09H-C10L
region—related to sector “chemistry: macromolecular and inorganic compounds, gas and petroleum
products”, and products in the 2706–3104 region “inorganic and organic chemicals, pharmaceuticals”.
In all cases, error bars represent the standard deviation over the year pairs giving the same time lag,
whereas the dotted line is significance level α.

0 1 2 3 4 5 6 7 8 9 10

∆y

0

0,01

0,02

0,03

0,04

φ

C07-C30 / 2706-3104
H01P-H02M / 4111-5516

Figure 3. Mean signal φ computed over 5500 combinations of t, t′, and p chosen for specific regions
of the assist matrix. Cyan upper triangles: technological codes in the C07–C30 region related to
sector “chemistry” (i.e., a much larger region than that represented in the bottom panel of Figure 2)
and products in the 2706–3104 region “inorganic and organic chemicals, pharmaceuticals”. Orange
lower triangles: technological codes in the H01P-H02M region—related to sector “physics: electricity”,
and products in the 4411–5516 region “textiles”. In all cases, error bars represent the standard deviation
over the year pairs giving the same time lag, whereas the dotted line is significance level α.

We finally provide a few examples of motifs with a high signal (i.e., with a low p-value). To do
that, since the total number of motifs is extremely high, so that a complete exploration cannot be
performed efficient, we considered the motifs made up of link pairs Btp(y1, y2) and Bt′p(y1, y2) which
were independently those with the highest signal. Table 1 reports some instances of such motifs for
specific choice ∆y = 0. Triplets t, t′, p appearing in the table indeed seem coherent, and confirm that
our method can actually extract meaningful information in an unsupervised way.



Entropy 2019, 21, 126 6 of 11

Table 1. Examples of highly significant Λ motifs. p-value is averaged over all year pairs y1 = y2 giving
∆y = 0. To make this selection, we picked the most significant pairs (individual links) (t, p), and then
chose t′ within the region where the average p-value was highest.

p-Value p, t, t′

2 · 10−4
4701: Wood pulp.
C05B: Lime; magnesia; slag; cements.
C09K: Materials for applications not otherwise provided for.

5 · 10−4
2605: Mineral products.
C21D: Modifying the physical structure of ferrous metals.
F04F: Pumping of fluid by direct contact of another fluid or by using inertia of fluid to be pumped.

5 · 10−4
2605: Mineral products.
C21D: Modifying the physical structure of ferrous metals.
F04F: Working metallic powder.

5 · 10−4
8443: Printing machine.
D02H: Mechanical methods or apparatus in the manufacture of artificial filaments.
G01T Measurement of nuclear or x-radiation.

7 · 10−4
4703: Chemical wood pulp.
D21F: Decorating textiles
B27C: Planing, drilling, milling, turning, or universal machines.

8 · 10−4
2605: Mineral products.
C21D: Modifying the physical structure of ferrous metals.
FF15B: Systems acting by means of fluids in general.

2 · 10−3
4703: Chemical wood pulp.
D21F: Paper-making machines.
F03D: Wind motors.

2 · 10−3
4703: Chemical wood pulp.
D21F: Paper-making machines.
D06Q: Decorating textiles.

3 · 10−3
8519: Sound recording or reproducing apparatus.
G10K: Sound-producing devices.
G01T: Capacitors, rectifiers, detectors, switching devices.

3 · 10−3
8519: Sound recording or reproducing apparatus.
G10K: Sound-producing devices.
G04f: Time-interval measuring.

4. Conclusions

In this work, we provide an effectual way of measuring the combined effect of a set of technologies
on one product. In particular, we considered lambda motifs, quantifying the paired effect of two
technologies together. In the process of finding relevant combinations, we highlight several results.

First of all, we showed how the combination of multiple technologies has a very different role
in different industrial and technological sectors. Technologies within the same sector (we showed
examples for physics, engineering and chemistry) tend to show synergies between them in enhancing
the chances of successful exports of a product (Figure 2), whereas, looking at two generic technologies
there is no such effect (Figure 1). This heterogeneity, while expected, is quantitatively measured here.
Secondly, we confirm that co-occurrences between technological activities in a country allow extracting
information on shared capabilities, which in turn can inform policymakers and stakeholders of relevant
synergies, like those highlighted in Table 1, for specific export markets.

The mapping provided by our approach for the effects of pairs of technologies on products can
represent the fundamental building block for the formulation of a powerful instrument to inform
policies and industrial strategies about technology transfer. This operational step will be an important
aspect of future research.
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Appendix A. Bipartite Configuration Model (BiCM) and Assist-Matrix Null Model

In order to assess the statistical significance of elements of the assist matrices, we resorted to a
null model for bipartite matrices MC,T (y) and MC,P (y), built by randomly reshuffling their elements
(i.e., the network links connecting nodes in countries layer C to nodes in technologies layers T
and products P , respectively), but preserving the diversification of countries and the ubiquity of
different innovation activities (i.e., the degrees of the nodes in both layers of the countries–technologies
and countries–products bipartite networks). This means that we randomized the signal coming
from the network-connectivity patters beyond that encoded in the node degrees. In order to
analytically formulate the null model, avoiding to rely on a conditional uniform graph test [28,29],
degree constraints are imposed on average, i.e., in a way formally similar to what happens for the
canonical ensemble in statistical mechanics with the constraint on energy [23]. This amounts to set a
null hypothesis described by the BiCM [20], which is an extension of the configuration model [24] to
bipartite networks.

In the following, we use symbols with the tilde for quantities assessed on null-model
configurations, and without the tilde for empirically observed values. From an operational viewpoint,
the BiCM null model for any binary biadjacency matrix M, representing a (real) empirical bipartite
network with two node layers a ∈ A and b ∈ B, is built using two main steps:

1. Through a constrained maximum-entropy approach, we define ensemble Ω of bipartite networks
that are maximally random, apart from the ensemble average of the node degrees on both layers
of the bipartite network that are constrained to generic fixed values. Such an ensemble is thus an
instance of an Exponential Random Binary Graph (ERBG).

2. In order to determine the ERBG that best represents the empirical bipartite network, we use
a maximal-likelihood argument showing that the mean values of the node degrees have to
be taken equal to the observed ones in the empirical network [30]: 〈k̃a〉Ω = ka, ∀a ∈ A and
〈k̃b〉Ω = kb, ∀b ∈ B, where we have indicated with k the observed degrees in the real network,
and with k̃ the degrees in a generic configuration of the null model. We remind that ka = ∑b Mab
and kb = ∑a Mab, and analogously for "tilded" quantities.

Let us start by introducing the ERBG with fixed mean node degrees, and let M̃ ∈ Ω be a network
configuration in such an ensemble, and P(M̃) be its occurrence probability. By implementing the
prescriptions from information theory and statistical mechanics [23,31], the least biased choice of P(M̃)

is the one that maximizes informational entropy

S = − ∑
M̃∈Ω

P(M̃) ln P(M̃), (A1)

subject to normalization condition ∑M̃∈Ω P(M̃) = 1 plus the constraints:

〈k̃a〉Ω = ∑
M̃∈Ω

P(M̃) k̃a(M̃) = k∗a ∀a ∈ A, 〈k̃b〉Ω = ∑
M̃∈Ω

P(M̃) k̃b(M̃) = k∗b ∀b ∈ B. (A2)

where k∗a and k∗b are arbitrarily fixed values for the mean degrees of nodes belonging to layers A and
B. By defining respective Lagrange multipliers ω, {µa}a∈A, and {νb}b∈B (one for each node of the
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bipartite network), the probability distribution of all configurations M̃ ∈ Ω that maximizes the entropy,
satisfying at the same time all the constraints, is determined by the following variational equation:

0 =
δ

δP(M̃)

[
S + ω

(
1− ∑

M̃∈Ω

P(M̃)

)
+

+ ∑
a∈A

µa

(
k∗a − ∑

M̃∈Ω

P(M̃) k̃a(M̃)

)
+ ∑

b∈B
νb

(
k∗b − ∑

M̃∈Ω

P(M̃) k̃b(M̃)

)]
.

(A3)

It is a matter of simple algebra to show that the solution of this equation is:

P(M̃ | {µa}, {νb}) = e−H(M̃ | {µa},{νb})
/

Z({µa}, {νb}) , (A4)

where function H(M̃ | {µa}, {νb}) is usually called the Hamiltonian of graph configurations

H(M̃ | {µa}, {νb}) = ∑
a∈A

µa k̃a(M̃) + ∑
b∈B

νb k̃b(M̃), (A5)

and Z({µa}, {νb}) is the corresponding partition function

Z({µa}, {νb}) = eω+1 = ∑
M̃∈Ω

e−H(M̃ | {µa},{νb}). (A6)

Equations (A4)–(A6) above define the network ensemble known as the BiCM model.
Note that, as we have implemented only local constraints, i.e., the mean node degrees,

Equation (A4) can be rewritten as the product of single-link probability distributions over all pair of
nodes belonging, respectively, to the two different layers [20]:

P(M̃ | {µa}, {νb}) = ∏
a∈A

∏
b∈B

π
M̃ab
ab (1− πab)

M̃ab , (A7)

where πab is simply the probability of the link between nodes a ∈ A and b ∈ B:

πab = 〈M̃ab〉Ω = ∑
M̃∈Ω

M̃ab P(M̃ | {µa}, {νb}) =
ηa θb

1 + ηa θb
(A8)

with ηa = e−µa and θb = e−νb . In other words, the existence of each link is an independent event whose
probability is function only of the Lagrange multipliers associated to the node pairs defining the links.
The values of the Lagrange multipliers are determined by the constraints of Equation (A2), which can
be rewritten in terms of the derivatives of the partition function:

− ∂
∂µa

ln Z({µa}, {νb}) ≡ 〈k̃a〉Ω = k∗a ∀a ∈ A, − ∂
∂νb

ln Z({µa}, {νb}) ≡ 〈k̃b〉Ω = k∗a ∀b ∈ B. (A9)

Equations (A4)–(A8) define the generic EBRG with fixed mean degrees of nodes on both layers of
the bipartite network.

Once the generic EBRG has been defined, we can move to the step of determining, among all
possible EBRGs, the optimal null model for a given real biadjacency matrix (i.e., a bipartite network) M.
Equivalently, we have to choose the best values for {k∗a}a∈A and {k∗b}b∈B, i.e., for Lagrange multipliers
{µa}a∈A and {νb}b∈B, in relation to the connectivity properties of M.

To this aim, we write the log-likelihood function [30]

L({µa}, {νb}) = ln P(M | {µa}, {νb}) = ∑
a∈A

ka ln ηa + ∑
b∈B

kb ln θb − ∑
a∈A

∑
b∈B

ln(1 + ηa θb), (A10)
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where P(M | {µc}, {νa}) is the probability measure of Equation (A7) evaluated for a configuration
coinciding with real network M, while {ka}a∈A and {kb}b∈B are the node degrees of M. The best values
for {ηa}a∈A and {θb}b∈B (or equivalently {µa}a∈A and {νb}b∈B) are therefore obtained by maximizing
such log likelihood in these parameters. It is simple to show that this amounts to solve the system of
‖A‖+ ‖B‖ equations in ‖A‖+ ‖B‖ unknowns (where ‖A‖ and ‖B‖ simply indicate the number of
nodes, respectively, in the two layers, A and B, of M):

∑b∈B
ηa θb

1 + ηa θb
= ka ∀a ∈ A

∑a∈A
ηa θb

1 + ηa θb
= kb ∀b ∈ B

(A11)

which exactly amounts to choosing k∗a = ka ∀a ∈ A and k∗b = kb ∀b ∈ B. Finally, the null model for
a real bipartite network M is defined by Equations (A7) and (A8), with the Lagrange multipliers set
by Equation (A11). This recipe can therefore be applied to construct an appropriate null model for all
empirical bipartite networks {MC,T (y), MC,P (y)}ymin≤y≤ymax obtained, respectively, by PATSTAT and
COMTRADE data.

In order to build a null model for assist matrices BT →P (y1, y2), and consequently for the Λ motifs
defined by Equation (4), we have to now compose the null models for bipartite networks MC,T (y1)

and MC,P (y2). This is done by contracting the two BiCMs for matrices MC,T (y1) and MC,P (y2) along
the country dimension, as for Equation (3). We have:

B̃tp(y1, y2) =
Nc

∑
c=1

M̃ct(y1)

k̃t(y1)

M̃cp(y2)

k̃(p)
c (y2)

, (A12)

where k̃t(y1) = ∑c M̃ct(y1) and k̃(p)
c (y2) = ∑p M̃cp(y2) are respectively the ubiquity of technology

t and the product diversification of country c in the two single configurations for the BiCM null
models for the two bipartite networks countries-technologies of year y1 and countries-products of
year y2. In other words, starting from the two BiCM ensembles for MC,T (y1) and MC,P (y2) we build
by composition an ensemble of configurations of bipartite networks ΩT →P (y1, y2) with link weights
given by Equation (A12). The probability distributions of elements B̃tp(y1, y2), describing the null
model, can be, in principle, obtained using exact techniques [26,27]. However, due to the strong
non-Gaussianity of such distributions, we adopt a more practical sampling technique: starting from
the BiCMs for MC,T (y1) and MC,P (y2), we use Equations (A7), (A8) and (A12) to generate null assist
matrices and populate related ensemble ΩT →P (y1, y2) to estimate the full probability distributions.
In a similar way, by using composition Equation (4) for ensemble ΩT →P (y1, y2)

Λ̃p
tt′(y1, y2) = B̃tp(y1, y2)B̃t′p(y1, y2) (A13)

and averaging over all pairs of years y1 and y2 with fixed delay ∆y = y2− y1 to obtain Λ̃tp(∆y), we can
construct the null distribution of Λ motifs for each triple t, t′, p and delay ∆y.

The generic observed element Λp
tt′(∆y) is then considered statistically significant depending on

the p-value that we can infer from its distribution under the null hypothesis. The specific threshold
for statistical significance and the size of the generated ensemble vary on the performed exercises
(as highlighted in the text). In our case, we fixed the statistical significance level at α = 0.01. It is useful
to recall that the two choices, the threshold and the size of the ensemble, are not unrelated: the higher
the threshold we want to test, the bigger the sample we require. We consequently extracted, for each
couple of years y1 and y2, two ensembles of 1000 configurations/matrices for two BiCM null models
M̃C,T (y1) and M̃C,P (y2); by one-to-one contracting the configurations in the two ensembles, we obtain
1000 values of Λ̃p

tt′(y1, y2) to finally determine the statistical significance of observed value Λp
tt′(∆y),

as explained in Section 2.
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A final comment on the issue of multiple hypothesis testing is in order here. Since we perform
many statistical tests at once (one for each motif of the assist matrices), in order to determine the true
significant elements, we should use a correction for the significant threshold (such as Bonferroni or
False Discovery Rate). However, signal φ(∆y) is meant to measure the average outcome of a statistical
test over all possible motifs in the network, and as such we do not need to implement any correction
for the significance threshold.
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