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Abstract
Background: The World Health Organization recommends periodic mass antibiotic distributions
to reduce the ocular strains of chlamydia that cause trachoma, the world's leading cause of
infectious blindness. Their stated goal is to control infection, not to completely eliminate it. A single
mass distribution can dramatically reduce the prevalence of infection. However, if infection is not
eliminated in every individual in the community, it may gradually return back into the community,
so often repeated treatments are necessary. Since public health groups are reluctant to distribute
antibiotics indefinitely, we are still in need of a proven long-term rationale. Here we use
mathematical models to demonstrate that repeated antibiotic distributions can eliminate infection
in a reasonable time period.

Methods: We fit parameters of a stochastic epidemiological transmission model to data collected
before and 6 months after a mass antibiotic distribution in a region of Ethiopia that is one of the
most severely affected areas in the world. We validate the model by comparing our predicted
results to Ethiopian data which was collected biannually for two years past the initial mass antibiotic
distribution. We use the model to simulate the effect of different treatment programs in terms of
local elimination of infection.

Results: Simulations show that the average prevalence of infection across all villages progressively
decreases after each treatment, as long as the frequency and coverage of antibiotics are high
enough. Infection can be eliminated in more villages with each round of treatment. However, in the
communities where infection is not eliminated, it returns to the same average level, forming the
same stationary distribution. This phenomenon is also seen in subsequent epidemiological data
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from Ethiopia. Simulations suggest that a biannual treatment plan implemented for 5 years will lead
to elimination in 95% of all villages.

Conclusion: Local elimination from a community is theoretically possible, even in the most
severely infected communities. However, elimination from larger areas may require repeated
biannual treatments and prevention of re-introduction from outside to treated areas.

Background
Trachoma remains the major cause of infectious blindness
in the world [1,2]. Repeated infection with the ocular
strains of Chlamydia trachomatis can lead to a cascade of
conjunctival scarring, in-turned eyelids and eyelashes, and
eventually blindness due to corneal opacity. To reduce the
prevalence of infection, the World Health Organization
(WHO) has recommended community-wide distribu-
tions of oral azithromycin as part of its strategy to control
blinding trachoma by the year 2020[3]. They believe that
infection can be reduced to a level low enough that result-
ing blindness will no longer be a major public health con-
cern, but they do not believe that infection can be
completely eliminated from an area.

A single dose of oral azithromycin is clearly effective in
eliminating ocular chlamydial infection in an individual
[4,5]. Antibiotic distributed simultaneously to an entire
community has been shown to reduce the prevalence of
infection to low levels [6-11]. The WHO recommends
mass treatments be administered with an observed clini-
cal prevalence greater than 10 percent[3]. Unfortunately,
infection returns back into communities over time [7,12-
15]. Repeated treatments have progressively reduced
infection, at least in two areas with moderate disease. After
three annual treatments, only a single infection could be
identified in a village in western Nepal[8]. Similarly, after
a single mass oral azithromycin distribution and three
biannual topical tetracycline distributions, only a single
infection was found in a Tanzanian village [9]. However,
infection has never been eliminated from a hyper-
endemic area, and if antibiotics are discontinued infection
will presumably return. We have no proven long-term
rationale for repeated mass antibiotic distributions in
severely affected areas. Randomised controlled trials are
the gold standard for assessing the effect of different treat-
ment strategies, and several are currently underway. How-
ever, it is difficult with trials to explore the long term
effects several years in the future for a range of strategies.
Here, here we use short term data from Ethiopia to math-
ematically model longer term outcomes.

In previous studies, we have used deterministic models of
difference [16] and differential equations [7] to model
infection in communities. Mass antibiotic treatment is
incorporated into the model by lowering infection by an
amount proportional to the coverage of the community

and the efficacy of antibiotic in an individual [7,16]. In
the model, infection returns into a community between
treatments according to logistic growth at a rate estimated
from baseline data[16] or determined from post-treat-
ment Ethiopian data [7]. The models suggest that periodic
mass distributions can progressively reduce chlamydial
infection in a community, as long as infection is reduced
more by each treatment than it returns between treat-
ments (Figure 1a) [7,16]. In this report, we use data col-
lected from 16 villages in Ethiopia to estimate parameters
for a mathematical model that incorporates the effects of
chance. We then determine whether local elimination is
possible, and if so, in what time span.

Methods
Clinical data
Sixteen villages in the Gurage region of southern Ethiopia
were enrolled in a mass antibiotic treatment program for
trachoma as previously described [7]. These villages are
very remote with approximately 2 kilometres or more
between them, thus we consider them to be closed com-
munities. Briefly, 1–5 year old children, those most likely
to harbor infection, were monitored at baseline and 2, 6,
12, 18, and 24 months after baseline. Every member of all
sixteen villages>= 1 year old in the study were offered anti-
biotic treatments 1 week after baseline, 6,12, and 18
month visits. Pregnant women and those allergic to mac-
rolides were offered topical tetracycline. The right upper
conjunctiva of each child was swabbed and tested for the
presence of chlamydial DNA using Amplicor PCR (Roche
Diagnostics, Branchburg, NJ). Since post-treatment preva-
lence was expected to be relatively low, swabs from the
same village were randomly pooled into groups of 5 with
any remainder pooled into a final tube, as previously
described [7,17]. The number of positive individual sam-
ples in a village most likely to have resulted in the
observed pooled results was determined by maximum
likelihood estimation.

Models
Previously, we constructed a simple SIS (susceptible,
infected, susceptible) model of ocular chlamydial infec-
tion in a core group of children using differential equa-
tions [18,19].
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where I is number of infectious cases, t is time, γ is the rate
of recovery from infection, β is a transmission parameter,
and N is the effective population size. Treatment was sim-
ulated by reducing the number of individuals infected by
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a. Simulation data after one treatment: In identical simulated communities, infection responds to identical treatment in dif-ferent ways. It may return after a single mass antibiotic treat-ment relatively rapidly (blue curve) or fade out (red curve) due to the effects of chanceFigure 2
a. Simulation data after one treatment: In identical simulated 
communities, infection responds to identical treatment in dif-
ferent ways. It may return after a single mass antibiotic treat-
ment relatively rapidly (blue curve) or fade out (red curve) 
due to the effects of chance. b. Real Ethiopian villages after 
one treatment: In Ethiopian communities with similar pre-
treatment prevalence of infection and similar antibiotic cov-
erage levels, infection may return relatively rapidly (blue 
curve), or fade out (red curve).
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Figure 2b. Real Ethiopian villages after one treatment 
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a. Deterministic Model of Time vs. Prevalence with biannual treatments: Results from a differential equation based model demonstrating that biannual coverage of 80% of the popula-tion should progressively reduce ocular chlamydial infection (blue curve)Figure 1
a. Deterministic Model of Time vs. Prevalence with biannual 
treatments: Results from a differential equation based model 
demonstrating that biannual coverage of 80% of the popula-
tion should progressively reduce ocular chlamydial infection 
(blue curve). The deterministic model is an excellent approx-
imation for the expectation of the stochastic model (mean of 
1000 simulations, red curve). b. Stochastic Model of Time vs. 
Prevalence with biannual treatments: The mean of 1000 sim-
ulations of a stochastic model, assuming biannual treatments 
with 80% coverage (again, red curve) vs. the average preva-
lence of only those villages which still harbor infection (green 
curve). After the third treatment, the average prevalence of 
infection in these villages returns to approximately the same 
level with each subsequent treatment (green curve).
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Table 1: Transitions used in stochastic model

Transition Description of transition Hazard/Risk

S→I susceptible becomes infected β
I→S infected recovers naturally γ
I→S periodic antibiotic treatment c*f
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the product of the coverage, c, and the efficacy, f, of anti-
biotic in an individual (Figure 1a). For this study, a sto-
chastic model (continuous time, discrete individuals)
analogous to equation 1 having the transitions shown in
Table 1 and using the parameters shown in Table 2 and
was used.

Note that treatment is not given at a constant rate, but is
given periodically to a certain proportion of the popula-
tion. Each member of the community has a chance of
being treated based on the coverage level and the efficacy
of antibiotic in an individual.

We constructed the analogous Markov model by letting
pi(t) denote the probability that there are i infected indi-
viduals in the population at time t (where i varies from 0
to N). Assume that the mass treatments happen at time
0,T,2T,...,kT,...; between periodic mass treatments, the
model is a standard continuous time Markov process with
constant coefficients. Assuming that infected individuals
recover naturally at rate γ, and uninfected individuals
become infected at rate βI/N leads us to the Kolmogorov
forward equations, which are

between the kth mass treatment and the next (δij is the
Kronecker delta, which equals 1 if i = j and zero other-
wise). At the mass treatment times, however, we assume
that each infected individual has a probability c of being
treated (the coverage), times a probability f of being cured
if treated (the efficacy).

Parameters for this stochastic model were fit to the 6
month Ethiopian data using maximum likelihood estima-
tion. We started out simulations at the average prevalence,
and ran for 24 months to allow the distribution of preva-
lence to approximate the pre-treatment distribution at the
time point zero We approximated the joint probability
distribution function of the 3 points (baseline, 2, and 6
month post-treatment prevalence) by fitting a standard
kernel density estimator (a 3-dimensional product-
Epanechnikov kernel), to the results of 1000 simulations.

The bandwidth of the kernel in each dimension was set
using standard techniques [20]. We used the estimated
likelihood to determine the log likelihood of the observed
data. The values of the parameters β and γ which maxi-
mized the estimated likelihood were determined itera-
tively and uncertainty was estimated by inverting the
Hessian of the log-likelihood function. Sensitivity analy-
ses were performed by varying a single parameter at a
time, keeping other parameters set at β = 0.044 and γ =
0.017, N = 100, effective coverage of 90%, and treatment

frequency biannual.

For the sensitivity analysis, we varied γ from 0.005 to

0.022, showing (Figure 7). We varied β from 0.01 to 0.1,
illustrated in Figure 6, with the corresponding baseline
prevalence estimated from the deterministic model

( ). Density graphs from empirical data were

smoothed for presentation using a narrow Gaussian ker-
nel around each data point.

To incorporate the effects of treatment, we used the anal-
ogous discrete time, Markov process where time is incre-
mented every period of mass antibiotic distribution (e.g.
26 weeks). The quasi-stationary distribution (Figure 3a,
violet curve) was determined by constructing a vector q,
with qi being the probability of having i infectious cases in
the community (from i = 1 to the number of individuals
in the community, n) and an n × n matrix M (determined
from simulations), such that,

M·qt = qt+treatment period

Note that q is similar to p above, except that q0, the state
that would represent elimination, is specifically not
included in this formulation, so only communities where
infection has not been eliminated are followed. The larg-
est eigenvalue of M is the reciprocal of the expected time
to extinction, and the corresponding eigenvector provides
the quasi-stationary distribution (violet curve, Figure 3a)
[21]. All models were built using Mathematica Version 5.1
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Table 2: Parameters used in stochastic model

Parameter Definition Value Units Estimated or Known

N Number of children in a village 100 people Known
I Number of children infected varies by time people Known

period Weeks between a mass treatment 26 weeks Known
c*f Effective Coverage 90% percentage Known
γ Rate of recovery 0.017 1/weeks Estimated using MLE
β Rate of infection transmission 0.047 1/weeks Estimated using MLE
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using the statistical packages Discrete Distributions and
Continuous Distributions.

Results and Discussion
Parameters for a stochastic model were estimated from
longitudinal data from approximately 5000 people
within 16 separate Ethiopian villages during the first 6
months after a mass distribution. The MLE estimates for
our model gave β = 0.044 and γ = 0.017. Gamma can be
interpreted as the reciprocal of the duration of infection,
and here would be approximately 1 year.

With estimated parameters, our mathematical models did
indeed show that elimination is possible with repeated
treatments. The stochastic element of the model recreates
what we see happening in real life. In some villages we see
infection returning, while in others it disappears. As more
treatments are administered, we see more and more vil-
lages achieving elimination. Observing results from a
1000 simulations using the stochastic model, the average
prevalence of infection is progressively reduced with each
periodic treatment as in the deterministic model (Figure
1a and 1b, red curve). However, this reduction does not
necessarily occur in all of the villages. In some simulated
villages infection is eliminated with a single mass treat-
ment. In others, it is reduced to a low level and fades out
by chance (Figure 2a, red curve). In still others, infection
may return quite rapidly (Figure 2b, blue curve). Simula-
tions of 1000 communities demonstrate that infection is
eliminated in more villages with each subsequent treat-
ment. If not eliminated, it returns on average to the same
level before the next scheduled treatment (green curve,
Figure 1b). In fact, if we set aside the villages that have
achieved elimination, the distribution of the prevalence of
infection after the 3rd treatment is similar to that after the
4th treatment, and prevalence after the 4th even more sim-
ilar to that after the 5th (Figure 3a). After two treatments,
simulated communities quickly approach a distribution
which, if conditioned on non-elimination, is stationary
(termed a quasi-stationary distribution) [21-23]. This
quasi-stationary distribution can be determined analyti-
cally (violet curve in Figure 3a, see methods).

Subsequent data from the same sixteen Ethiopian villages
at 12, 18, and 24 months appear to confirm that elimina-
tion is possible. In one village, 50% of the children were
infected at baseline, but no infection was identified in any
of the 5 visits after the first treatment. In another, 45% of
children were infected at baseline, but no infection could
be found after the second treatment. If infection was not
eliminated in a village then the distribution to which it
returned 6 months after the 2nd treatment approaches that
to which it returns after the 3rd treatment (Figure 3b).
There is no statistical difference between distributions 6

a. Probability Density of infection prevalence found in biannu-ally treated villages where "village level" elimination has not yet occurred: Probability distribution of 1000 simulations at baseline, 6, 12, 18, and 24 monthsFigure 3
a. Probability Density of infection prevalence found in biannu-
ally treated villages where "village level" elimination has not 
yet occurred: Probability distribution of 1000 simulations at 
baseline, 6, 12, 18, and 24 months. The prevalence of infec-
tion in a simulated community pre-treatment varies in a nor-
mal distribution [21]. Each mass treatment eliminates 
infection in some villages, but in those that it does not, the 
distribution is shifted to the left, rapidly approaching a quasi-
stationary distribution 3b. Probability density graphs using 
Ethiopian data: Distribution of the prevalence of infection in 
pre-school children in 16 Ethiopian villages. Baseline, 2, and 6 
month data were used to fit the parameters of the stochastic 
model. Subsequent data from 12, 18, and 24 months confirm 
that the distribution of infection in the villages also 
approaches the quasi-stationary distribution.
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months after the 3rd and 4th treatments (Kolmogorov-
Smirnov test, P = 0.95 comparing 18 and 24 month data).

This stochastic model does not incorporate re-introduc-
tion of infection from neighbouring villages. The rate that
infection is re-introduced is not known and is difficult to
estimate. Re-introduction appears not to be frequent, as
communities do well in the short term, whether or not
neighbouring villages were treated (unpublished data).
On the other hand, it may well be occurring [13]. Some
villages in which no infection could be found in children
for several visits had infection identified at a subsequent
visit. Even occasional transmission from other communi-
ties would prevent sustained elimination. Interestingly,
the quasi-stationary distribution can be estimated from
models by only considering villages where infection has
occurred (the limiting case of the curves in Figure 3), by
preventing the last infectious case from disappearing (vio-
let curve in Figure 3a), or by artificially introducing a sin-
gle infection into a community whenever infection has
been eliminated, much as might be expected with re-
introduction[21]. Since each of these methods mimics re-
introduction, then the quasi-stationary distribution may
be a reasonable estimate of the distribution of prevalence
of infection.

Investigators are struggling to determine why infection
returns in some villages and not others. This search is
important, but may not be fruitful, since a great deal of
variation is expected even in otherwise similar villages.
Simulations allow us to construct communities that are
absolutely identical, and variation is still observed due to
the vagaries of who infects whom. Infection will be elim-
inated in some fortunate villages. In other, essentially
identical villages, it will continue to return to the same
average level even after multiple treatments (Figure 2a). In
practice, we have also observed a varied response to treat-
ment in similar villages (Figure 2b) [12].

Often overall prevalence is reported, but we believe there
needs to be a shift in the way we evaluate progress. The
average prevalence of infection across several villages can
be misleading. A regional prevalence of 5% does not
mean that 1 in 20 children in each village are infected.
More likely, infection has been eliminated in most vil-
lages but has returned in a few villages to a level that may
far exceed 5%. A better measure of success of a trachoma
program may be the proportion of villages in which infec-
tion has been eliminated. While the power of sampling
allows the mean prevalence to be obtained relatively eas-
ily, it should be interpreted in terms of what it reveals
about the underlying process; after several rounds of treat-
ment, the mean represents some villages where infection

Number of months between treatments vs. Years until elimi-nation: Here we vary treatment frequency in the stochastic model, while keeping other parameters the sameFigure 5
Number of months between treatments vs. Years until elimi-
nation: Here we vary treatment frequency in the stochastic 
model, while keeping other parameters the same. Other 
parameters are 90% effective coverage, an effective popula-
tion size of 100 children, γ = 0.017, and β = 0.044.
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Coverage vs. Years until elimination: Here we vary coverage in the stochastic model, while keeping other parameters the sameFigure 4
Coverage vs. Years until elimination: Here we vary coverage 
in the stochastic model, while keeping other parameters the 
same. Other parameters are biannual treatment an effective 
population size of 100 children, γ = 0.017, and β = 0.044.
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has been completely eliminated and others where infec-
tion has returned to a level chosen from the quasi-station-
ary distribution. Thus the decision for stopping
distributions may need to depend on whether infection
has been eliminated locally.

Periodic mass antibiotic treatments can locally eliminate
the ocular chlamydia that cause blinding trachoma, if
given frequently and to a large portion of the population
[7,16]. Models suggest it will return to the same distribu-
tion before the next scheduled treatment. If infection is
not eliminated from a community after several mass treat-
ments, then stochastic Ethiopian data demonstrates that
this quasi-stationary distribution is closely approached
after only two or three treatments. The WHO's strategy
requires only for antibiotics to reduce the level of infec-
tion and expects that other measures will be necessary for
a permanent solution. Their current recommendation of
three treatments before re-evaluation is reasonable. If con-
stant re-infection of communities prevents elimination,
then subsequent treatments may only serve to maintain
the prevalence in a stationary distribution, not lower it.
However, if infection between neighbouring communi-
ties is rare or can be reduced by treating large areas within
a narrow time frame, then elimination over larger areas
than a village may be achieved. There is some concern that
communities from which trachoma has been partially
eliminated will lose much of their immunity to chlamy-

dia, only to have it return with a vengeance after treat-
ments have been discontinued [24-26]. This has yet to be
demonstrated convincingly in practice [26], but potential
loss of immunity could easily be included in future mod-
els.

Partners in the WHO's trachoma program have distrib-
uted over 30 million doses of oral azithromycin so far,
and over 1 million in Ethiopia. These programs are
expanding rapidly. There has been evidence of subsequent
re-emergence of infection in some recent trials of azithro-
mycin, suggesting coverage and dosing intervals in mass
therapy need careful consideration [7,14,24,27]. Biannual
treatments are costly, require more resources, and may
contribute to antibiotic resistance in chlamydia and other
pathogens such as Streptococcus pneumoniae [26,28-30].
The benefits of mass therapy thus need to be weighed
against the potential emergence of antibiotic resistance
which will require long term surveillance. But if necessary
for local elimination biannual distributions may be more
cost effective in the long run in severely affected areas. The
elimination of a bacterial disease from a large area with
mass antibiotics would be major medical breakthrough.

Simulations were run to estimate the number of rounds of
treatment necessary to achieve elimination in 50%, 75%,
and 95% of the villages. Elimination depends on the effi-

Recovery rate vs. Years until elimination: Here we vary the recovery rate in the stochastic model, while keeping other parameters the sameFigure 7
Recovery rate vs. Years until elimination: Here we vary the 
recovery rate in the stochastic model, while keeping other 
parameters the same. Other parameters are biannual treat-
ment with 90% effective coverage, an effective population 
size of 100 children, and β = 0.044.
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Baseline prevalence vs. Years until elimination: Here we vary β in the stochastic model, while keeping other parameters the sameFigure 6
Baseline prevalence vs. Years until elimination: Here we vary 
β in the stochastic model, while keeping other parameters 
the same. Other parameters are biannual treatment with 
90% effective coverage, an effective population size of 100 
children, and γ = 0.017.
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cacy and coverage of treatment, as well as the effective
population size in a community. It should be noted that
these models were developed using data from a hyper-
endemic region, and they are not generalizable to all
areas.

The stochastic model suggests that treatment given to 90%
of the population biannually would eliminate infection in
95% of the villages after 5 years. Lower coverage or less
frequent treatments would not be as successful (Figures 4
and 5). For example, the WHO's recommended strategy of
annual treatment of 80% of the population would elimi-
nate infection in an estimated 95% of hyper-endemic vil-
lages in 12 years. Not surprisingly, areas with a lower
baseline prevalence of infection should achieve elimina-
tion more rapidly (Figure 6). If the rate that an individual
recovers from an infection is more rapid than estimated
here, then it will be more difficult to eliminate infection
with repeated treatments (Figure 7). Infection can be
eliminated from smaller communities more rapidly than
larger ones, in part because stochastic fade out is more
likely with fewer cases (Figure 8). Other factors, such as
the cost of medication and of distributions, were not ana-
lyzed in this report, but clearly play a role in determining
the optimal strategy for a given program.

Conclusion
The local elimination of infectious trachoma is possible
with repeated mass antibiotic distributions. A stochastic

mathematical model suggests that elimination (reduction
of the prevalence of infection to zero in a community) can
occur within a reasonable time period even in the most
severely affected areas, as long as the coverage and fre-
quency of distributions are high enough. For example, in
hyper-endemic areas of Ethiopia, we estimate that bian-
nual treatment with 90% effective coverage would result
in elimination in more than half of communities in 3
years, and in 95% within 5 years. Most areas have far less
trachoma than the 16 villages in Ethiopia presented here,
so elimination should prove far easier. The WHO's current
recommendation of three annual treatments with at least
80% coverage will likely eliminate infection in a large
number of communities worldwide. The time to elimina-
tion is also dependent on whether transmission of infec-
tion can be effectively reduced by any other means, such
as hygiene (clean faces are associated with less clinically
active trachoma) and fly control (Musca sorbens is
thought to play a role in the transmission of ocular
chlamydia), both of which are major parts of the WHO's
overall trachoma strategy [31-34]. Researchers have noted
that trachoma is disappearing in the absence of active tra-
choma programs [35-38]; such a secular trend would also
make infection easier to eliminate.
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