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Abstract
Purpose: Magnetic resonance (MR) elastography (E) is a noninvasive technique for quantifying liver stiffness (LS) for fibrosis. This

study evaluates whether LS is associated with risk of developing radiation-induced liver disease (RILD) in patients receiving liver-

directed radiation therapy (RT).

Methods and Materials: Based on prior studies, LS ≤3 kPa was considered normal and LS >3.0 kPa as representing fibrosis. RILD

was defined as an increase in Child-Pugh (CP) score of ≥2 from baseline within 1 year of RT. Univariate and multivariate Cox models

were used to assess correlation.

Results: One hundred two patients, 51 with primary liver tumors and 51 with liver metastases, were identified with sufficient follow-

up. In univariate models, pre-RT LS >3.0 kPa (hazard ratio [HR] 4.9; 95% confidence interval [CI], 1.6-14; P = .004), body mass

index (BMI), clinical cirrhosis, CP score, albumin-bilirubin (ALBI) grade 2, primary liver tumor, and mean liver dose were

significantly associated with risk of post-RT RILD. In a multivariate analysis, LS >3.0 and mean liver dose both were significantly

associated with RILD risk.

Conclusions: Elevated pre-RT LS is associated with an increased risk of RILD in patients receiving liver-directed RT.
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Introduction
Before the development of advanced radiation deliv-

ery techniques, the risk of classic radiation-induced liver

disease (RILD) limited the use of radiation therapy (RT)

for the management of liver cancers.1,2 Risk of develop-

ing classic RILD is 5% to 35% when the entire liver is

irradiated to 30 to 35 Gy; however, ablative doses are

often necessary to achieve local tumor control.3,4 In the

current era with image guided and ablative RT techni-

ques, nonclassic RILD, which is more closely aligned

with acute hepatic decompensation, remains a concern,

has been typically evaluated by change in Child-Pugh

(CP) score, and occurs in 3.6% to 31% of patients receiv-

ing either ablative or hypofractionated RT.4-8 Predictive

criteria for RILD are not well established.9,10

MRE is a noninvasive technique for staging liver fibro-

sis with excellent reproducibility.11,12 In patients with

chronic liver disease, elevated LS on MRE is associated

with increased risk of hepatic decompensation, develop-

ment of liver cancer, and death.13 A recent pilot study of 17

patients treated with stereotactic body radiation therapy

(SBRT) for hepatocellular carcinoma (HCC) found pre-

treatment LS to be significantly higher in patients who

developed RILD.10 We sought to further evaluate the role

of MRE in predicting the risk of RILD in a larger popula-

tion of patients receiving SBRT and hypofractionated RT

for primary liver cancer and liver metastasis.
Methods and Materials
Figure 1 (A and B) Patient with hepatocellular carcinoma

(HCC), Child-Pugh score A, and baseline LS 6.5 kPa who devel-

oped RILD. (C and D) Patient with HCC, Child-Pugh score A,

and baseline LS 2.8 kPa who did not develop RILD. (A and C)

MR liver imaging with volume acceleration (LAVA) from corre-

sponding anatomical location of MRE stiffness images (B and D).

Abbreviations:RILD = radiation-induced liver disease.
Study population

With institutional review board approval, we retro-

spectively analyzed a population of patients who received

liver-directed RT at our institution between January 2010

and June 2018. Inclusion criteria were age ≥18 years,

receipt of RT (≥30 Gy), MRE examination within 6

months before RT, and post-RT laboratory studies.

CP score and albumin-bilirubin (ALBI) score were

calculated.14 The primary end point was cumulative inci-

dence of RILD. RILD was defined as an increase in CP

score ≥2 from baseline within 12 months of RT.1 For

patients with liver metastasis without clinical diagnosis

of cirrhosis, a baseline CP score of A5 was assigned

(n = 18). RT parameters including treatment modality

(protons or photons), dose and fractionation, gross tumor

volume (GTV), total liver volume (liver-GTV), and

tumor-to-liver ratio were recorded. For all patients, nor-

mal liver dose constraints for either TG10115, NRG-

GI003 (NCT03186898), or NCT009768986 were met.

For calculation of equivalent dose in 2 Gy fractions

(EQD2), an a/b, 10 for tumor dose was used and an a/b,

3 for mean liver dose was used.
Liver MRE

The majority of liver MREs were completed on a

departmental Discovery 750-Watt MR imaging device (GE

Healthcare, Chicago, IL) as a treatment position MR imag-

ing for radiation planning. The liver MRE technique has

been well described.16 Four axial slices were obtained

through the largest cross-section of the liver. Mean liver

parenchyma stiffness was calculated by averaging across

manually drawn regions of interest, including only liver

parenchyma, and measured by the reading radiologist.

Based on previous studies, LS ≤3 kPa was considered nor-
mal and LS >3 kPa was consistent with the presence of

fibrosis.16 Pre-RT liver MRE results for 2 patients are

shown in Figure 1.
Statistical analysis

Analyses were conducted using SAS� version 9.4 (SAS

Institute, Cary, NC). The cumulative incidence of RILD

was estimated considering death and liver transplantation

as competing risks. The Coxmodel was used to assess asso-

ciation of baseline variables with risk of RILD.
Results
We identified 103 patients, and 102 patients had post-

treatment follow-up—51 with primary liver tumors and



Table 1 Pre−radiation therapy characteristics

Variable N or Mean (Range)

Age (years) 65 (30, 87)

Sex

Male 62

Female 40

BMI (kg/m2) 28.3 (15.3, 47.2)

Primary liver cancer 51

HCC 42

IHC 6

GBC 2

EHC 1

Metastatic lesion origin 51

Colorectal 16

Melanoma 11

Noncolorectal GI 9

Hematological 2

Genitourinary 4

Gynecologic 3

Breast 2

Other* 4

Cirrhosis etiology

HCV 12

HBV 2

Alcohol 10

NASH 9

Othery 7

Child-Pugh Classz

A 28

B 11

C 1

Unknown 11

ALBI grade

1 49

2 31

3 4

Unknown 18

RT parameters

GTV (cm3) 144.5 (0.7, 3035)

Liver-GTV (cm3) 1574 (811, 3079)

Tumor-to-liver ratio (%) 5.75 (0.03, 71.6)

Total fractions <10/≥10 79/23

Photon/proton 76/26

Total dose (Gy) 55.8 (30, 70)

Total dose EGD2 (Gy) 92.4 (40, 150)

Mean liver dose (Gy) 11.5 (1.71, 25.1)

Mean liver EQD2 (Gy) 11.3 (1.10, 28.9)

Post-RT systemic therapy 20

Liver stiffness (kPa)

≤3.0 kPa / > 3.0 kPa 43/59

Abbreviations: BMI = body mass index; EHC = extrahepatic chol-

angiocarcinoma; EQD2 = equivalent dose in 2 Gy fractions;

GBC = gall bladder carcinoma; GTV = gross tumor volume;

HBV = hepatitis B virus; HCC = hepatocellular carcinoma;

HCV = hepatitis C virus; IHC = intrahepatic cholangiocarcinoma;

NASH = nonalcoholic steatohepatitis; RT = radiation therapy.

* Other metastatic lesions include adrenocortical carcinoma, thy-

moma, oropharynx cancer, and salivary duct cancer.

y Other etiologies include autoimmune hepatitis, alpha-1- anti-

trypsin, hemochromatosis, and cryptogenic cirrhosis.

z For patients with cirrhosis.
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51 with liver metastasis. The most common primary liver

tumor was HCC (n = 42/51, 82%), and the most common

origin of metastasis was colorectal (16/51, 30%). Table 1

describes the pre-RT characteristics. Mean pre-RT LS

was 3.9 kPa (range 1.8, 8.7). Variables associated with

increased baseline LS >3.0 were primary versus meta-

static tumors (4.9 kPa vs 3.0 kPa, P < .0001), CP score

(A vs B/C, 3.9 kPa vs 5.2 kPa, P = .002), ALBI score

(per 1 point, P = .01), and clinical cirrhosis (yes vs no,

5.2 kPa vs 3.1 kPa, P <.0001).
Twenty-three patients developed RILD (23/102, 23%)

at a median of 4 months post-RT. Seven patients died

within 1 year of treatment without RILD. Two patients

underwent liver transplantation, 1 of whom had devel-

oped RILD before liver transplantation. Mean pre-RT LS

was 4.9 kPa versus 3.6 kPa for those who did versus did

not develop RILD (P <.001). For the entire cohort, the

cumulative incidence of RILD at 6 months and 12 months

post-RT was 26% (95% CI, 18-38) and 29% (95% CI, 21-

42), respectively. The cumulative incidence of RILD at 6

and 12 months for pre-RT LS ≤3.0 kPa was 12% (95%

CI, 4.9-31) and 12% (95% CI, 4.9-31) and for pre-RT LS

>3.0 kPa was 36% (95% CI, 24-43) and 41% (95% CI,

29-59), respectively (Fig 2).

Univariate Cox models identified several pre-RT vari-

ables associated with development of RILD (Table 2).

Pre-RT LS >3.0 kPa was associated with an increased

risk of post-RT RILD (HR 4.9; 95% CI 1.6-14.3;

P = .004) in overall analysis (Fig 2). Analysis was per-

formed in patient subgroups of primary tumor versus

metastasis and clinical diagnosis of cirrhosis (yes vs no)

(Table 3). In these subgroups, the rate of RILD was

higher for patients with LS >3 kPa (HR 2.4-2.9),

although these associations were not statistically signifi-

cant (all P > 0.05).

Because there were only 23 RILD events, an initial

multivariable model included 3 clinically relevant varia-

bles that were significantly associated with RILD in the

univariable model: CP score (A vs B/C), dichotomized
Figure 2 Cumulative incidence of radiation-induced liver dis-

ease in patients stratified by baseline liver stiffness. LS ≤ 3.0

kPa or LS > 3.0 kPa (hazard ratio 4.9; 95% confidence interval,

1.6-14.3; P = .004). Abbreviations: LS = liver stiffness.



Table 2 Univariate models for survival-free RILD after RT

Variable No RILD (n = 79) RILD (n = 23) Hazard Ratio 95% CI P value

Age (>65 years) 65.0 (30-87) 64.3 (42-87) 0.6 0.23-1.33 0.19

Sex Male/Female 0.9 0.37-1.93 0.69

Male 48 13

Female 31 9

BMI (kg/m2) 27.6 (15.3-47.2) 30.5 (18.6-42.9)

Per 1 point 1.1 1.001-1.54 0.047

BMI < 25 1.0 (ref) 0.11

25 ≤ BMI < 30 1.4 0.37-5.14 0.63

30 ≤ BMI < 35 3.4 1.07-10.9 0.04

BMI ≥ 35 3.1 0.79-12.6 0.11

Liver Function

Normal 55 7 1.0 (ref)

Clinical cirrhosis 24 16 5.0 2.03-12.2 <0.001
Child-Pugh Score*

Per 1 point 1.5 1.06-2.04 0.02

Child-Pugh A 51 16 1.0 (ref)

Child-Pugh B/C 10 7 2.0 0.81-4.76 0.14

ALBI grade

Per 1 point 2.1 1.16-3.78 0.01

ALBI grade 1 44 2 1.0 (ref) 0.01

ALBI grade 2 16 14 4.6 1.66-13.0 0.003

ALBI grade 3 2 2 2.9 0.56-15.1 0.20

Liver tumor characteristics

Metastasis 47 4 1.0 (ref)

Primary 32 19 5.1 1.73-15.0 0.003

Gross tumor volume (cm3) per 100 cm3 152 (0.7-3034) 119 (4.4-928) 0.97 0.85-1.10 0.60

Liver-GTV (cm3) per 100 cm3 1555 (865-3079) 1640 (811-2747) 1.4 0.61-3.24 0.42

Tumor-to-liver ratio >0.02 0.06 (0.0003-0.72) 0.06 (0.003-0.33) 2.4 0.93-5.97 0.07

Parameters of RT

Total number of fractions, ≤5 64 16 1.0 (ref)

Total number of fractions, >10 15 7 1.5 0.61-3.67 0.37

Photon-based RT 59 17 1.0 (ref)

Proton-based RT 20 6 0.9 0.36-2.30 0.83

Total dose (Gy), per 10 Gy 55.5 (45-67.5) 56.7 (30-70) 1.3 0.67-2.35 0.48

Mean liver dose (Gy), per 1 Gy 10.2 (1.7-23.4) 13.4 (3.4-22.8) 1.1 1.001-1.2 0.047

Mean liver dose (Gy) EQD2, per 1 Gy 10.4 (1.2-27.4) 13.7 (2.5-28.9) 1.9 0.999-3.61 0.05

Post-RT systemic therapy 18 2 2.4 0.57-10.4 0.23

Liver stiffness (kPa) 3.6 (1.8-8.7) 4.9 (2.1-8.6)

Per 1 kPa 1.3 1.07-1.56 0.009

> 3.0 kPa 4.9 1.64-14.3 0.004

Results expressed as mean (range).

Abbreviations: ALBI = albumin-bilirubin; BMI = body mass index; CI = confidence interval; EQD2 = equivalent dose in 2 Gy fractions;

RILD = radiation induced liver disease; RT = radiation therapy.

* For patients with metastasis and no signs of cirrhosis, a CP score of A5 was assigned.
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pre-RT LS (≤3.0 vs >3.0), and continuous mean liver

dose. This model included 84 patients (18 had missing

CP scores); LS >3.0 (P = .041) and mean liver dose

(P = .046) were associated with RILD, while CP score

was not (P = .38). The final model included all 102

patients, and both variables were significantly associated

with RILD risk, LS >3.0 (HR 5.0; CI, 1.7-14.8; P = .004)

and mean liver dose (HR 1.08 per 1 Gy; CI, 1.01-1.2;

P = .04) with concordance score 0.75.
Discussion
In this cohort of patients who received liver-directed

RT, elevated pre-RT LS measured by MRE was associ-

ated with an increased risk of developing RILD. In the

context of a known hepatic malignancy or metastasis,

increased LS likely demonstrates a liver compromised by

fibrosis with reduced hepatic reserve. Our results are



Table 3 Impact of elevated liver stiffness for RILD following liver RT in overall cohort and subgroups

Group N (No RILD/RILD) Hazard Ratio 95% CI P value

Overall Cohort 102 (79/23)

LS ≤ 3.0 1.0 (ref)

LS > 3.0 4.9 1.64-14.3 0.004

Primary tumor 51 (32/19)

LS ≤ 3.0 1.0 (ref)

LS > 3.0 2.9 0.67-12.7 0.15

Liver metastasis 51 (47/4)

LS ≤ 3.0 1.0 (ref)

LS > 3.0 2.7 0.37-19.3 0.33

Clinical cirrhosis 40 (24/16)

LS ≤ 3.0 1.0 (ref)

LS > 3.0 2.4 0.3-18.0 0.41

No clinical cirrhosis 62 (55/7)

LS ≤ 3.0 1.0 (ref)

LS > 3.0 2.5 0.6-11.4 0.23

Abbreviations: CI = confidence interval; LS = liver stiffness; RILD = radiation induced liver disease.
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consistent with those of Ichikawa et al, who found that

elevated pre-RT LS was associated with a higher risk of

RILD in a cohort of 17 patients with HCC undergoing

SBRT.10 Our study expands on this report with a larger

cohort of patients with primary liver tumors, patients

with liver metastasis, and those treated with hypofractio-

nated RT techniques, and the inclusion of both photon-

based and proton-based regimens.

Our evaluation supports multiple clinical and dosime-

try factors that have previously been associated with an

increased risk of developing RILD. These include pre-

treatment BMI, CP score, ALBI grade 2, primary liver

tumor, and normal liver dose constraints.9,10 Addition-

ally, we found that RT prescription dose, fractionation

schedule, and RT modality (proton vs photon) were not

associated with the development of RILD. An explor-

atory analysis in subgroups of patients with primary liver

tumor vs metastasis and clinical diagnosis of cirrhosis

(yes vs no) suggested higher rates of RILD in patients

with elevated LS in all subgroups. However, associations

were not statistically significant, perhaps due to small

numbers of events and patients.

MRE is an attractive technique for assessing risk of

RILD because it is noninvasive, reproducible, objective,

and convenient for patients who require an MR evalua-

tion for assessment and/or RT planning.11,12 Other novel

imaging techniques are being explored for pretreatment

assessment of patients with liver tumors and/or metasta-

sis, including sulfur colloid single photon emission com-

puted tomography, indocyanine green clearance on MR,

and Eovist� (Bayer, Whippany, NJ) enhancement on

MR.17-19 One significant development is the use of ALBI

grade instead of CP score for prediction of RILD and

overall survival. Compared with CP score, which requires

subjective assessment of encephalopathy and ascites and

is impacted by the use of warfarin, ALBI grade relies on
only objective measures and has been shown to be more

predictive of overall survival and RILD than CP

score.20,21

Limitations of the study include the retrospective

nature of data collection and analysis and a heteroge-

neous cohort in terms of patient and treatment character-

istics. For measurement of RILD, we applied change in

CP score to noncirrhotic patients as has been done in

other series,5,6 although this has not been rigorously eval-

uated. Moreover, we considered change in ALBI score

for a measure of liver dysfunction as well; however, only

43 patients had sufficient information, limiting analysis

and utility. Finally, the overall sample size and number

of RILD events limits our multivariate model in deter-

mining the most significant independent factors associ-

ated with development of RILD.
Conclusion
Elevated pre-RT LS measured by MRE was associated

with an increased risk of RILD as measured by change in

CP score in patients receiving SBRT and hypofractio-

nated RT for primary liver tumors and liver metastasis.

Further work is needed to validate whether MRE has

independent predictive ability for RILD, incorporating

other known risk factors.
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